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INSTRUCTIONS

1. The statements in Italics are for introducing results and notations that may be
used again in this course. You are only required to read and think about them.

2. To receive full credit you must explain how you got your answer.

3. While I encourage collaboration, you must write solutions IN YOUR OWN
WORDS. DO NOT SHARE COMPLETE SOLUTIONS before they are due. YOU
WILL RECEIVE NO CREDIT if you are found to have copied from whatever source
or let others copy your solutions.

4. Workshops must be handwritten (electronic handwriting is allowed) for authen-
tication purposes and submitted on Canvas. Please do NOT include any personal
information such as your name and netID in your file. Late homework will NOT be
accepted. It is your responsibility to MAKE SURE THAT YOUR SUBMISSIONS
ARE SUCCESSFUL AND YOUR FILES ARE LEGIBLE AND COMPLETE. It
is also your responsibility that whoever reads your work will understand and enjoy
it. Up to 1 point out of 10 may be taken off if your solutions are hard to read or
poorly presented.

WORKSHOP 16

1. Let X = {uy,uz}, 9 = {v1, vz} be orthonormal bases for a 2—dimensional (_
subspace V' of R”. Q/‘ﬁﬂo%ﬁ"”“

a. Let Q = [idy]|xy. Express each entry of ) as a dot product T~— L _\/\/’ 4_
» Show that the columns of @ form an orthonormal Set of vectors, and so are Q’V\%
the rows.

4 c. Show that b is equivalent to QTQ = QQT = I, i.e., Q71 = Q7.
d. Show that (Qu) - (Qv) = u- v for any column vectors u, v in R%. (We say Q

preserves dot products.) (/(50 a,ﬁ c wmd)

cow =spun 1] 1| L 2 >TD ) glio
2 Let W =Spang |11, |1 ¢. a'@: &va&h’)x VWM,H’I@\I V‘)

a. Find an orthonormal basis ¥ for W and an orthonormal basis ) for W=.
Verify that X U9) is an orthonormal basis for R3.
1
b. Let b= |2|. Find w in W and z in W+ such that b = w + z. (Hint:
4
Problem 1 in Workshop 15 may be helpful.
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