
Instructions

1. The statements in Italics are for introducing results and notations that may be
used again in this course. You are only required to read and think about them.

2. To receive full credit you must explain how you got your answer.

3. While I encourage collaboration, you must write solutions IN YOUR OWN
WORDS. DO NOT SHARE COMPLETE SOLUTIONS before they are due. YOU
WILL RECEIVE NO CREDIT if you are found to have copied from whatever source
or let others copy your solutions.

4. Homework must be handwritten (electronic handwriting is allowed) for authen-
tication purposes and submitted on Canvas. Please do NOT include any personal
information such as your name and netID in your file. Late homework will NOT be
accepted. It is your responsibility to MAKE SURE THAT YOUR SUBMISSIONS
ARE SUCCESSFUL AND YOUR FILES ARE LEGIBLE AND COMPLETE. It
is also your responsibility that whoever reads your work will understand and enjoy
it. Up to 4 points out of 40 may be taken off if your solutions are hard to read or
poorly presented.

Homework 1 Solution

These short videos will give you the matrix background you need for some of the
problems: Intro to Matrices, Operations with Matrices, How to Multpiply Matrices.

1. a.What sized matrices can be multiplied to

[
1 0
0 1

]
on the left and right, respec-

tively? Find ALL allowed sizes. (2 pts)

Matrices of size n × 2 can be multiplied on the left, and matrices of size 2 × n
can be multiplied on the right. Here n can be any positive integer.

b. What do you get when you do such multiplications? Computing a few exam-
ples might help you draw the general conclusion. (2 pts)

When you multiply a matrix to

[
1 0
0 1

]
on the left or right, the product is just

your original matrix. (1 pt) Examples or explainations. (1 pt)

c. In general, the square matrices (i.e. matrices with the same number of
rows and columns) with 1’s on the diagonal (when we speak of the diagonal in this
class, we always mean the upper-left to lower-right diagonal) and 0’s elsewhere are
called Identity matrices. Can you generalize your conclusion in b to all identity
matrices? Give the general statement. (2 pts)

When you multiply the m×m identity matrix to a matrix of size m× n on the
left, or to a matrix of size n×m on the right, the product is just the matrix being
multiplied to. Here m,n can be any positive integer.
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https://www.khanacademy.org/math/precalculus /x9e81a4f98389efdf:matrices/x9e81a4f98389efdf:mat-intro/v/introduction-to-the-matrix
https://www.youtube.com/watch?v=HKnTgMlWs30
https://www.youtube.com/watch?v=2spTnAiQg4M
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2. Let A =
[
a11 a12 a13

]
, B =

b11 b12
b21 b22
b31 b32

, and C =

[
c11
c21

]
, where the a∗∗,

b∗∗, c∗∗ are real numbers. Compute (AB)C and A(BC) and show that they are
equal. One can generalize this and show that for general matrices A, B, and C,
(AB)C = A(BC) whenever the products are defined, i.e., matrix multiplication
is associative. For this reason, we can use notations like A3 and so on without
causing confusion. (4 pts)

AB =
[
a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32

]
(1pt)

(AB)C =
[
(a11b11 + a12b21 + a13b31)c11 + (a11b12 + a12b22 + a13b32)c21

]
(1pt)

BC =

b11c11 + b12c21
b21c11 + b22c21
b31c11 + b32c21

 (1pt)

A(BC) =
[
a11(b11c11 + b12c21) + a12(b21c11 + b22c21) + a13(b31c11 + b32c21)

]
(1pt)

Opening the brackets one sees that the single entry in (AB)C and A(BC) are the
same up to reordering of the terms being summed.

3. a. Show that the set of 2× 3 matrices with entries in R, together with the usual
addition and scalar multiplication, is a vector space over R. We denote this vector
space by Mat2×3(R). (6 pts)

Here the two operations are given, so we just need to verify the axioms. In the
following each r, s, a∗∗, b∗∗, c∗∗ is allowed to take any real number.

Axioms for addition (3 pts):
1)[
a11 a12 a13
a21 a22 a23

]
+

[
b11 b12 b13
b21 b22 b23

]
=

[
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

]
[
b11 b12 b13
b21 b22 b23

]
+

[
a11 a12 a13
a21 a22 a23

]
=

[
b11 + a11 b12 + a12 b13 + a13
b21 + a21 b22 + a22 b23 + a23

]
Since adding real numbers is commutative, the resulting matrices are equal. This

shows commutativity of matrix addition.
2)

(

[
a11 a12 a13
a21 a22 a23

]
+

[
b11 b12 b13
b21 b22 b23

]
) +

[
c11 c12 c13
c21 c22 c23

]
=

[
(a11 + b11) + c11 (a12 + b12) + c12 (a13 + b13) + c13
(a21 + b21) + c21 (a22 + b22) + c22 (a23 + b23) + c23

]
[
a11 a12 a13
a21 a22 a23

]
+ (

[
b11 b12 b13
b21 b22 b23

]
+

[
c11 c12 c13
c21 c22 c23

]
)

=

[
a11 + (b11 + c11) a12 + (b12 + c12) a13 + (b13 + c13)
a21 + (b21 + c21) a22 + (b22 + c22) a23 + (b23 + c23)

]
Since adding real numbers is associative, the resulting matrices are equal. This

shows associativity of matrix addition.

3) Since

[
0 0 0
0 0 0

]
+

[
a11 a12 a13
a21 a22 a23

]
=

[
a11 a12 a13
a21 a22 a23

]
,

[
0 0 0
0 0 0

]
is the zero

element/vector.



3

4) Since

[
a11 a12 a13
a21 a22 a23

]
+

[
−a11 −a12 −a13
−a21 −a22 −a23

]
=

[
0 0 0
0 0 0

]
, −
[
a11 a12 a13
a21 a22 a23

]
=[

−a11 −a12 −a13
−a21 −a22 −a23

]
exists for each matrix.

Axioms for scalar multiplication (3 pts):

1)1 ·
[
a11 a12 a13
a21 a22 a23

]
=

[
1 · a11 1 · a12 1 · a13
1 · a21 1 · a22 1 · a23

]
=

[
a11 a12 a13
a21 a22 a23

]
for each

matrix.

2)(rs) ·
[
a11 a12 a13
a21 a22 a23

]
=

[
(rs)a11 (rs)a12 (rs)a13
(rs)a21 (rs)a22 (rs)a23

]
r · (s ·

[
a11 a12 a13
a21 a22 a23

]
) = r ·

[
sa11 sa12 sa13
sa21 sa22 sa23

]
=

[
r(sa11) r(sa12) r(sa13)
r(sa21) r(sa22) r(sa23)

]
Since multiplying real numbers is associative, the resulting matrices are equal.

3)r ·(
[
a11 a12 a13
a21 a22 a23

]
+

[
b11 b12 b13
b21 b22 b23

]
) = r ·

[
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

]
=

[
r(a11 + b11) r(a12 + b12) r(a13 + b13)
r(a21 + b21) r(a22 + b22) r(a23 + b23)

]
r·
[
a11 a12 a13
a21 a22 a23

]
+r·
[
b11 b12 b13
b21 b22 b23

]
=

[
ra11 ra12 ra13
ra21 ra22 ra23

]
+

[
rb11 rb12 rb13
rb21 rb22 rb23

]
=

[
ra11 + rb11 ra12 + rb12 ra13 + rb13
ra21 + rb21 ra22 + rb22 ra23 + rb23

]
Since multiplication distributes over addition for real numbers, the resulting

matrices are equal.

4)(r + s) ·
[
a11 a12 a13
a21 a22 a23

]
=

[
(r + s)a11 (r + s)a12 (r + s)a13
(r + s)a21 (r + s)a22 (r + s)a23

]
r·
[
a11 a12 a13
a21 a22 a23

]
+s·
[
a11 a12 a13
a21 a22 a23

]
=

[
ra11 + sa11 ra12 + sa12 ra13 + sa13
ra21 + sa21 ra22 + sa22 ra23 + sa23

]
Since multiplication distributes over addition for real numbers, the resulting

matrices are equal.

b. Describe the span of the following sets of vectors in the simplest possible
terms:

i. {
[
0 0 0
0 0 0

]
,

[
1 0 0
0 1 0

]
}. (2 pts)

The span is the set of matrices of the form a ·
[
0 0 0
0 0 0

]
+ b ·

[
1 0 0
0 1 0

]
, where

each a, b are allowed to be any real number. (1 pt) This is the same as the set of

matrices of the form

[
b 0 0
0 b 0

]
, where b is allowed to be any real number. (1 pt)

ii. {
[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
}. (2 pts)

The span is the set of matrices of the form a ·
[
1 0 0
0 0 0

]
+ b ·

[
0 1 0
0 0 0

]
, where

each a, b are allowed to be any real number. (1 pt) This is the same as the set of

matrices of the form

[
a b 0
0 0 0

]
, where each a, b are allowed to be any real number.

(1 pt)
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iii. {
[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
1 −1 0
0 0 0

]
}. (2 pts)

Method 1: Since

[
1 −1 0
0 0 0

]
=

[
1 0 0
0 0 0

]
+ (−

[
0 1 0
0 0 0

]
), removing it will

not change the span. (1 pt). Therefore, the span is the same as in ii. (1 pt)

Method 2: The span is the set of matrices of the form a ·
[
1 0 0
0 0 0

]
+ b ·[

0 1 0
0 0 0

]
+ c ·

[
1 −1 0
0 0 0

]
, where each a, b, c are allowed to be any real num-

ber. (1 pt) This is the same as the set of matrices of the form

[
a + c b− c 0

0 0 0

]
,

where each a, b, c are allowed to be any real number. Since each a + c, b − c are
consequently allowed to be any real number, the span is the just the set of matrices

of the form

[
d e 0
0 0 0

]
, where each d, e are allowed to be any real number. (1 pt)

c. In b, which sets of vectors are linearly dependent and which sets are linearly
independent? (6 pts)

i. Removing

[
0 0 0
0 0 0

]
doesn’t change the span, so the set is linearly dependent.

ii. a ·
[
1 0 0
0 0 0

]
+ b ·

[
0 1 0
0 0 0

]
=

[
a b 0
0 0 0

]
for any real numbers a, b. For such

a matrix to be the zero vector (which we found to be

[
0 0 0
0 0 0

]
in part a), a, b

must both be 0. Therefore, the set is linearly independent.
iii. We saw in part b that the third vector is a linear combination of the first

two, therefore the set is linearly dependent.

d. Show that matrices with the additional constraint that the two entries on the
3rd column sum to 0 form a subspace of Mat2×3(R). (6 pts)

We need to show this subset of matrices contains the zero vector and is closed
under addition and scalar multiplication.

We saw in part a that the zero vector is

[
0 0 0
0 0 0

]
, whose both entries on the

third column are 0 and therefore sum to 0. This shows the subset contains the zero
vector. (2 pts)

Take two 2 × 3 matrices whose entries on the third column sum to 0. Say, the
first matrix has entries a,−a on the third column, the second matrix has entries
b,−b on the third column (here each a, b is allowed to take any real number), then
the sum of the two matrices has entries a + b,−a − b on the third column, which
sum to 0. This shows the subset is closed under addition. (2 pts)

Take a matrix with a,−a on the third column (here a is allowed to take any real
number), and multiply it by a real number r. The resulting matrix has ra,−ra on
the third column, which sum to 0. This shows the subset is closed under scalar
multiplication. (2 pts)
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4. By a solution to the differential equation 2y′′ + xy′ − exy = 0 we mean a twice-
differentiable real-valued function y(x) such that the equality 2y′′ + xy′ − exy = 0
holds for any x for which y(x) is defined. Show that the set of solutions to this
differential equation, together with the usual addition and scalar multiplication,
form a vector space over R. A basis for this vector space is called a fundamental
set of solutions to this differential equation. (6 pts)

We first show the set of real-valued functions, together with the usual addition
and scalar multiplication, is a vector space over R, and then show the set of solutions
to the differential equation is a subspace.

To show the set of real-valued functions, together with the usual addition and
scalar multiplication, is a vector space over R we just need to verify the axioms.

Let f, g, h be real-valued functions and a, b be real numbers. Axioms for addition:
1) f + g = g + f and 2)(f + g) + h = f + (g + h) are clear. 3) Let o denote the
constant function with value 0, then o + f = f . Therefore, o is the zero vector. 4)
We can take −f to be the real-valued function whose value at x is the real number
−f(x). Then f + (−f) = o. Axioms for scalar multiplication: 1)1 · f = f , 2)
(ab) · f = a · (b · f), 3)a · (f + g) = a · f + a · g and 4)(a + b) · f = a · f + b · g are
clear. (3 pts)

Each solution to the differential equation is a real-valued function by definition,
so the set of solutions to the differential equation is a subset of the set of real-valued
functions. To show this subset is a subspace, we need to show it contains o and is
closed under addition and scalar multiplication.

Since o(x), o′(x), o′′(x) = 0 for each real number x, the equality 2o′′+xo′−exo = 0
holds for all real number x. This shows o is a solution to the differential equation
and therefore lies in the subset. (1 pt)

Let y1, y2 be two solutions to the differential equation, i.e., the equality 2y′′1 +
xy′1 − exy1 = 0 holds for any x for which y1(x) is defined, and the equality 2y′′2 +
xy′2−exy2 = 0 holds for any x for which y2(x) is defined. y1+y2 is defined wherever
both y1 and y2 are defined, and there 2(y1 + y2)′′ + x(y1 + y2)′ − ex(y1 + y2) =
(2y′′1 + xy′1 − exy1) + (2y′′2 + xy′2 − exy2) = 0. This shows y1 + y2 is a solution to
the differential equation. Hence the subset is closed under addition. (1 pt)

Let y be a solution to the differential equation and a be a real number. Then
ay is defined wherever y is defined, and there 2(ay)′′ + x(ay)′ − ex(ay) = a(2y′′ +
xy′ − exy) = 0. This shows ay is a solution to the differential equation. Hence the
subset is closed under scalar multiplication. (1 pt)
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