## workshop 5 <br> $\mathbb{R}^{2}$

1. Let $V$ be a 2 -dimensional vector space with basis $\mathfrak{X}=\left\{v_{1}, v_{2}\right\}$, write down the matrices $[0]_{\mathfrak{X} \mathfrak{X}}$ and $[i d]_{\mathfrak{X} \mathfrak{X}}$.

$$
\begin{aligned}
& T\left(v_{1}\right)=\stackrel{b}{0}_{0}^{a_{11}}\left(v_{1}\right)+\dot{0}^{a_{21}}\left(v_{2}\right)=0 \quad[0]_{* *}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& T\left(v_{2}\right)={\underset{\tau}{\tau_{12}}}_{0}^{\left(v_{1}\right)+0\left(v_{2}\right)=0} \tau_{a_{22}}
\end{aligned}
$$


2. Let $U, V, W$ be vector spaces and $\underline{S: U \rightarrow V, T: V \rightarrow W}$ be linear transformations. Define the composition $T \circ S: U \rightarrow W$ by $T \circ S(u)=T(S(u))$ for all $u$ in $U$.
a. Show that $T \circ S$ is a linear transformation.
b. Now suppose $U$ is 1-dimensional with basis $\mathfrak{X}=\left\{u_{1}\right\}, V$ is 2-dimensional with basis $\mathfrak{Y}=\left\{v_{1}, v_{2}\right\}, W$ is 3 -dimensional with basis $\mathfrak{Z}=\left\{w_{1}, w_{2}, w_{3}\right\}$. Show $[T$ 。 $S]_{\mathfrak{Z} \mathfrak{X}}=[T]_{\mathfrak{Z} \mathfrak{U}]}[S]_{\mathfrak{Y} \mathfrak{X}}$. This equality holds for compositions of linear transformations in general, and this is why we defined matrix multiplication the way we did.

```
a. \(S: U \longrightarrow V, T: V \longrightarrow W\)
\(T \cdot S: u \rightarrow w\) by \(T \cdot S(u)=T(S(u))\)
under addition : for any \(\begin{aligned} \underbrace{u \text { and } v}_{\text {vectors }} \text { in } v, T \circ S(u+v) & =T(S(u+v))=T(S(u))+T(S(v)) \\ & =T \circ S(u)+T \circ S(v)\end{aligned}\)
under scalar multiplication: for any \(\lambda\) in \(\mathbb{R}, T \cdot S(\lambda u)=T(S(\lambda u))=T(\lambda S(u))=\lambda(T(S(u))\)
    \(\lambda(T(s(u))=\lambda T \circ s(u)\)
    Linear combinations are preserved,so \(T \cdot S\) is a linear transformation
```

