Rutgers Exam(c)2020
Consider the following sets of vectors in \mathbb{R}^{2} :
Rutgers University Math 250 Section B2 Official Midterm Exam(C2020
a. $\{(1,2),(3,4),(5,6)\}$

Rutgers Exam(C)2020
b. $\{(1,1),(-2,-2)\}$

Rutgers Exam(C)2020
c. $\{(1,-2),(-2,1)\}$

Rutgers Exam@2020
d. $\{(0,0)\}$

Rutgers University Math 250 Section B2 Official Midterm Exam⑳20
Type in all correct answers to each of the following questions.
If there is no correct answer, type in "None".Rutgers Exam@2020
No justification is needed.
Rutgers Exam(C)2020

1. Which sets are linearly dependent?

Rutgers Exam(C)2020
2. The span of which sets have dimension 1 ?

Rutgers Exam(C)2020
3. Which sets are bases for \mathbb{R}^{2} ?

$$
\text { recall: }\left\{v_{1}, \ldots, v_{n}\right\} \text { are 1. depenendent }
$$

$$
\begin{gathered}
\text { if } \wedge \frac{a_{1} v_{1}}{}+\cdots+a_{n} v_{n}=0 \text { but } \\
a_{n}, \ldots, a_{n} \text { are all } 0 .
\end{gathered}
$$

Rutgers Exam(C)2020
Consider the following sets of vectors in \mathbb{R}^{2} :
Rutgers University Math 250 Sedhon B2 ' \}fficial Midterm Exame2020
a. $\{\underbrace{(0,0)}_{\text {Rutgers Exam©2020 }}\}$
$\left.\begin{array}{l}\text { Rutgers Exam(2020 } \\ \text { b. }\{(1,1),(-2,-2)\} \\ \text { Rutgers Exam(} 2020\end{array}(1,-1\}-2\right)=2(1,1) \quad l \cdot(-2,-2)-2 \cdot(1,1)=(0,0)$.
C. $\{(1,-2),(-2,1)\}$
hutgers Exam@ $\{(1,2),(3,4),(5,6)\}$

$$
a(1,-2)+b(-2,1)=(a-2 b,-2 a+b)
$$ $\{(1,0),(0,1)\}$

Type in all correct answers to each of the following questions. If there is no correct answer, type in "None". Rutgers Exam@2020 No justification is needed.

1. Which sets are linearly dependent? Q, b, d.
Thtgers Exam©2020
2. The span of which sets have dimension 1 ?

Rutgers Exam⑳20
3. Which sets are bases for \mathbb{R}^{2} ?

χ The union of the $x y$-plane and the z-axis. Rutgers Exam@2020

The y-axis. Rutgers Exam@ 2020
The plane given by $z=1$. Rutgers Exam@ 2020 doesu't contain $(0,0,0)$
The region given by $z \geq 0$. Rutgers Exam©2020 $\quad(\underbrace{0,0,1)}=(\underbrace{0,0,1)}_{2<0}$
Which of the following is a vector space over \mathbb{R} ? Rutgers Exam@2020
(Addition and scalar multiplication, if defined, would be the usual ones.)
Select all correct answers.
 the set of all 2×2 matrices $/ \mathbb{R}$
The set of invertible 2×2 matrices with entries in \mathbb{R}. Rutgers Exam@2020 X
The set of real-valued functions with a zero at 2. $\left.\left(\begin{array}{ll}0 & 0\end{array}\right) A \neq 1 \begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$
V The set of real-valued functions with a zero at 2. Rutgers Examఠ2020 $=0$
$f . \quad f(2)=0 \quad g(2)=0(f+g)(2)=\left((t 2)+g(2)=0 \cdot\left(\begin{array}{ll}\$ & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\right.$. the set of all real -valued functions form a vector. sp pare

Which of the following is a linear transformation of vector spaces over \mathbb{R} ? Select all correct answers.

$$
f(x+y) \neq f(x)+f(y) ?
$$

$$
(x+y)+1 \quad(x+1)^{\prime \prime}+(y+1)=x+y+2
$$

χ The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x+1$ for all x in \mathbb{R}. Rutgers Exam @2d20

$$
0 \rightarrow 0 ?
$$

Rutgers University Math 250 Section B2 Official Midterm Exam (2020
Let V be the vector space of functions from \mathbb{R} to \mathbb{R}. The map $T: V \rightarrow \mathbb{R}$ given by $V(f)=f(1)$ for each function f in V. Rutgers Exam@2020 $T(f+g) \stackrel{?}{=} T(f)+T(g)$
 for each X in $M a t_{2 \times 2}(\mathbb{R})$. Rutgers University Math 250 Section B2 Official Midterm Exam@2020
\checkmark The map from $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ to \mathbb{R} that takes a matrix to the sum of its diagonal

$$
\begin{gathered}
T(a \cdot x) \stackrel{?}{=} a \cdot T(x) \\
11 \\
A \cdot a x=a \cdot A x
\end{gathered}
$$

$$
\begin{aligned}
& \left.T\left(\left[\begin{array}{lll}
a & b
\end{array}\right]_{1}+\begin{array}{cc}
a^{\prime} & c^{\prime} \\
c & c^{\prime} \\
d
\end{array}\right]\right) \stackrel{?}{=} T\left(\left[\begin{array}{ll}
a & b \\
c & (d)
\end{array}\right)+T_{11}\left(\left[\begin{array}{ll}
(0) & b \\
c^{\prime} & (d)
\end{array}\right)\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Which of the following is a defined block multiplication that results in a partitioned }
\end{aligned}
$$ matrix of the form $\left[\begin{array}{c|c}* & * \\ * & * \\ \hline * & *\end{array}\right]$, where each $*$ represents a number. Select all correct answers. Rutgers University Math 250 Section B2 Official Midterm Exam(c)2020

$\sum\left[\begin{array}{ll}* & * \\ * & * \\ \hline * & *\end{array}\right]\left[\begin{array}{l|l}* & * \\ * & *\end{array}\right]$ Rutgers Exam (c)2020
$\int\left[\begin{array}{l|l}* & * \\ * & * \\ * & *\end{array}\right]\left[\begin{array}{ll}* & * \\ \hline * & *\end{array}\right]$ Rutgers Exam (c)2020

Rutgers University Math 250 Section B2 Official Midterm Exam (c)2020
Recall that \mathcal{P}_{1} is the vector space of all polynomials of the form $a_{0}+a_{1} x$, where a_{0}, a_{1} are real numbers. Let $T: \mathcal{P}_{1} \rightarrow \mathbb{R}$ be the linear transformation given by $T(p(x))=\int_{-1}^{1} p(x) d x$ for all $p(x)$ in \mathcal{P}_{1}. Rutgers Exam 2020
Rutgers University Math 250 Section B2 Official Midterm Exam © 2020
a. What are the kernel and range of T ? Find a basis for $K(T)$ and a basis for $R(T)$. (6 pts) Rutgers University Math 250 Section B2 Official Midterm Exam © 2020
Rutgers University Math 250 Section B2 Official Midterm Exam (c)2020
b. Let $\mathfrak{X}=\{1, x\}$ and $\mathfrak{Y}=\{1\}$. Compute $[T]_{\mathfrak{Y} \mathfrak{X}}$. (5 pts) Rutgers Exam@2020

Rutgers University Math 250 Section B2 Official Midterm Exam (c)2020
c. Let $\mathfrak{X}^{\prime}=\{-1, x-1\}, \mathfrak{Y}^{\prime}=\{2\}$, and $\mathfrak{X}, \mathfrak{Y}$ be as in part b. Compute $[T]_{\mathfrak{Y}}{ }^{\mathfrak{X}}$,

a. Kernel is a subspace. P_{1}
range is a subspace. of \mathbb{R}

$$
\begin{aligned}
& T\left(a_{0}+a_{1} x\right)=\int_{-1}^{1}\left(a_{0}+a_{1} x\right) d x=2 a_{0} \\
& k(T)=\left\{a_{1} x\right\} \text { when } B \text { basis: }\{x\}
\end{aligned}
$$

$$
\mathbb{R}(\tau)=\mathbb{R} \quad \text { Basis: }\{1\}
$$

b.C. It doesn't make sense to write

$$
1 \times 2\left\{\begin{array}{l}
{[T]_{y z},[T]_{y z}} \tag{if}\\
{[T]_{y x} x,[T]_{y^{\prime}} x^{\prime}}
\end{array}\right.
$$

It does mable sense to talk about

$$
\left\{\begin{array}{cc}
2 \times 2\left[i d_{p_{1}}\right]_{x x^{\prime}} \cdots i d p_{1}: & p_{1} \rightarrow p_{1} \\
& {\left[i d_{\mathbb{R}}\right]_{y y^{\prime}}} \\
{[T]_{y x^{\prime}}=} & {[T]_{y x}\left[i d_{p_{1}}\right]_{x x^{\prime}}} \\
{[T]_{y y^{\prime} x}=} & {\left[i d_{\mathbb{R}}\right]_{y^{\prime} y}[T]_{y x}} \\
{[T]_{y^{\prime} x^{\prime}}=\left[i d_{\mathbb{R}} y_{y} y[T]_{y x}\left[i d_{p_{1}}\right]_{x x^{\prime}}\right.}
\end{array}\right.
$$

eg. compute $[T] y x^{\prime}$:

$$
\begin{aligned}
& T(-1)=\int_{-1}^{1}(-1) d x=-2=(-1) \cdot 2 \\
& T(x-1)=\int_{-1}^{1}(x-1) d x=-2=(-1) \cdot 2
\end{aligned}
$$

