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Chapter 0. A Few Preliminaries.

Course texts:

1. Linear Algebra, by S. Friedberg, A. Insel, L. Spence (latest edition). This will be
the main backup text to accompany the present Class Notes . Various assignments
will be taken from it.

2. Schaum’s Outline Series: Linear Algebra, by Seymour Lipschutz, for a review of
matrix algebra, row operations, and solution of linear systems (roughly the first
3-4 chapters). K is a field (see Appendix C of [F/I/S] text; read it). For us,
K = C, R, Q, and occasionally the finite field K = Zp = Z/pZ, for a prime p > 1.

Recall that the finite field Zp is modeled as S = {0, 1, 2, ..., p− 1}, interpreting a + b and
ab (mod p). For example: if p = 7 then

5⊕ 6 = 11 ≡ 4 (mod 7) and 506⊙ 17 ≡ 6 (mod 7).

Elements of Zp are the (mod p) congruence classes [k] = k + pZ = {ℓ : ℓ ≡ k (mod p)}.
Using this notation the operations in Zp take the form

[a]⊕ [b] = [a + b] [a]⊙ [b] = [ab] (add or multiply class representatives)

The system (Zp,⊕,⊙) is a finite number field with additive zero element [0] and multi-
plicative identity element [1]. All nonzero elements [k] ̸= [0] have multiplicative inverses
(reciprocals), but it may not be so easy to find the class [k]−1 = [ℓ], 0 < ℓ < p such that
[k] · [ℓ] = [1]. If p = 7 we have [3]−1 = [5] because 3 ⊙ 5 = 15 = 14 + 1 ≡ 1 (mod 7).
Notice that in Zp the sum [1]⊕ [1]⊕ ....⊕ [1] with p terms is equal to the zero element
[0].
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Notes c⃝F.P. Greenleaf 2014 LAI-f14-vsp.tex

Chapter I

Section I.1. Vector Spaces over a Field K

The objects of interest in this chapter will be vector spaces over arbitrary fields.

1.1 Definition. A vector space over a field K is a set V equipped with two operations
(+) and (·) from V × V → V and K× V → V having the following properties.

1. Axioms for (+):
Commutative Law: x + y = y + x
Associative Law: (x + y) + z = x + (y + z)
Zero Element: There exists an element “0” in V such that 0+v = v

for all v.
Additive Inverse: For every v ∈ V there is an element −v ∈ V, such

that v + (−v) = 0.

2. Axioms for (·):
Identity Law: 1 · v = v (1 = the identity in K)
Associative Law: (ab) · v = a · (b · v) for a, b ∈ K, v ∈ V
Distributive Law: a · (x + y) = (a · x) + (b · y)
Distributive Law: (a + b) · x = (a · x) + (b · x)

As a consequence,

1.2. Lemma. The zero element is unique: if 0, 0′ ∈ V are elements such that 0 + v = v
and 0′ + v = v, for all v ∈ V , then 0′ = 0.

Proof: 0 + 0′ = 0′ and 0 + 0′ = 0, so 0′ = 0. !

1.3. Lemma. The additive inverse is unique. That is, given v ∈ V there is just one
element u ∈ V such that u + v = 0.

Proof: Suppose v ∈ V and we are given u and u′ with u + v = 0 and u′ + v = 0. Look
at the combination u + v + u′; by associativity we get

u′ = 0 + u′ = (u + v) + u′ = u + (v + u′) = u + 0 = u ,

so that u′ = u. !

1.4. Exercise. From the axioms and previous results prove:

(i) 0 · v = 0V (ii) λ · 0V = 0V (iii) λ · v = v and v ̸= 0V ⇒ λ = 1.

1.5. Exercise. Prove that −v = (−1) · v where −1 is the negative of 1 ∈ K.
Hint: 1 + (−1) = 0 in K and 0 · v = 0V . Remember: “− v” is the unique element that
added to v is 0V ; prove that (−1) · v has this property and conclude by uniqueness of
additive inverse.

1.6. Exercise. Prove that −(−v) = v, for all v ∈ V .
Hint: Same as the previous exercise.

1.7. Exercise (Cancellation Laws). If a+v = a+w for a, v, w ∈ V prove that v = w.
Then use this to prove

(i) λ · v = 0V and v ̸= 0V implies that λ = 0 in K

(ii) λ · v = v and v ̸= 0V implies λ = 1.

1.8. Example. “Coordinate space” over the field K consists of all ordered n-tuples
Kn = {x = (x1, ..., xn) : xk ∈ K}, equipped with the usual (+) and (·) operations:

1



(i) (x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn)

(ii) λ · (x1, ..., xn) = (λ · xn, ..., λ · xn) for λ ∈ K. !

1.9. Exercise. Explain why (+) in R2 is described geometrically by the “parallelogram
law” for vector addition shown in Figure 1.1.

Figure 1.1. The Parallelogram Law for vector addition, illustrated in R2.

1.10. Example (Matrix Space). The space M(n × m, K) of n × m matrices with
entries in K becomes a vector space when equipped with the operations

Addition Operation: (A + B)ij = Aij + Bij

Scaling Operation: (λ · A)ij = λAij

The space of square matrices, with m = n, is denoted M(n, K).
Notation: Matrix entry Aij is the one in the ith row and jth column. The pair (i, j) is
referred to as its “address.” !

Figure 1.2. The entry in a matrix array with “address” (i, j) is the one in Row i and Column j.

There is also a matrix multiplication that makes M(n, K) an associative algebra with
identity, but the matrix product AB can be defined more generally for non-square ma-
trices as long as they are “compatible,” with the number of columns in A equal to the
number of rows in B. Thus if A is m × q and B is q × n we get an m × n matrix AB
with entries

(AB)ij =
q
∑

k=1

AikBkj

The algebra M(n, K) of square matrices is not commutative unless n = 1. !

1.11. Example (Polynomial Ring K[x]). The set K[x] consists of all finite “formal
sums” a0 + a1x + ... + anxn + ... =

∑

k≥0 akxk with ai ∈ K, and ai = 0 for all but
a finite number of indices. These sums can have arbitrary length. They include the
“constant polynomials” which have form c · 1- with c ∈ K, where 1- is the particular
constant polynomial 1+0·x+0·x2 + . . .; the zero polynomial 0·1- is written as “0”, which
might get confusing.

The algebraic operations in K[x] are

2



1. Addition: (
∑

k≥0 akxk) + (
∑

k≥0 bkxk) =
∑

k≥0(ak + bk)xk

2. Scaling: λ · (
∑

k≥0 akxk) =
∑

k≥0(λak)xk.

There is also a multiplication operation, obtained by multiplying terms in the formal
sums and gathering together those of the same degree

3. Product: (
∑

k≥0

akxk)× (
∑

l≥0

blx
l) =

∑

k,l≥0

akbl x
k+l =

∑

r≥0

(
∑

k,l≥0,k+l=r

akbl) · xr

(the sum being finite for each r). This makes K[x] into a commutative associative algebra
over K with 1- as its multiplicative identity.

All information about a polynomial resides in the symbol string (a0, a1, a2, ...) of
coefficients, and the algebraic operations on K[x] can be performed as operations on
symbol strings; the zero polynomial is represented by (0, 0, ...), the identity by 1- =
(1, 0, ..., 0), and x by x = (0, 1, 0, ....), etc. !

1.12. Exercise. If f(x) = 3 + 3x + x2 and g(x) = 4x2 − 2x3 + x5, compute the sum
f + g and product f · g.

The degree deg(f) of f =
∑

k≥0 akxk is n if an ̸= 0 and ak = 0 for all k > n. The degree
of a constant polynomial c1- is zero, except that no “degree” can be assigned to the zero
polynomial 0. (For various reasons, the only possible assignment would be “−∞”).

1.13. Exercise. If f, g ̸= 0 in K[x] prove that fg ̸= 0 and deg(fg) = deg(f) + deg(g).

1.14. Exercise. If f, g ̸= 0 in K[x], what (if anything) can you say about deg(f + g)?

1.15. Example (Polynomials in Several Unknowns). The polynomial ring K[x] =
K[x1, ..., xn] is handled using very efficient “multi-index notation.” A multi-index is an
element α = (α1, . . . αn) of the Cartesian product set Zn

+ = Z+ × ... × Z+ (n factors).
Each multi-index determines a monomial xα = xα1

1 · . . . · xαn

n , in which we interpret
x0

k = 1. Elements of K[x1, . . . , xn] are finite formal linear combinations of monomials

f(x1, . . . , xn) =
∑

α∈Zn
+

cαxα (cα ∈ K)

The monomial x(0,...,0) is the constant polynomial 1- in K[x1, ..., xn]. With these ideas in
mind,

1. The total degree of a multi-index is |α| = α1 + . . . + αn and the degree of the
corresponding monomial is deg(xα) = |α|. Note that many monomials can have
same total degree, for example x2y and xy2.

2. The degree of a polynomial f ∈ K[x] is

deg(f) = max{ |α| : cα ̸= 0 }

Nonzero constant polynomials c1- have degree zero: if f is the zero polynomial (all
coefficients cα = 0) deg(f) cannot be defined. The generators fk(x) = xk of the
polynomial ring all have degree 1.

The following operations make V = K[x] a vector space and a commutative associative
algebra with identity 1- = x(0,...,0).

1. Sum: f + g =
∑

α(aα + bα)xα

2. Scaling: λ · f =
∑

α(λaα)xα
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3. Product Operation:

f · g = (
∑

α

aαxα) · (
∑

β

bβxβ)

=
∑

α,β∈Zn
+

aαbβxα+β

=
∑

γ∈Zn
+

(
∑

α+β=γ

aα ·bβ ) · xγ

where we define a “sum of exponents” to be α + β = (α1 + β1, ..., αn + βn).

As an example, the monomials of degree 2 in K[x1, x2, x3] are

multi-index monomial

(0, 0, 2) x2
3

(0, 1, 1) x2x3

(0, 2, 0) x2
2

(1, 0, 1) x1x3

(1, 1, 0) x1x2

(2, 0, 0) x2
1

Here we have lined up the monomials in “lexicographic”or “dictionary” order (taking
A = 0, B = 1, C = 2, . . .), which is a useful way to manage them. This is a strict linear
ordering of monomials; they are only partially ordered by their “total degree” deg(xα) =
|α|. The system K[x1, . . . , xn] is a commutative associative algebra with identity element
1-. Its properties are quite a bit more complicated than those of polynomials K[x] in one
unknown, but they do share two crucial algebraic properties. !

1.16. Exercise. (Hard, but try it) If f, g ̸= 0 in K[x1, ..., xn] prove that

1. Degree Formula: deg(f · g) = deg(f) + deg(g) for all f, g ̸= 0 in K[xi, . . . , xn].

2. No Zero Divisors: f, g ̸= 0 in K[x1, . . . , xn] ⇒ f ·g ̸= 0. This implies we can
perform “cancellation” – if f ̸= 0 and f ·h1 = f ·h2 then h1 = h2.

Hint: Try it first for n = 1. For n = 2 try lexicographic ordering of monomials in
K[x, y].
Note: The maximum possible degree for a nonzero monomial in the product fg is
obviously d = deg(f)+deg(g). The problem is that the coefficient cγ of such a monomial
will be a sum of products (

∑

α+β=γ aαbβ), and not a simple product as it is when there
is just one variable. Such sums could equal zero even if all terms are nonzero, so why
couldn’t these coefficients (sums) be zero for all monomials with the maximum possible
degree d, making deg(fg) < deg(f) + deg(g)? !

A more complete discussion of the Degree Formula for n ≥ 2, and especially its proof
using lexicographic ordering of monomials, is provided in Appendix A of this chapter.

1.17. Example (Function Spaces). If S is a set, C(S) = all scalar-valued functions
f : S → K become a vector space under the usual operations

(f + g)(x) = f(x) + g(x), (λ · f)(x) = λf(x), ∀x ∈ S

There is also a pointwise multiplication operation

(f · g)(x) = f(x) · g(x) ,
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which makes C(S) a commutative associative algebra over K with identity element
1-(x) = 1 for all x, and zero element 0(x) = 0, for x ∈ S. !

1.18. Example (Polynomial Functions vs Formal Sums). The polynomial func-
tions PK with values in K are the functions φf : K→ K of the form

φf (t) = [ f(x)|x=t ] =
∑

k≥0

ak tk (t ∈ K)

for some f ∈ K[x]. (Thus, φ(t) = sin(t) is not a polynomial function on K). Note
carefully that the elements of PK are functions while K[x] is made up of symbol strings
or formal sums. They are not the same thing, though there is a close relation between
them implemented by the surjective (=“onto”) mapping Φ : K[x]→ PK such that

Φf(t) =
∑

k≥0

ak tk (t ∈ K)

if f(x) =
∑

k≥0 akxk in K[x]. This surjective map is a homomorphism: it preserves, or
“intertwines,” the algebraic operations in K[x] and in the “target space” PK, so that

Φ(λ · f) = λ · Φ(f) Φ(f + g) = Φ(f) + Φ(g) Φ(f · g) = Φ(f) · Φ(g) !

1.19. Exercise. If K = R or C explain why Φ is a bijection, hence an “isomorphism”
between commutative associative algebras. In fact, prove that this is so for polynomials
over any infinite field K.
Hint: Φ is linear, hence being one-to-one is equivalent to saying that Φ(f) = 0⇒ f = 0
in K[x]. If f is nonzero in K[x] the corresponding polynomial function Φ(f) : K→ K can
take on the value zero at no more than n = deg(f) points – i.e. the number of roots in K

cannot exceed deg(f). Since R and C (and even Q) are infinite we cannot have Φ(f) ≡ 0
on these fields unless f is the zero polynomial. !

The finite fields Zp (p a prime) are widely used in number theory, cryptography, image
processing, etc. This one-to-one correspondence breaks down for these fields. For example
if K = Zp the nonzero polynomial f = xp − x has value zero for every choice of x ∈ Zp

and there are precisely p = deg(f) roots.
A theorem of Fermat says: if p is a prime then tp−1 = 1 for all nonzero t in Zp, but

then tp − t = t is zero at every t ∈ Zp and Φ(f) ≡ 0 (the zero function in PK).

1.20. Exercise. For p = 3, verify that t3 − t = 0 for the three elements t = [0], [1], [2]
in Z3. But the corresponding element of Z3[x] is f = x3 − x, whose symbol string
(0,−1, 0, 1, 0, 0, ...) differs from that of the zero polynomial in Z3[x].

I.2. Vector Subspaces
2.1. Definition. A nonempty subset W of a vector space V is a vector subspace if

1. W is closed under (+): W + W ⊆W , so w1, w2 ∈ W ⇒ w1 + w2 ∈W .

2. W is closed under (·): K · W ⊆W , so λ ∈ K, w ∈W ⇒ λ · w ∈ W .

The vector 0 then lies in W , for if w ∈ W then −w = (−1) · w is also in W and then
0 = w + (−w) ∈ W . Thus W becomes a vector space over K in its own right under the
(+) and (·) operations applied to elements of W .

Subspaces of V include the trivial examples W = (0) and W = V ; all others are
“proper” subspaces of V .

2.2. Definition. Given a non empty set S of vectors in V , its linear span ⟨S⟩ =
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K-span(S) is the smallest subspace W ⊆ V such that W contains S.

It is easy to verify that:

2.3. Exercise. If {Wα : α ∈ I} is any family of subspaces in V , prove that their
intersection W =

⋂

α∈I Wα is also a subspace.

Thus Definition 2.2 makes sense: Given S there is at least one subspace containing S,
namely V . If E = intersection of all subspace W that contain S, then E is a subspace
and is obviously the smallest subspace containing S. Thus K-span(S) exists, even if V
is “infinite dimensional,” for instance V = K[x].

This “top down” definition has its uses, but an equivalent “bottom-up” version is
often more informative.

2.4. Lemma. If S ̸= ∅ in V , its linear span K-span(S) is the set of finite sums

{

n
∑

i=1

aivi : ai ∈ K, vi ∈ S, n <∞

}

Proof: Let E = {
∑N

i=1 civi : N < ∞, ci ∈ K, vi ∈ S}. Since S ⊆ K-span(S), every
finite sum lies this span, proving E ⊆ K-span(S). For (⊇), it is clear that the family
E of finite linear combination is closed under (+) and (·) operations because a linear
combination of linear combinations is just one big linear combination of elements of S.
It is a subspace of V , and contains S because 1·s = s is a (trivial) linear combination. On
the other hand every subspace W ⊇ S must contain all these linear sums, so S ⊆ E ⊆W .
Hences E is the smallest subspace containing S and E = K-span(S). !

2.5. Exercise. If K = R, V = R3 show that W = {x ∈ R3 : 3x1 + 2x2 − x3 = 0} is a
subspace and W ′ = {x ∈ R3 : 3x1 + 2x2 − x3 = 1} is not a subspace.
Hint: For one thing the zero vector 0 = (0, 0, 0) is not in W ′. The situation is shown in
Figure 1.3.

Figure 1.3. The subspace W in Exercise 2.5 and a translate W ′ = x0 + W by some
x0 ∈ V such that 3x0

1
+ 2x0

2
− x0

3
= 1, for instance x0 = (0, 1, 1). The set W ′ is not a

subspace.

System of Linear Equations. Systems of n linear equations in m unknowns are
of two general types

Homogeneous
⎧

⎪

⎨

⎪

⎩

a11x1 + ... + a1mxm = 0
...

an1x1 + ... + anmxm = 0
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Inhomogeneous
⎧

⎪

⎨

⎪

⎩

a11x1 + ... + a1mxm = b1
...

an1x1 + ... + anmxm = bn

with aij and bk in K. !

2.6. Exercise. Verify that the solutions x = (x1, . . . , xm) of the homogeneous system
form a vector subspace of Km. Explain why the solution set of an inhomogeneous system
cannot be a vector subspace unless b = (b1, . . . , bn) = 0 in Kn.

If we regard vectors x = (x1, ..., xm) ∈ Km as the entries in an m× 1 column matrix,

x = col(x1, . . . , xm) =

⎛

⎜

⎝

x1
...

xm

⎞

⎟

⎠
,

you will recognize that the solutions x ∈ Km of the homogeneous system of equations
are precisely the solutions of the matrix equations

Ax = 0 where the zero vector is 0 =

⎛

⎜

⎝

0
...
0

⎞

⎟

⎠

n×1

and for inhomogeneous systems we must solve

Ax = B where B =

⎛

⎜

⎝

b1
...

bn

⎞

⎟

⎠

n×1

for B ∈ Kn.
The homogeneous system always has the zero vector 0 ∈ Km as a solution, and the

solution set {x ∈ Km : Ax = 0} is a vector subspace in Km. If K = R or C then the
number of solutions is either 1 or ∞ for this system. An inhomogeneous system might
not have any solutions at all; otherwise, it has just one solution or infinitely many.

If A is an n ×m matrix with entries in K we will find it useful to let A act by left
multiplication as an operator LA : Km → Kn on column vectors

y = LA(x) = A · x (an (n×m)·(m× 1) matrix product)

for x ∈ Km. This is a linear operator in the sense that

LA(x + y) = LA(x) + LA(y) and LA(λ · x) = λ · LA(x)

for x,y ∈ Km and λ ∈ K. Solving a system of linear equations is then equivalent to
finding solutions of LA(x) = 0 or LA(x) = B for x ∈ Km. From this point of view,
Ax = B has solutions if and only if B lies in the range R(LA) = {Ax : x ∈ Km} (a
vector subspace in Kn). If B = 0 the “homogeneous” equation Ax = 0 always has the
trivial solution x = 0. !

2.7. Exercise. If A is an n ×m matrix and LA; Km → Kn is defined as above, verify
that

1. The range R(LA) = LA(Km) = {A·x : x ∈ Km} is a vector subspace in Kn.
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2. The kernel K(LA) = ker(LA) = {x ∈ Km : LA(x) = A·x = 0 in Kn} is a vector
subspace in Km.

2.8. Example. Given a particular solution x0 of Ax = B, the full solution set of this
equation consists of the vectors WB = x0+W , where W = {x ∈ Km : Ax = 0} is a vector
subspace of Km because Ax1, Ax2 = 0 implies A(x1 +x2) = Ax1 +Ax2 = 0+0 = 0 and
A(λ · x) = λ · Ax = λ · 0 = 0.
Note: The converse is also true: in Km every vector subspace is the solution set of some
homogeneous system of linear equation Ax = 0, but we are not ready to prove that yet.
The situation is shown in Figure 1.4. !

Figure 1.4. The subspace W0 is the solution set for a homogeneous equation Ax = 0.
If the inhomogeneous equation Ax = y has solutions and if x0 is a particular solution, so
Ax0 = y, the full solution set W = {x : Ax = B} is the translate W ′ = x0 + W of W0.

This of course presumes that Ax = B has any solutions at all; if it does not, we say
that the system is inconsistent. Geometrically, that means B does not lie in the range
R(LA). Here is an example of an inconsistent inhomogeneous system.

(

1 0
2 0

)

x =

(

0
1

)

The corresponding system of linear equations
{

x1 + 0 · x2 = 0
2x1 + 0 · x2 = 1

implies that x1 = 0 and 2x1 = 1, an obvious impossibility.
We will continue discussion of linear systems and their solutions via elementary row

operations on A, or on the augmented matrix [A : B], but first a few more examples of
vector spaces we will encounter from time to time.

2.9. Example (Sequence Space ℓ∞). Let ℓ∞ = all sequences a = (a1, a2, ...) with
a + b = (a1 + b1, a2 + b2, ... ) and λ · a = (λa1, λa2, ...). This infinite dimensional space
has the following subspaces:

1. W0 = {sequences such that an → 0 as n→∞};

2. Wn = all sequences of the form (a1, ..., an, 0, 0, ...);

3. ℓ1 = { a :
∑∞

n=1 |an| <∞ }

2.10. Example. In M(n, K) we have various significant subspaces

1. Symmetric matrices: At = A where At = (transpose of A).
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2. Diagonal matrices: D =

0

B

B

B

B

@

d1 0
.

.

.

0 dn

1

C

C

C

C

A

3. Block diagonal matrices: Dm1 ,...,mr
=

0

B

B

B

B

B

@

Bm1×m1 0

.

.

.

0 Bmr×mr

1

C

C

C

C

C

A

for fixed indices m1, ..., mr ≥ 1. (The “blocks” are allowed to have arbitrary entries
and all other entries are zero; m1 + . . . + mr = n.)

4. Upper triangular and Strictly upper triangular matrices.
0

B

B

B

B

@

∗ ∗

.

.

.

0 ∗

1

C

C

C

C

A

and

0

B

B

B

B

@

0 ∗

.

.

.

0 0

1

C

C

C

C

A

2.11. Exercise. Which of these four subspaces, if any, are closed under matrix multi-
plication as well as (+) ?

2.12. Exercise. Show that the vector subspace of upper triangular and strictly upper
triangular matrices are closed under formation of matrix product AB.

2.13. Exercise. Show that the vector subspaces of upper triangular (or strictly up-
per triangular) matrices are Lie algebras: all commutators [A, B] = AB − BA are
(strictly) upper triangular if A, B are.

2.14. Exercise. If an n× n matrix A has the strictly upper triangular form shown in
(a), prove that A2 has the form in (b).

(a) A =

0

B

B

B

B

B

@

0 ∗ ∗

0 ∗ ∗

. . .

0 ∗

0 0

1

C

C

C

C

C

A

(b) A2 =

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 ∗ ∗

0 0 ∗ ∗

0 0 ∗ ∗

. . .
. . .

. . .
. . . ∗

0 0
0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

Note: Further computations show that A3 has three diagonal files of zeros, etc so that
A is a nilpotent operator, with An = 0n×n.

I.3. Determining Linear Span: A Case Study
Given vectors {v1, ..., vr} ⊆ V and b ∈ V , the basic problem is to decide whether there
exist x1, .., xr ∈ K such that b =

∑r
i=1 xivi (and if so, for which choices of coefficients

x1, .., xr). Row operations on matrices are the main tool for resolving such questions.

3.1. Example. Consider the vectors in K3

u1 =

⎛

⎝

1
2
1

⎞

⎠ , u2 =

⎛

⎝

−2
−4
−2

⎞

⎠ , u3 =

⎛

⎝

0
2
3

⎞

⎠ , u4 =

⎛

⎝

2
0
−3

⎞

⎠ , u5 =

⎛

⎝

−3
8
16

⎞

⎠
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and let A be the matrix with these vectors as its columns

A =

⎛

⎝

1 −2 0 2 −3
2 −4 2 0 8
1 −2 3 −3 16

⎞

⎠

If B = col(2, 6, 8) =

0

@

2
6
8

1

A, determine all column vectors

x =

0

B

B

B

B

@

x1

x2

x3

x4

x5

1

C

C

C

C

A

such that
∑

i xiui = 0 or
∑

i xiui = B in K3. (In the second case we are determining
whether B lies in the linear span of {u1, . . . ,u5}.) Then do this for an arbitrary column
vector B = col(b1, b2, b3) to to get all solutions of Ax = B.

Discussion: A solution x = col(x1, . . . , x5) of Ax = B statisfies the matrix equation

B =
5
∑

i=1

xiui = x1

⎛

⎝

1
2
1

⎞

⎠+ x2

⎛

⎝

−2
−4
−2

⎞

⎠+ x3

⎛

⎝

0
2
3

⎞

⎠+ x4

⎛

⎝

2
0
−3

⎞

⎠+ x5

⎛

⎝

−3
8
16

⎞

⎠

=

⎛

⎝

1 −2 0 2 −3
2 −4 2 0 8
1 −2 3 −3 16

⎞

⎠

⎛

⎜

⎜

⎜

⎜

⎝

x1

x2

x3

x4

x5

⎞

⎟

⎟

⎟

⎟

⎠

= Ax .

We shall determine the full solution sets of the systems Ax = 0 or Ax = B for the 3× 5
matrix A = [u1;u2;u3;u4;u5].

Before analyzing this problem we recall a few basic facts about solving matrix equa-
tions using elementary row operations. These methods are based on the following obser-
vations with which you should already be familiar: see the early chapters of Schaum’s
Outline. The simple (but important) verification is left as an exercise.

3.2. Proposition. The following elementary row operations on a matrix A do not
change the set of solutions x of Ax = 0.

1. Ri ↔ Rj : switch two rows;

2. Ri → λRi: scale (row i) by some λ ̸= 0 in K;

3. Ri → Ri + λRj : for i ̸= j add any scalar multiple of (row j) to (row i), leaving
(row j) unaltered.

Applied to the “augmented matrix” [A : B] associated with an inhomogeneous system
Ax = B, the system A′x = B′ associated with the modified matrix [A′ : B′] has the
same solution set as Ax = B.

The reason is that each of the moves 1.-3. is reversible, with Ri → Ri − λRj the
inverse of Ri → Ri + λRj . Although row operations do not change the solution set they
can greatly simplify the system of equations to be solved, leading to easy systematic
solution of matrix equations. For instance, when K = Q, R, C it is always possible to find
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a sequence of row operations that put A into upper triangular echelon form:

(1) Echelon Form: A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗
1 ∗ . . . . ∗

0 1 ∗ . . ∗

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The same moves put the augmented matrix [A : B] into similar form

(2) [A′ : B′] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗ b′1

1 ∗ . . . ∗
...

0 1 ∗ . . ∗ b′r

b′r+1

0
...

b′m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Solutions of the systems A′x = 0, A′x = B′ are quickly found by “backsolving” (illus-
trated bellow). One could go further, forcing A into even simpler form by knocking out
all terms ∗ above the “step corners.” These additional operations would of course affect
B′ in the augmented matrix yielding the reduced echelon form.

[A′′ : B′′] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . 0 ∗ 0 ∗ b′′1
1 ∗ 0 . . . ∗

0 1 ∗ . . ∗ b′′r

b′′r+1

0
...

b′′m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The “step corners” appearing in these echelon displays are often referred to as “pivots,”
and the columns in which they occur are the “pivot columns.”

Notice that Ax = B has the same solutions as A′x = B′ where [A′ : B′] is the echelon
form of [A : B]. Solutions exist if and only if we have b′r+1 = ... = b′n = 0 (the terms
in B′ below the row containing the last “step corner”) because the last equations in the
new linear system A′x = B′ read 0 = b′r+1, ..., 0 = b′n (the variables x1,..., xm don’t
appear!) These are inconsistent unless b′r+1 = ... = b′n = 0.

Columns Ci(A) that do not pass though a step corner correspond to “free variables”
xi in the solutions of the equation A′x = 0; they are also free variables in solutions of
A′x = B′ if the consistency conditions b′r+1 = ... = b′n = 0 have been met (without
which there are no solutions at all.) If I = {1 ≤ i1 < ... < ir ≤ m} are the indices
labeling the pivot columns, the remaining indices correspond to free variables xk (k /∈ I)
in the solution. Once the values of the free variables have been specified, backsolving
yields the values of the remaining “dependent” variables xk (k ∈ I). We get a unique
solution A′x = 0 for every choice of the free variables (k /∈ I); different choices yield
different solutions and all solutions are accounted for. By Proposition 3.2 these are also
the solutions of the original equation Ax = 0.

Example 3.1 (Resumed). Returning to our discussion, we put the original system
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into echelon form by applying row operations to
⎛

⎝

1 −2 0 2 −3 0
2 −4 2 0 8 0
1 −2 3 −3 16 0

⎞

⎠

Applying, R2 ← R2 − 2R1 and R3 ← R3 −R1 this becomes
⎛

⎝

1 −2 0 2 −3 0
0 0 2 −4 14 0
0 0 3 −5 19 0

⎞

⎠

Now apply R3 ← R3 −
3
2R2, R2 ←

1
2R2, and then R3 ← R3 − 3R2 to get

⎛

⎜

⎝

1 −2 0 2 −3 0

0 0 1 −2 7 0

0 0 0 1 −2 0

⎞

⎟

⎠

This is the desired echelon form. Some additional work, needless for most purposes,
would yield the reduced echelon form,

→

⎛

⎜

⎝

1 −2 0 0 ∗ 0

0 0 1 0 ∗ 0

0 0 0 1 −2 0

⎞

⎟

⎠

Recursively backsolving the corresponding system of linear equations, we see that

1. x2, x5 are free variables;

2. x4 − 2x5 = 0 ⇒ x4 = 2x5;

3. x3 − 2x4 + 7x5 = 0 ⇒ x3 = −7x5 + 2(2x5) = −3x5;

4. x1 − 2x2 + 2x4 − 3x5 = 0 ⇒ x1 = 2x2 − 2(2x5) + 3x5 = 2x2 − x5.

The solutions of A′x = 0 (which are also the solutions of Ax = 0) form a vector
subspace in K5, each of whose points is uniquely labeled (parametrized) by the choice of
the free variables x2, x5. Setting x2 = s, x5 = t (s, t ∈ K) we find that the solution set
W = {x ∈ K5 : Ax = 0} = {x ∈ K5 : A′x = 0} is equal to

W =

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

2s − t

s

−3t

2t

t

1

C

C

C

C

A

: s, t ∈ K

9

>

>

>

>

=

>

>

>

>

;

=

8

>

>

>

>

<

>

>

>

>

:

0

B

B

B

B

@

2x2 − x5

x2

−3x5

2x5

x5

1

C

C

C

C

A

: x2, x5 ∈ K

9

>

>

>

>

=

>

>

>

>

;

These homogeneous solutions can be rewritten in a more instructive form

x =

⎛

⎜

⎜

⎜

⎜

⎝

2s− t
s
−3t
2t
t

⎞

⎟

⎟

⎟

⎟

⎠

= s

⎛

⎜

⎜

⎜

⎜

⎝

2
1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

+ t

⎛

⎜

⎜

⎜

⎜

⎝

−1
0
−3
2
1

⎞

⎟

⎟

⎟

⎟

⎠

= sw1 + tw2 ,

which shows that every solution of Ax = 0 is a linear combination of two basic solutions

w1 =

⎛

⎜

⎜

⎜

⎜

⎝

2
1
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

and w2 =

⎛

⎜

⎜

⎜

⎜

⎝

−1
0
−3
2
1

⎞

⎟

⎟

⎟

⎟

⎠

12



This approach describes the solution set W of Ax = 0 as linear span K-span{w1,w2} of
a set of generators {w1,w2}. We will later observe that these vectors are a “basis” for
the solution set W .

Solving the Inhomogeneous Equation Ax = B. The same elementary row opera-
tions that put A into echelon form may be applied to the augmented matrix [A : B].
We already know what happens to A; applying the same moves to the column vector
B = col(b1, b2, b3) with undetermined coefficients, the operations R2 ← R2 − 2R1 and
R3 ← R3 −R1 transform

B =

⎛

⎝

b1

b2

b3

⎞

⎠ →

⎛

⎝

b1

b2 − 2b1

b3 − b1

⎞

⎠

Then R3 ← R3 −
3
2R2; R2 ←

1
2R2, and R3 ← R3 − 3R2 yield

→

⎛

⎜

⎝

b1
1
2b2 − b1

b3 − b1 −
3
2 (b2 − 2b1)

⎞

⎟

⎠
=

⎛

⎜

⎝

b1
1
2b2 − b1

b3 −
3
2b2 + 2b1

⎞

⎟

⎠

The augmented matrix becomes

[A : B]→

⎛

⎜

⎝

1 −2 0 2 −3 b1

0 0 1 −2 7 1
2 b2 − b1

0 0 0 1 −2 b3 −
3
2b2 + 2b1

⎞

⎟

⎠

Again x2 and x5 are free variables and the general solution x = col(x1, x2, x3, x4, x5) of
Ax = B can be found by backsolving. Since we have already found the general solutions
of Ax = 0, all we need is one particular solution xB . The simplest way to find one is to
set x2 = x5 = 0 and backsolve to get

x2, x5 = 0

x4 = b3 −
3
2b2 + 2b1

x3 − 2x4 = 1
2b2 − b1 ⇒ x3 = 2(b3 −

3
2b2 + 2b1) + 1

2b2 − b1 = 2b3 −
5
2b2 + 3b1

x1 − 2 · 0 + 0 + 2x4 + 0 = b1 ⇒ x1 = b1 − 2x4 = −2(b3 −
3
2b2 + 2b1) + b1 = −2b3 + 3b2 − 3b1.

So xB = col(−2b3+3b2−3b1, 0, 2b3−
5
2 b2 +3b1, b3−

3
2b2 +2b1, 0) is a particular solution

and the full solution set is

WB = {x : Ax = B} =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−2b3 + 3b2 − 3b1

0

2b3 −
5
2b2 + 3b1

b3 −
3
2b2 + 2b1

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ Kw1 + Kw2

where w1 and w2 are the basis vectors for the space W = {x : Ax = 0} of homogeneous
solutions determined previously. Writing s = x2, t = x5 for the variable attached to w1,
w2 we obtain a parametric description of the solution set, with each point in WB tagged
by a unique pair (s, t) in the parameter space K2.

In the problem originally posed we had B = col(2, 6, 8). Then the particular solution
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is x0 = col(−4, 0, 7, 3, 0) and the solution set is

WB =

⎛

⎜

⎜

⎜

⎜

⎝

−4 + 2s− t
s

7− 3t
3 + 2t

t

⎞

⎟

⎟

⎟

⎟

⎠

= x0 + Kw1 + Kw2

That concludes our discussion of the Case Study 3.1. !

Further Remarks about Elementary Row Operations. Row operations can also
be used to determine the subspace spanned by any finite set of vectors in Km. If these
have the form R1 = (a11, .., a1m),..., Rn = (an1, ..., anm) we may regard them as the rows
of an n×m matrix

A =

⎛

⎜

⎜

⎜

⎜

⎝

R1

.

.

.
Rn

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

a11 . . . a1m

a21 . . . a2m

. .

. .
an1 . . . anm

⎞

⎟

⎟

⎟

⎟

⎠

The linear span Row(A) = K-span{R1, ..., Rn} ⊆ Km is called the row space of A; the
linear span of its columns C1, . . . , Cm is the column space Col(A) = K-span{C1, .., Cm}
in Kn. One can show that:

3.3. Lemma. Elementary row operations on a matrix A do not change the linear span
of its rows.

We leave the proof as a routine exercise. Note, however, that row operations will mess
up column space!

As for columns, there is an obvious family of elementary column operations on A.

1. Ci ↔ Ci;

2. Ci → λCi for λ ̸= 0 in K;

3. Ci → Ci + λCj , for i ̸= j where λ is any element in K.

These do not change the linear span Col(A). This can be verified by direct calculation,
but it also follows by observing that row and column operations are related via a natural
symmetry A 6→ At = the transpose of A, given by (At)ij = Aji (see Figure 1.5). Note
that (At)t = A.

Figure 1.5. A matrix A and its transpose At are related by a reflection that sends rows
in A to columns in At, and columns to rows.
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The transpose operation takes rows of A to columns of At and vice-versa; elementary
row operations on A become the corresponding elementary operations on the columns
of At. It should also be evident that under the transpose operation the row space
Row(A) = (span of the rows, regarded as vectors in Km) becomes the column space
Col(At) = (columns in At, regarded as vectors in Kn) of At. Invariance of Col(A) under
column operations follows from invariance of Row(At) under row operations, discussed
earlier.

3.4. Example. Let v1, .., vn ∈ Km. To find a basis for W = K-span{v1, .., vn}, view the
vi as 1×m row vectors and assemble them as the n×m matrix

A =

0

B

@

v1

...
vn

1

C

A

n×m

If we perform row operations to put A in echelon form, this does not change row space
Row(A) = K-span{v1, .., vn}, but it is now easy to pick out a minimal set of vectors with
the same linear span, namely the rows R′

1, ..., R′
k that meet the step corners in the array.

A′ =

R′
1

R′
2

.

.

.
R′

k

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗ ∗
. . .

...

1 ∗ ∗
0 1 ∗

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We will say more about this in the next section. !

3.5. Exercise. By invariance of row space Row(A) under row operations, the rows
R′

1, ..., R
′
k also span Row(A). They are a basis for row space if they are also linearly

independent in the following sense.

Linear Independence: If
∑k

i=1 ciR′
i = 0 in Km for coefficients c1, .., ck in

K, we must have c1 = ... = ck = 0 in K.

Explain why the row vectors R′
1,..., R′

k in the previous example must have this indepen-
dence property.
Hint: If

∑n
i=1 ciR′

i = (0, ..., 0) in Km, what conclusion can you draw about the first
coefficient c1? Etc.

A set of vectors {v1, ..., vn} ⊆ V is a basis for V if they span V and are linearly
independent. We will now show that this happens if and only if every v ∈ V has a
unique expansion v =

∑n
i=1 civi with ci ∈ K. Independence simply says that the zero

vector v = 0 in V has the unique expansion 0 = 0·v1 + .. + 0·vn. But if some vector had
two expansions v =

∑

i civi =
∑

i divi then 0 = v − v =
∑

(ci − di)vi, so independence
of the vi implies ci = di, and v has a unique expansion.

I.4. Linear Span, Independence and Bases
We now explain how to solve arbitrary systems of linear equations.

4.1. Definition. A set of vectors S = {v1, .., vr} in a vector space V spans a subspace
W if

W = K-span{S} = {
r
∑

i=1

civi : ci ∈ K}
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The vectors are linearly independent if the only linear combination
∑

i civi = 0 adding
up to zero in V is the trivial combination with c1 = ... = cr = 0. The vectors are a basis
for W if they span W and are independent, so every w ∈ W has a unique representation
as
∑n

i=1 λivi (λi ∈ K).

4.2. Exercise. If X = {v1, . . . , vn} span V and are independent, explain why every
v ∈ V has a unique representation as

∑n
i=1 λivi (λi ∈ K), so X is a basis for V .

The next result exhibits two ways to construct a basis in a vector space. One starts
with a spanning set and “prunes” it, deleting redundant vectors until we arrive at an
independent subset with the same span as the original vectors. This yields a basis for
V . The other constructs a basis recursively by adjoining “outside vectors” to an initial
family of independent vectors in V . The initial family might consist of a single nonzero
vector (obviously an independent set).

4.3. Proposition. Every finite spanning set {v1, ..., vn} in a vector space can be made
into a basis by deleting suitably chosen entries from the list.

Proof: We argue by induction on n = #(vectors in list). There is nothing to prove if
n = 1; then V = K · v1 and {v1} is already a basis. The induction hypotheses (one for
each index n = 1, 2, ....) are:

Hypothesis P (n): For any vector space V containing a spanning set of n
vectors, we can delete vectors from the list to get a basis for V .

We have proved this for n = 1. It is true for all n if we can prove P (n + 1) is true, using
only the information that P (n) is true – i.e. if we can verify that

P (n) true ⇒ P (n + 1) true

(Remember: This is a conditional statement owing to the presence of the word “If...”
It does not assert that P (n) is actually true.)

So, assuming P (n) true consider a spanning set X = {v1, ..., vn, vn+1} in V . If these
vectors are already independent (which could be checked using row operations if V =
Km), we already have a basis for V without deleting any vectors. If X is not independent
there must be coefficients c1, ..., cn+1 ∈ K (not all equal to 0) such that

∑n+1
i=1 civi = 0.

Relabeling, we may assume cn+1 ̸= 0, and then (K being a field)

−cn+1vn+1 =
n
∑

i=1

civi and vn+1 =
n
∑

i=1

−(ci/cn+1)·vi

Thus vn+1 ∈ K-span{v1, ..., vn} and K-span{v1, ..., vn+1} = K-span{v1, ..., vn} is all of V .
By the induction hypotheses we may thin out {v1, .., vn} to get a basis for V . !

4.4. Proposition. If {v1, ..., vn} are independent in a vector space V , and vn+1 is a
vector not in W0 = K-span{v1, ...., vn} then

1. {v1, ..., vn, vn+1} are independent;

2. W0
⊂
̸= W1 = K-span{v1, ..., vn, vn+1};

3. {v1, ..., vn, vn+1} is a basis for W1.

Proof: If v1 . . . , vn+1 are not independent there would be ci ∈ K (not all zero) such
that

∑n+1
i=1 civi = 0. We can’t have cn+1 = 0, otherwise

∑n
i=1 civi = 0 contrary to

assumed independence of {v1, ..., vn}. Thus vn+1 =
∑n

i=1−(ci/cn+1) · vi is in W0, which
contradicts the assumption vn+1 /∈ W0. Conclusion: v1, ...., vn+1 are independent. It
follows immediately that {v1, ..., vn+1} is a basis for W1 = K-span{v1, ..., vn+1}.
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Note: This is an example of a “proof by contradiction,” in which the assumption that
v1, ..., vn are not independent leads to an impossible conclusion. Therefore the statement
“v1, ..., vn are independent” must be true. !

Important Remark: This process of “adjoining an outside vector” can be iterated to
construct larger and larger independent sets and subspaces

W0 = K-span{v1, ..., vn}
⊂
̸= W1 = K-span{v1, ..., vn, vn+1}
⊂
̸= ....

⊂
̸= Wr = K-span{v1, ....., vn+r}

Since {v1, . . . , vn} are independent they are a basis for the initial space W0, and by
Lemma 4.4 v1, . . . , vn, . . . , vn+r will be a basis for Wr . If this process stops in finitely
many steps (because Wr = V and we can no longer find a vector outside Wr), we have
produced a basis for V . If the process never stops, no finite subset of vectors can span
V and in this case we say V is infinite dimensional. To begin the process we need
an initial set of independent vectors, but if V ̸= (0) we could start with any v1 ̸= 0 and
W0 = K·v1. Then apply Lemma 4.4 recursively as above. !

4.5. Definition. A vector space V is finite dimensional if there is a finite set of
vectors S = {v1, ..., vn} that span V . Otherwise V is said to be infinite dimensional,
which we indicate by writing dim(V ) =∞.

Coordinate space Kn and matrix spaces M(m × n, K) are finite dimensional; the spaces
of polynomials K[x] and K[x1, . . . , xn] are infinite dimensional.

4.6. Example. Coordinate space Kn is finite dimensional and is spanned by the stan-
dard basis vectors X = {e1, . . . , en}

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

In fact X is a basis for Kn.

Discussion: Obviously v = (a1, ..., an) = a1e1 + . . . + anen so the ei span Kn. But if
∑

i ciei = 0 = (0, ..., 0), that means (c1, ..., cn) = (0, ..., 0) and ci = 0 for all i. !

4.7. Example. Polynomial space K[x] is infinite dimensional. Given any finite set
of nonzero vectors X = {f1, ..., fr}, let di = deg(fi). All coefficients of fi are zero if
i > N = max{d1, ..., dr}, and the same is true for all linear combinations

∑r
i=1 cifi. But

then X cannot span K[x] because xN+1 is not in K-span{f1, ..., fr}.
Actually the vectors f0 = 1-, f1 = x, f2 = x2, ... are a basis for K[x]. This (infinite) set

of vectors clearly spans K[x], but it is also independent, for if
∑r

i=0 cifi = 0 that means
c0 + c1x + ... + crxr = 0 as a polynomial, so the symbol string (c0, ..., cr, 0, 0, ...) is equal
to (0, 0, 0, ....). !

4.8. Corollary. Every finite dimensional vector space has a basis.

Proof: If {v1, ..., vr} span V , hen by Proposition 4.3 we may delete some of the vectors
to get an independent set with the same linear span. !

4.9. Lemma. If S ⊆ V is an independent set of vectors in V and T a finite set of
vectors that span V , we can adjoin certain vectors from T to S to get a basis for V
containing the original set of independent vectors S.

Proof: Let W = K-span{S}. If W = V , S is already a basis. If W ̸= V , there exists
some v1 ∈ T such that v1 /∈ W and then S ∪ {v1} is an independent set, a basis for

the larger space W1 = K-span{S ∪ {v1}}
⊃
̸= W . Continuing, we get vectors v1, ..., vr in

T such that W
⊂
̸= W1

⊂
̸= W2

⊂
̸= ....

⊂
̸= Wr for 0 ≤ i ≤ r, where Wi = K-span{v1, ..., vi}.

The process must terminate when no vector vr+1 ∈ T can be found outside of Wr . Then
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T ⊆ Wr, so K-span{T } = V ⊆Wr and Wr = V . Therefore S ∪ {v1, ..., vr} is a basis for
V = Wr (and S ∪ {v1, ..., vk} is a basis for Wk for each 1 ≤ k ≤ r). !

4.10. Theorem (Dimension Defined). All bases in a finite dimensional vector space
have the same cardinality. More generally, if V is finite dimensional, and S is a finite
spanning set (with |S| = n), every independent set of vectors L ⊆ V has cardinality
|L| ≤ |S|. In other words, the size of any independent set is always less than or equal to
that of any spanning set.

Proof: We can eliminate vectors from S to get an independent spanning set S′ ⊆ S,
which is then a basis for V . We will show that |L| ≤ |S′| ≤ |S|. Let S′ = {u1, ..., un} and
L = {v1, ..., vm}. Every vi ∈ L can be written vi =

∑n
i=1 ajiuj since the ui ∈ S′ are a

basis for V . On the other hand, if c1, ..., cm are scalars such that 0 =
∑m

j=1 cjvj , we must

have c1 = ... = cm = 0 because the vj are independent. But the identity
∑m

j=1 cjvj = 0
can be written another way, as

0 =
m
∑

i=1

ci(
n
∑

j=1

ajiuj) =
n
∑

j=1

(
m
∑

i=1

ajici)uj

Since the uj ∈ S′ span V and are independent each expression (. . .) is = 0 so the
coefficients c1, ..., cm satisfy the system of n equations in m unknowns

(3)
m
∑

i=1

ajici = 0, for 1 ≤ j ≤ n

(a solution C = col(c1, . . . , cm) of the matrix equation AC = 0).
A linear system such as (3) always has nontrivial solutions if the number of unknowns

m = |L| exceeds the number of equations n = |S′|; it follows that |L| ≤ |S′|, as claimed.
In fact, row operations on the coefficient matrix A yield an echelon form shown below.
There are at most n step corners and if M > n there must be at least one column that
fails to meet one of these pivots.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ . . . ∗
. . . . . .
. . . . . .

1 ∗ . . . . ∗
0 1 ∗ . . ∗

0 . . . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×m

Hence there is at least one free variable and the system AC = 0 has nontrivial solutions.
But we showed above that C = 0 is the only solution, so we obtain a contradiction unless
|L| ≤ |S′| ≤ |S|. The theorem is proved. !

4.11. Corollary. In a finite dimensional vector space all bases have the same cardinal-
ity, which we refer to hereafter as the dimension dimK(V ).

Notation: We will often simplify notation when the underlying ground field K is un-
derstood, by writing dim(V ) or even |V | for the dimension of V . !

4.12. Example. We have already seen that dimK(Kn) = n, with the standard basis
vectors e1 = (1, 0, ..., 0), ..., en = (0, .., 0, 1). We may view Cn (or any vector space over
C) as a vector space over R by restricting scalars in λ · v to be real. As a vector space
over C we have dimC(V ) = n, but as a vector space over R we have dimR(V ) = 2n.
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Discussion: In fact, any v ∈ Cn can be written as a complex sum v =
∑n

j=1 zjej , and
if zj = xj + iyj we may write

v = x1e1 + . . . + xnen + y1(ie1) + . . . + yn(ien) with xi, yj ∈ R.

Thus the vectors {e1, ..., en, ie1, ..., ien} ⊆ Cn span Cn as a vector space over R. They
are also independent over R, for if

0 =
∑

ajej +
∑

bj(iej) =
∑

(aj + ibj)ej ,

we must have aj + ibj = 0 and aj = bj = 0 because {ej} is a basis over C. !

4.13. Exercise. If V is a finite dimensional vector space and W ⊆ V a subspace,
explain why W must also be finite dimensional.

4.14. Exercise. If V1, V2 are finite dimensional vector spaces prove that

1. If V1 ⊆ V2 then dim(V1) ≤ dim(V2);

2. If dim(V1) = dim(V2) and V1 ⊆ V2, then V1 = V2 as sets.

4.15. Exercise. Explain why W ⊆ V ⇒ dim(W ) ≤ dim(V ), even if one or both of
these spaces is infinite dimensional.

Describing Subspaces. How can a subspace W in a vector space be specified?
Every V of dimension n can be identified in a natural way with Kn once a basis {f1, ..., fn}
in V has been determined, so we may as well restrict attention to describing subspaces
W of coordinate space Kn. (Given a basis X = {fi} in V the map jX : Kn → V given by

x = (x1, ..., xn) 6→ jX(x) =
n
∑

i=1

xifi

is a bijection that respects all vector space operations in the sense that

jX(λ·x) = λ·jX(x) and jX(x + y) = jX(x) + jX(y)

It is an isomorphism between Kn and V , by which properties of one space can be matched
with those of the other.

Subspaces W ⊆ Kn can be described in two ways.

1. By exhibiting a basis X = {f1, ..., fr} in W , so W = K-span{X} and dimK(W ) = r.
This is a “parametric description” of W since each w ∈ W is labeled by a
coordinate r-tuple c = (c1, . . . , cr).

2. By finding a set of linear equations

a11x1 + ... + a1mxm = 0
...

...
an1x1 + ... + anmxm = 0

described by a matrix equation Ax = 0 (A = n×m, 0 = n× 1, x = m× 1) whose
solution set {x ∈ Km : Ax = 0} is equal to W . Such an “implicit description”
may include redundant equations. When there are no redundant equations we will
see that W = {x ∈ Kn : Ax = 0} has dimension m− n = dim(V )−#(equations).
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We illustrate this with some computational examples.

4.16. Example. Determine the dimension of the subspace W = R-span{u1,u2,u3} in
R3 if

u1 =

0

@

1
2
3

1

A u2 =

0

@

2
3
4

1

A u3 =

0

@

3
4
5

1

A

Find a basis for W . Then describe W as the solution set of a system of linear equations:

a11x1 + a12x2 + a13x3 = 0
...

...
an1x1 + an2x2 + an3x3 = 0

where x = (x1, x2, x3) ∈ R3.

Solution: We write the vectors as the rows of the 3× 3 matrix

A =

⎛

⎝

u1

u2

u3

⎞

⎠ =

⎛

⎝

1 2 3
2 3 4
3 4 5

⎞

⎠

Row space W = Row(A), the span of the rows, is unaffected by elementary row opera-
tions. These yield the echelon form

A→

⎛

⎝

1 2 3
0 −1 −2
0 −2 −4

⎞

⎠→

⎛

⎝

1 2 3

0 1 2
0 0 0

⎞

⎠

Therefore w1 = (1, 2, 3) and w2 = (0, 1, 2) span W ; they are also independent because
0 = c1w1 + c2w2 = (c1 , 2c1 + c2 , 3c1 + 2c2) implies

⎧

⎨

⎩

c1 = 0
2c1 + c2 = 0
3c1 + 2c2 = 0

⇒ c1 = c2 = c3 = 0 .

Thus {w1,w2} is a basis and dim(W ) = 2. A typical vector in W can be written
(uniquely) as

sw1 + tw2 = (s , 2s + t , 3s + 2t) = (x1, x2, x3) with s, t ∈ R

To describe W as the solution set of a system of equations in x1, x2, x3 we need to
“eliminate” s, t from this parametric description of W . This can be done by writing

⎧

⎨

⎩

x1 = s ⇒ s = x1

x2 = 2s + t ⇒ x2 = 2s + t = 2x1 + t⇒ t = x2 − 2x1

x3 = 3s + 2t

The last equation yields the “constraint” identity that determines W ,

x3 = 3s + 2t = 3x1 + 2(x2 − 2x1) = −x1 + x2

or x1−x2 + x3 = 0 (1 equation in 3 unknows). Thus W = {x ∈ R3 : x1− 2x2 + x3 = 0},
which has dimension dim(R3)− 1 = 2. !

4.17. Example. Let W ⊆ R4 be the solution set for the system of linear equations:
{

x1 + x2 − x3 + 2x4 = 0
3x1 − x2 + x4 = 0
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so Ax = 0 (x ∈ R4) where

A =

(

1 1 −1 2
3 −1 0 1

)

2×4

Find a basis for W and determine dimR(W ). Do the answers change if we replace R by
Q or C?

Solution: Elementary row operations yield

A→

(

1 1 −1 2
0 −4 3 −2

)

→

(

1 1 −1 2

0 1 −3
4

1
2

)

and for any solution of Ax = 0, x = col(x1, x2, x3, x4) has x3, x4 as free variables.
Backsolving yields the dependent variables

x2 = 3
4x3 −

1
2x4

x1 = −x2 + x3 − 2x4 = (−3
4x3 + 1

2x4) + x3 − 2x4 = 1
4x3 −

3
2x4

Thus solutions have the form

x =

0

B

B

B

B

@

1
4x3 −

3
2x4

3
4x3 −

1
2x4

x3

x4

1

C

C

C

C

A

= x3

0

B

B

B

B

@

1
4
3
4
1
0

1

C

C

C

C

A

+ x4

0

B

B

B

B

@

−
3
2

−
1
2

0
1

1

C

C

C

C

A

= x3f1 + x4f2

for every x3, x4 ∈ K. The solution set is equal to the R-span{(1, 3, 4, 0) , (3, 1, 0,−2)} =
R-span{f1, f2}. The vectors f1, f2 span the solution set W , but are also independent
because

c1(1, 3, 4, 0) + c2(3, 1, 0,−2) = (c1 + 3c2 , 3c1 + c2 , 4c1 , −2c2) = (0, 0, 0, 0)

implies that c1 = c2 = 0. Thus {f1, f2} is a basis and dimR(W ) = 2. The result is the
same if we replace the ground field R with Q or C. !

As a “rule of thumb,” each constraint equation ai1x1 + ... + aimxm = 0 on Km reduces
the dimension of the solution set W = {x ∈ Km : Ax = 0} by 1, but this is not always
the case.

4.18. Exercise. Consider the special case of one constraint equation

W = {x :
n
∑

i=1

cixi = 0} with c1, ..., cn ∈ K

1. Under what condition on {c1, ..., cn} do we have dimK(W ) = n− 1?

2. Explain why dim(W ) < n− 1 is impossible.

4.19. Exercise. Same question but now with two constraint equations
{

a11x1 + .... + a1mxm = 0
a21x1 + .... + a2mxm = 0

(or Ax = 0 with A = 2×m, x = m× 1, 0 = 2× 1.) Now what condition on A make

1. dimK(W ) = 0

2. dimK(W ) = 1,
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for the subspace W = {x ∈ K : Ax = 0 in K2}?

4.20. Example (Lagrange Interpolation Formula). For any infinite field such
as K = Q, R, C, the problem of finding a polynomial f ∈ K[x] having specified values
f(pj) = λj at a given set of distinct points p1, ..., pn in K always has a solution. The
solution is nonunique (the problem is underdetermined) unless we require that deg(f) =
n− 1; there may be no solution if deg(f) < n− 1.

Discussion: The product h(x) =
∏n

j=1(x − pj) has degree equal to n and is zero at
each pj (and zero nowhere else), so the solution to the interpolation problem cannot be
unique without restrictions on f(x): one can add h (or any scalar multiple thereof) to
any proposed solution f . It is reasonable to ask for a solution f(x) of minimal degree to
reduce the ambiguity. The polynomial

(4) f(x) =
n
∑

i=1

λi ·

∏

j ̸=i

(x − pj)

∏

j ̸=i

(pi − pj)

has nonzero denominator, is equal to λi at pi for each i, and has deg(f) = n− 1.
This is the Lagrange Interpolation Formula, determined by direct methods. It is

a bit complicated to rewrite this sum of products in the form f = c0+c1x+...+cn−1xn−1.
But the coefficients c0, . . . , cn−1 can also be found directly as the solution of a system of
linear equations

λj = f(pj) =
n−1
∑

k=0

pk
j ck for 1 ≤ j ≤ n− 1 ,

which is equivalent to the matrix equation Ac = λ in which

A =

⎛

⎜

⎜

⎜

⎜

⎝

p0
1 . . . pn−1

1

. .

. .

. .
p0

n . . . pn−1
n

⎞

⎟

⎟

⎟

⎟

⎠

n×n

and c =

⎛

⎜

⎜

⎜

⎜

⎝

c0

.

.

.
cn−1

⎞

⎟

⎟

⎟

⎟

⎠

n×1

λ =

⎛

⎜

⎜

⎜

⎜

⎝

λ0

.

.

.
λn−1

⎞

⎟

⎟

⎟

⎟

⎠

n×1

I.5 Quotient Spaces V/W.
If V is a vector space and W a subspace, the additive cosets of W are the translates
of W by various vectors in V . They are the subsets x + W = {x + w : w ∈ W} for
some x ∈ V , which we shall often denote by [x] when the subspace W is understood. In
particular, W itself is the “zero coset”: [0] = 0 + W = W . The key observation is that
the whole space V gets partitioned into disjoint cosets that fill V . The collection of all
cosets [x] is the quotient space V/W . Observe that points in the space V/W are at the
same time subsets in V .

5.1. Lemma. If W is a subspace in V and x, y ∈ V ,

1. Two cosets x + W and y + W either coincide or are disjoint, hence the distinct
cosets of W partition the space V .

2. An additive coset can have various representatives x ∈ V . We have y + W =
x + W ⇔ there is some w ∈W such that y = x + w (or y − x ∈ W ).

3. If y ∈ x + W then y + W = x + W .

Proof: We start with an observation about sums A + B = {a + b : a ∈ A, b ∈ B} of sets
A, B ⊆ V that will be invoked repeatedly in what follows.
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5.2. Exercise. If W is a subspace of a vector space V and w ∈W , prove that

1. w + W = W , for all w ∈ W ;

2. W + W = {w1 + w2 : w1, w2 ∈W} is equal to W ;

3. W −W = W .

Resuming the proof of Lemma 5.1, if cosets x+ W and y + W have a point p in common
there are w1, w2 ∈ W such that x + w1 = p = y + w2, hence y = x + (w1 − w2). By
Exercise 5.2 the cosets are equal:

y + W = (x + (w1 − w2)) + W = x + ((w1 − w2) + W ) = x + W

For (2.), x + W = y + W ⇒ y = y + 0 = x + w for some w ∈ W . Conversely, if
y = x + w for w ∈ W , then y + W = x + (w + W ) = x + W again by the Exercise. For
(3.), it follows from (1.) that y ∈ x + W ⇒ (y + W ) ∩ (x + W ) ̸= ∅ ⇒ y + W = x + W .

Figure 1.6. Additive cosets x+W of a subspace W are a family of parallel “hyperplanes”
in a vector space V . When V = R2 and W a line through the origin, all lines parallel
to W are cosets. Two vectors x,y in the same coset yield the same translate of W :
x + W = y + W because y − x is parallel to the subspace W .

As an example, if V = R2 and W = {(x, y) : x = y} the cosets of W are precisely the
distinct lines in the plane that make an angle of 45◦ with the positive x-axis. These lines
are the “points” in the quotient space V/W , see Figure 1.6.

5.3. Definition. There is a natural surjective quotient map π : V → V/W , such that

(5) π(x) = [x] = x + W

If C is a coset, any point v ∈ C such that C = [v] = v + W is called a representative
of the coset. Part (2.) of Lemma 5.1 tells us when two vectors x, y represent the same
coset.

Algebraic Structure in V/W . There are natural sum and scalar multiplication
operations in V/W , inherited from the overlying vector space V .

5.4. Definition. For any x, y ∈ V and λ ∈ K we define operations in V/W

1. Addition: [x]⊕ [y] = [x + y];

2. Scalar Multiplication: λ⊙ [x] = [λ·x]

To spell out what is involved, this definition tells us how to form the sum X ⊕ Y of two
cosets X, Y ∈ V/W via the following algorithm:

1. Pick representatives x, y ∈ V such that X = [x], Y = [y].
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2. Add the representatives to get x + y ∈ V .

3. Form the coset [x + y] = (x + y) + W and report the output: X ⊕ Y = [x + y]

But why should this make sense? The outcome depends on a choice of representatives for
each coset X, Y and if different choices yield different outputs, everything written above
is nonsense. Fortuately the outcome is independent of the choice of representatives and
the operation (⊕) is well-defined. In fact, if [x] = [x′] and [y] = [y′] there must exist
w1, w2 ∈ W such that x′ = x + w1, y′ = y + w2, and

[x′ + y′] = (x′ + y′) + W = (x + y) + ((w1 + w2) + W ) = (x + y) + W = [x + y]

Similarly, the scaling operation is well-defined: if [x′] = [x] we have x′ = x + w for some
w ∈W , and then

[λ·x′] = (λ·x′) + W = (λ·x) + (λw + W ) = (λ·x) + W = [λ·x]

Once we know the operations (⊕) and (⊙) make sense, direct calculations involving
representatives show that all vector space axioms are satisfied by the system (V/W,⊕,⊙).
For instance,

1. Associativity of ⊕ on V/W follows from associativity of (+) on V : since x+(y+z) =
(x + y) + z in V we get

[x]⊕ ([y]⊕ [z]) = [x]⊕ [y + z] = [x + (y + z)]

= [(x + y) + z] = [x + y]⊕ [z] = ([x]⊕ [y])⊕ [z]

2. The zero element is [0] = 0 + W = W because [0]⊕ [x] = [0 + x] = [x]

3. The additive inverse −[x] of [x] = x + W is [−x] = (−x) + W since [x] ⊕ [−x] =
[x + (−x)] = [0].

5.5. Exercise. Verify the remaining vector space axioms for (V/W,⊕,⊙). Then show
that the quotient map π : V → V/W with π(x) = [x] = x+W “intertwines” the algebraic
operations in (V, +, · ) with those in (V/W,⊕,⊙) in the sense that: for any v1, v2 ∈ V
and λ ∈ K we have

1. π(v1 + v2) = π(v1)⊕ π(v2)

2. π(λ · v1) = λ⊙ π(v1)

Thus π : V → V/W is a linear operator between these vector spaces. !

When W = (0) the quotient space consists of single points [v] = v + W = {v}, and V/W
has a natural identification with V under the quotient map which is now a bijection.
When W = V , there is just one coset, v + W = v + V = V ; the quotient space reduces
to a single point, the zero element [0] = 0 + V = V .

5.6. Exercise. Let V = R3 and W = {(x1, x2, x3) : x3 = 0} = the x, y-plane in 3-
dimensional space. The cosets in V/W are the distinct planes parallel to the x, y-plane:
if v = (v1, v2, v3) then

v + W = {v + w : w ∈ W}
= {(v1, v2, v3) + (w1, w2, 0) : w1, w2 ∈ R}
= {(v1 + s, v2 + t, v3) : s, t ∈ R}
= {(x1, x2, x3) : x1, x2 ∈ R, x3 = v3}

(the plane parallel to W passing through (0, 0, v3)). Each value of v3 ∈ R gives a different
coset.
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Figure 1.7. Additive cosets of W = {v ∈ R3 : v3 = 0} are planes parallel to W in R3. A
typical coset v0 + W is shown.

One important viewpoint is to think of the quotient map π : v → V/W as “erasing”
inessential aspects of the original vector space, retaining only those relevant to the prob-
lem at hand. Whole “bunches” of vectors in V , the cosets v+W , collapse to single points
in the target space V/W (the planes in the last example become points in V/W ). A lot
of detail is lost in this collapse, but if W is suitably chosen the quotient map space will
retain information that is buried in a lot of superfluous detail when we look at what is
happening in the larger space V . We will soon give many examples of this, once we start
looking at the structure of “linear operators” between vector spaces. For the moment we
assemble a few more basic facts about quotients of vector spaces.

5.7. Theorem (Dimension Theorem for Quotients). If V is finite dimensional
and W is a subspace. Then:

1. dim(V/W ) ≤ dim(V ) <∞;

2. dim(W ) ≤ dim(V ) <∞;

and

(6) dim(V ) = dim(W ) + dim(V/W )

By our notational conventions this identity can also be written in the abbreviated form
|V | = |W | + |V/W | .

Proof: The quotient map π : V → V/W preserves linear combinations in the sense that

π(
m
∑

i=1

λivi ) =
m
∑

i=1

λiπ(vi).

(recall Exercise 5.5), so if vectors {vi} span V their images vi = π(vi) span V/W . That
proves

dim(V/W ) ≤ #{vi} ≤ #{vi} = dim(V ) <∞

as claimed in (1.).
As for item (2.), we know dim(V ) < ∞ but have no a priori information about W ,

but we showed earlier that no independent set in V can have more than dim(V ) elements,
and a basis for W would be such a set.

The identity (6) is proved by constructing a basis in V/W aligned with a specially
chosen basis in V . Since dim(W ) <∞ there is a basis {w1, ..., wm} in W . If W = V then
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V/W is trivial and there is nothing more to do, but otherwise we can find an “outside
vector” vm+1 /∈ W such that the larger set {w1, ..., wm, vm+1} is independent, and hence
a basis for

W1 = K-span{w1, ..., wm, vm+1}
⊃
̸= W0 = W.

If W1 ̸= V , we can adjoin one more vector vm+2 /∈ W1 to get an independent set
{w1, ..., wm, vm+1, vm+2} with

W0
⊂
̸= W1

⊂
̸= W2 = K-span{w1, ...., wm, vm+1, vm+2}

This process must terminate, otherwise we would have arbitrary large independent sets in
the finite dimensional space V . When the construction terminates we get an independent
spanning set {w1, ..., wm, vm+1, ..., vm+k} in Wk = V . This is a basis for V so dim(V ) =
m + k = dim(W ) + k.

To conclude the proof we demonstrate that the k = dim(V/W ) by showing that the
π-images v̄m+1, . . . , v̄m+k ∈ V/W of the “outside vectors” are a basis for V/W . Since π
is surjective the images π(w1), . . . , π(vm+k) span V/W . But π “kills” all vectors in W ,
so

π(w1) = . . . = π(wm) = [0] in V/W ,

and the remaining images v̄k+i = π(vm+i) span V/W . They are also linearly independent.

In fact, if some linear combination
∑k

i=1 cm+iv̄m+i = [0] in V/W , then by linearity of
the quotient map π we get

[0] =
k
∑

j=1

cm+jπ(vm+j) = π(
k
∑

j=1

cm+jvm+j)

But π(v) = [0] for a vector v ∈ V ⇔ [v] = v + W is equal to the zero coset [0] = W .
Furthermore v + W = W ⇔ v ∈ W , so we can find coefficients c1, . . . , cm such that

m
∑

i=1

ciwi = v =
k
∑

j=1

cm+jvm+j

or

0 =
m
∑

i=1

ciwi +
k
∑

j=1

(−1)cm+jvm+j in V.

Since w1, . . . , wm, vm+1, . . . vm+k is a basis for V this can only happen if all coefficients in
this sum are zero, and in particular cm+1, . . . , cm+k = 0. Thus the {v̄i} are independent
and a basis for V/W , and dim(V/W ) = k = dim(V )− dim(W ). !

Remark: The construction developed in proving Theorem 5.7 shows how to find bases
in a quotient space V/W , and perform effective calculations with them. The key was to
find representatives vi back in V so we can transfer calculations involving cosets in V/W
to calculations in V involving actual vectors vi. The proof of Theorem 5.7 describes
an explicit procedure for finding independent vectors {vi} outside of W , whose images
π(vi) = vi are the desired basis in the quotient space.

5.8. Exercise. Find explicit bases for the following quotient spaces

1. V = R3, W = Re1 + Re2.

2. V = R3, W = R-span{w1 = (1, 2, 3),w2 = (0, 1,−1)};

3. V = C4, W = C-span{z1 = (1 , 1 + i , 3− 2i , −i), z2 = (4 − i , 0 , −1 , 1 + i)};
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4. V = R4, W = {x : x1 + x2 − x3 + x4 = 0 and 4x1 − 3x2 + 2x3 + x4 = 0}.

Here is a simple example involving bases in a quotient space V/W .

5.9. Example. Let V = R4 and W = {x ∈ R : 2x1 − x2 + x4 = 0}. The subspace W is
the solution set of the matrix equation

Ax = 0 where A = [ 2,−1, 0, 1 ]1×4

that imposes a single linear constraint on R4. Find a basis for V/W

Solution: Row operations yield

A→ A′ =
[

1 ,−1
2 , 0 , 1

2

]

The free variable are x2, x3, x4 and x1 = 1
2x2 −

1
2x4, so the solutions have the form

x =

⎛

⎜

⎜

⎝

1
2x2 −

1
2x4

x2

x3

x4

⎞

⎟

⎟

⎠

= x2

⎛

⎜

⎜

⎜

⎝

1
2

1
0
0

⎞

⎟

⎟

⎟

⎠

+ x3

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

+ x4

⎛

⎜

⎜

⎜

⎝

−1
2

0
0
1

⎞

⎟

⎟

⎟

⎠

for x2, x3, x4 ∈ R. Thus the solution set for Ax = 0 is the linear span of the column
vectors

u1 = col(1, 2, 0, 0) u2 = col(0, 0, 1, 0) u3 = col(−1, 0, 0, 2)

These are a basis for W since they are easily seen to be linearly independent. Just row
reduce the 3× 4 matrix M that has these vectors as its rows

M =

⎛

⎝

1 2 0 0
0 0 1 0
−1 0 0 2

⎞

⎠

and see if you get a row of zeros; you do not. Therefore dim(Row(M)) = 3 and the
vectors are independent.

Since dim(V ) = dim(W ) + dim(V/W ) and dim(W ) = 3, we need only find one
“outside” vector u4 /∈ W to complete a basis for V = R4; then π(u4) = u4 + W
will be nonzero, and a basis vector for the 1-dimensional quotient space. The vector
u4 = e4 = (0, 0, 0, 1) is not in W because it fails to satisfy the constraint equation
2x1−x2 +x4 = 0. Thus the single vector [e4] = π(e4) = e4 +W is a basis for V/W , and
dim(V/W ) = 1. !

5.10. Exercise (Another Dimension Formula). If E, F are subspaces in a finite-
dimensional vector space V and E + F = {e + f : e ∈ E, f ∈ F} is their linear span,
prove that

dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F )

Hint: Choose appropriate bases related to E, F and E ∩ F .
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Appendix A: The Degree Formula for K[x1, . . . xN ].

Let K[x] = K[x1, . . . , xN ] be the unital ring of polynomials with coefficients in an integral
domain. Using the multi-index notation introduced in Section 10.1 we can write any such
polynomial as a finite sum (finitely many nonzero coefficients)

(7) f(x) =
∑

α∈ZN
+

aα xα (xα = xα1

1 · . . . · xαN

N , cα ∈ R)

The degree of a monomial xα is |α| = α1 + . . . + αN and if f ∈ K[x] is not the zero
polynomial (all aα = 0) its degree is

m = deg(f) = max{ |α| : cα ̸= 0}

When N > 1 there may be several different monomials xα of the same total degree
|α| = m with nonzero coefficients.

Let f, g ̸= 0 in K[x] with degrees m = deg(f), n = deg(g). Their product is

(f ·g)(x) = (
∑

α

aα xα) · (
∑

β

bβ xβ) =
∑

α,β

aαbβ xα+β

=
∑

γ

(
∑

α+β=γ

aαbβ) xγ =
∑

γ

cγ xγ(8)

where α + β = (α1 + β1, . . . , αN + βn). If aαbβxα+β ̸= 0 in (36) we must have |α| ≤ m
and |β| ≤ n, so that |α + β| ≤ m + n; consequently deg(f ·g) ≤ deg(f) + deg(g).

Let us split off the monomials of maximum degree, writing

f(x) =
∑

|α|=m

aα xα + (· · · )

g(x) =
∑

|β|=n

bβ xβ + (· · · )

(f ·g)(x) =
∑

|γ|=m+n

cγ xγ + (· · · )

where (· · · ) are terms of lower degree. To prove the degree formula

(9) Degree Formula: deg(f ·g) = deg(f) + deg(g) for f, g ̸= 0 in K[x]

it suffice to show there is at least one monomial xγ0 of maximal degree m + n such that
the coefficient

(10) cγ0
=

∑

α+β=γ0

aαbβ is nonzero.

This is trivial for N = 1, but problematic when N ≥ 2 because this sum of products can
be zero if there is more than one term, even if the individual terms are nonzero. On the
other hand the degree formula (37) follows immediately if we can prove

(11)
There exists some monomial xγ of maximal degree m + n for which the sum
(38) consists of a single nonzero term.

The key to proving (39) is to introduce a ranking of the monomials xγ , γ ∈ ZN
+ , more

refined than ranking by total degree deg(xγ) = |γ|, which cannot distinguish between
the various monomials of the same degree. The tool for doing this is “lexicographic,”
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or “lexical,” ordering of the indices in ZN
+ , an idea that has proved useful in many parts

of mathematics.

A.1. Definition (Lexicographic Order). For α, β ∈ ZN
+ we define the relation α ≻ β

to mean

αi > βi at the first index i = 1, 2, . . . , N at which αi differs from βi

Thus

α1 = β1, . . . , αi−1 = βi−1 and αi > βi (other entries in α, β are irrelevant)

This is a linear ordering of multi-indices: given α, β exactly one of the possibilities

α ≻ β α = β β ≻ α

holds. We write α ≽ β when the possibility α = β is allowed. !

Obviously α = (0, . . . , 0) is the lowest multi-index in lexicographic order, and any finite
set of multi-indices has a unique highest element. Note carefully that α ≻ β does not
imply that |α| ≥ |β|. For instance we have

α = (1, 0, 0) ≻ β = (0, 2, 2) in lexicographic order, but |β| = 4 > |α| = 1 .

Other elementary properties of lexicographic order are easily verified once you understand
the definitions.

A.2. Exercise. For lexicographic order in ZN
+ verify that

1. Linear Ordering. For any pair α, β we have exactly one of the possibilities
α ≻ β, α = β, β ≻ α.

2. Transitivity of Order. If α ≻ β and β ≻ γ then α ≻ γ.

3. If α ≻ α′ then α + β ≻ α′ + β for all indices β.

4. If α ≻ α′ and β ≻ β′ then α + β ≻ α′ + β′.

Hint: It might help to make diagrams showing how the various N -tuples are related.
You will have to do some “casework” in (3.) !

We now outline how the crucial fact (39) might be proved, leaving the final details
as an exercise for the reader. If f ̸= 0 with m = deg(f), so f =

∑

|α|≤m aα xα, there
may be several monomials having maximal degree m with aα ̸= 0, but just one of these
is maximal with respect to lexicographic order, namely

α0 = max
≻

{α : |α| = m and aα ̸= 0}

Likewise there is a unique index

β0 = max
≻

{β : |β| = n and bβ ̸= 0}

The multi-index γ0 = α0 + β0 has |γ0| = m + n, and is a likely candidate for the solution
to (39); note that aα0

bβ0
̸= 0 by definition. We leave the reader to verify a few simple

properties of this particular multi-index.

A.3. Exercise. Explain why α0 = max
≻

{α : |α| = m and aα ̸= 0} might not be the

same as α′
0 = max

≻
{α : aα ̸= 0}. Is there any reason to expect α′

0 to have maximal degree
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|α′
0| = m? !

A.4. Exercise. In γ0 = α0 + β0 we have |α0| = m and |β0| = n, and aα0
bβ0
̸= 0, by

definition. If α, β are any indices such that

|α + β| = |α0 + β0| = m + n and aαbβ ̸= 0

prove that we must have |α| = |α0| = m and |β| = |β0| = n. !

Defining α0, β0, γ0 = α0 + β0 as above, we make the following claim:

(A.1)

Claim: If α + β = α0 + β0 and aαbβ ̸= 0 then α = α0 and β = β0. Hence
the sum

cγ0
=

∑

α+β=γ0

aαbβ

reduces to the single nonzero term aγ0
bβ0

A.5. Exercise. Prove the claim made in (A.1) using the facts assembled in the preceding
discussion. !

That will complete the proof of the Degree Formula.
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Chapter II. Linear Operators T : V → W.

II.1 Generalities. A map T : V → W between vector spaces is a linear
operator if for any v, v1, v2 ∈ V and λ ∈ K

1. Scaling operations are preserved: T (λ·v) = λ·T (v)

2. Sums are preserved: T (v1 + v2) = T (v1) + T (v2)

This is equivalent to saying

T(
∑

i

λivi) =
∑

i

λiT (vi) in W

for all finite linear combinations of vectors in V . A trivial example is the zero operator
T (v) = 0W , for every v ∈ V . If W = V the identity operator, idV : V → V is given by
id(v) = v for all vectors. Some basic properties of any linear operator T : V → W are:

1. T (0V ) = 0W . [Proof: T (0V ) = T (0 · 0V ) = 0·T (0V ) = 0W .]

2. T (−v) = −T (v). [Proof: T (−v) = T ((−1) · v) = (−1) · T (0V ) = 0W .]

3. A linear operator is determined by its action on any set S of vectors that span V .
If T1, T2 : V → W are linear operators and

T1(s) = T2(s) for all s ∈ S,

then T1 = T2 everywhere on V . [Proof: Any v ∈ V is a finite linear combination
v =

∑

i cisi; then T1(v) =
∑

i ciTi(si) = T2(v).]

1.1. Exercise. If S ⊆ V and T : V → W is a linear operator prove that

T(K-span{S}) is equal to K-span{T (S)}.

1.2. Definition. We write HomK(V, W ) for the space of linear operators T : V → W .
This becomes a vector space over K if we define

1. (T1 + T2)(v) = T1(v) + T2(v);

2. (λ·T )(v) = λ·(T (v)).

for any v ∈ V , λ ∈ K . The vector space axioms are easily verified. The zero element in
Hom(V, W ) is the zero operator: 0(v) = 0W for every v ∈ V . The additive inverse −T is
is the operator −T (v) = (−1)·T (v) = T (−v), which is also a scalar multiple −T = (−1)T
of T . !

If V = W we can also define the composition product S ◦ T of two operators,

(S ◦ T )(v) = S(T (v)) for all v ∈ V

This makes HomK(V ) = HomK(V, V ) a noncommutative associative algebra with iden-
tity I = idV .

A linear operator T : V → W over K determines two important vector subspaces,
the kernel K(T ) = ker(T ) in the initial space V and the range R(T ) = range(T ) in the
target space W .
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Figure 2.1. A linear map T : V → W sends all points in a coset x + K(T ) of the kernel
to a single point T (x) in W . Different cosets map to different points, and all images land
within the range R(T ). The zero coset 0V + K(T ) collapses to the origin 0W in W .

1. K(T ) = ker(T ) = {v ∈ V : T (v) = 0W }. The dimension of this space is often
referred to as Nullity(T ).

2. R(T ) = range(T ) is the image set T (V ) = {T (v) : v ∈ V }. Its dimension is the
rank

rank(T ) = dimK (range(T )) ,

which is often abbreviated as rk(T ).

1.3. Exercise. Show that ker(T ) and range(T ) are vector subspaces of V and W re-
spectively.

We often have to decide whether a linear map is one-to-one, onto, or a bijection. For
surjectivity, we must compute the range R(T ); determining whether T is one-to-one is
easier, and amounts to computing the kernel K(T ). The diagram Figure 2.1 illustrates
the general behavior of any linear operator. Each coset v + K(T ) of the kernel gets
mapped to a single point in W because

T (v + K(T )) = T (v) + T (K(T )) = T (v) + 0W = T (v) ,

and distinct cosets go to different points in W . All points in V map into the range
R(T ) ⊆ W .

1.4. Lemma. A linear operator T : V → W is one-to-one if and only if ker(T ) = 0.

Proof: (⇐). If T (v1) = T (v2) for v1 ̸= v2, then 0 = T (v1) − T (v2) = T (v1 − v2),
so v2 − v1 ̸= 0 is in ker(T ) and the kernel is nontrivial. We have just proved the
“contrapositive” ¬(T is one-to-one) ⇒ ¬(K(T ) = {0}) of the statment (⇐) we want,
but the two are logically equivalent.
Moral: If you want to prove (P ⇒ Q) it is sometimes easier to prove the equivalent
contrapositive statement (¬Q ⇒ ¬P ), as was the case here.

Proof: (⇒). Suppose T is one-to-one. If v ̸= 0V then Tv ̸= T (0V ) = 0W so v /∈ K(T )
and K(T ) reduces to {0}. !

The following important result is closely related to Theorem 5.7 (Chapter I) for quotient
spaces.

1.5. Theorem (The Dimension Theorem). If T : V → W is a linear operator and
V is finite dimensional, the range R(T ) is finite dimensional and is related to the kernel
K(T ) via

(7) dim(R(T )) + dim(K(T )) = dim(V )
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In words, “rank + nullity = dimension of the initial space V .” This can also be expressed
in short form by writing |R(T )| + |K(T )| = |V |.
Proof: The kernel is finite dimensional because K(T ) ⊆ V ⇒ dim(K(T )) ≤ dim(V ) <
∞. The range R(T ) is also finite dimensional. In fact, if {v1, ..., vn} is a basis for V
every w ∈ R(T ) has the form w = T (v) =

∑

i ciT (vi), so the vectors T (v1), ...., T (vn)
span R(T ). Therefore dim(R(T )) ≤ n = dim(V ).

Now let {w1, . . . , wm} be a basis for K(T ). By adjoining additional vectors from V we
can obtain a basis {w1, ...., wm, vm+1, ..., vm+k} for V . Obviously, m = dim(K(T )) and
m + k = dim(V ). To prove k = dim(R(T )) we show the vectors T (vm+1), ...., T (vm+k)
are a basis for R(T ). They certainly span R(T ) because w ∈ R(T ) ⇒ w = T (v) for some
v ∈ V , which can be written

v = c1w1 + ... + cmwm + cm+1vm+1 + . . . + cm+kvm+k (cj ∈ K)

Since wj ∈ K(T ) and T (wj) = 0W we see that

w = T (v) = 0W + ... + 0W +
k
∑

j=1

cm+jT (vm+j)

so v ∈ K-span{T (vr+1), . . . , T (vr+k)}. These vectors are also independent, for if

0W =
k
∑

i=1

cm+iT (vm+i) = T(
k
∑

i=1‘

cm+ivm+i)

that means
∑

i cm+ivm+i ∈ K(T ) and there are coefficients c1, ..., cm such that
∑m

i=1 ciwi =
∑k

j=1 cm+jvm+j , or

0V = −c1w1 − ... − cmwm + cm+1vm+1 + ... + cm+kvm+k

Because {w1, ..., vm+k} is a basis for V we must have c1 = ... = cm+k = 0, proving
independence of T (vm+1), ..., T (vm+k). Thus dim(R(T )) = k as claimed. !

1.6. Corollary. Let T : V → W be a linear operator between finite dimensional vector
spaces such that dim(V ) = dim(W ), which certainly holds if V = W . Then the following
assertions are equivalent:

(i) T is one-to-one (ii) T is surjective (iii) T is bijective.

Proof: By the Dimension Theorem we have |K(T )| + |R(T )| = |V |. If T is one-to-one
then K(T ) = (0), so by (7) |R(T )| = |V | = |W |. Since R(T ) ⊆ W the only way that this
can happen is to have R(T ) = W – i.e. T is surjective. Finally, if T is surjective then
|R(T )| = |W | = |V | by hypothesis. Invoking (7) we see that |K(T )| = 0, the kernel is
trivial, and T is one-to-one.

We just proved that T is one-to-one if and only if T is surjective, so either condition
implies T is bijective. !

1.7. Exercise. Explain why a spanning set X = {v1, ..., vn} is a basis for a finite
dimensional space if and only the vectors in X are independent (

∑n
i=1 civi = 0V ⇒ c1 =

. . . = cn = 0).

1.8. Proposition. Let V be a finite dimensional vector space and {v1, ..., vn} a basis.
Select any n vectors w1, ..., wn in some other vector space W . Then, there is a unique
linear operator T : V → W such that T (vi) = wi for 1 ≤ i ≤ n.

Proof: Uniqueness of T (if it exists) was proved in our initial comments about linear
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operators. To construct such a T define T (
∑n

i=1 λivi) =
∑n

i=1 λiwi for all choices of
λ1, ...,λn ∈ K. This is obviously well-defined since {vi} is a basis, and is easily seen to
be a linear operator from V → W . !

One prolific source of linear operators is the correspondence between n × m matrices
A with entries in K and the linear operators LA : Km → Kn determined by matrix
multiplication

LA(v) = A · v (matrix product (n × m)·(m × 1) = (n × 1)) ,

if we regard v ∈ Km as an m × 1 column vector.

1.9. Example. Let LA : R3 → R4 ( or C3 → C4, same discussion) be the linear operator
associated with the 4 × 3 matrix

A =

⎛

⎜

⎜

⎝

1 2 3
1 0 2
2 1 1
1 1 1

⎞

⎟

⎟

⎠

Describe ker(LA) and range(LA) by finding explicit basis vectors in these spaces.

Solution: The range R(LA) of LA is determined by finding all y for which there is an
x ∈ K3 such that Ax = y. Row reduction of the augmented matrix [A : y] yields

⎛

⎜

⎜

⎝

1 2 3 y1

1 0 2 y2

2 1 1 y3

1 1 1 y4

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 −2 −1 y2 − y1

0 −3 −5 y3 − 2y1

0 −1 −2 y4 − y1

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 2 1 y1 − y2

0 3 5 2y1 − y3

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 0 −3 y1 − y2 − 2(y1 − y4)
0 0 −1 2y1 − y3 − 3(y1 − y4)

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 0 1 y1 + y3 − 3y4

0 0 0 2y1 − y2 + 3y3 − 7y4

⎞

⎟

⎟

⎠

There are no solutions x ∈ K3 unless y ∈ K4 lies the 3-dimensional solution set of the
equation

2y1 − y2 + 3y3 − 7y4 = 0.

When this constraint is satisfied, backsolving yields exactly one solution for each such y;
there are no free variables.

Thus R(LA) is the solution set of equation

2y1 − y2 + 3y3 − 7y4 = 0

When this is written as a matrix equation By = 0 (B = the 1×4 matrix [2,−1, 3,−7] ),

y2, y3, y4 are free variables and then y1 = 1
2 (y2−3y3 +7y4), so a typical vector in R(LA)

has the form

y =

⎛

⎜

⎜

⎜

⎝

1
2 (y2 − 3y3 + 7y4)

y2

y3

y4

⎞

⎟

⎟

⎟

⎠

= y2 ·

⎛

⎜

⎜

⎜

⎝

1
2

1
0
0

⎞

⎟

⎟

⎟

⎠

+ y3 ·

⎛

⎜

⎜

⎜

⎝

−3
2

0
1
0

⎞

⎟

⎟

⎟

⎠

+ y4 ·

⎛

⎜

⎜

⎜

⎝

7
2

0
0
1

⎞

⎟

⎟

⎟

⎠

with y1, y2, y3 ∈ K. The re-scaled column vectors u2 = col(1, 2, 0, 0), u3 = col(−3, 0, 2, 0),
u4 = col(7, 0, 0, 2) obviously span R(LA) and are easily seen to be linearly independent,
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so they are a basis for the range, which has dimension |R(LA)| = 3.

The kernel: Now we want to find all solutions x ∈ K3 of the homogeneous equation
Ax = 0. The same row operations used above transform [A : 0] to:

⎛

⎜

⎜

⎝

1 2 3 0

0 1 2 0

0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

Then x = col(x1, x2, x3) has entries x1 = x2 = x3 = 0. Therefore

K(LA) = {x ∈ K3 : LA(x) = Ax = 0} is the trivial subspace {0}

and there is no basis to be found.
Note that |R(LA)| + |K(LA)| = 3 + 0 = dimension of the initial space K3, while the

target space W = K4 has dimension = 4. !

1.10. Example. Let LA : R4 → R4 be the linear operator associated with the 4 × 4
matrix

A =

⎛

⎜

⎜

⎝

1 2 3 0
1 0 2 −1
2 1 1 2
1 1 1 1

⎞

⎟

⎟

⎠

Describe the kernel K(LA) and range R(LA) by finding basis vectors.

Solution: The range of LA is determined by finding all y such that y = Ax for some
x ∈ R4. Row reduction of [A : y] yields
0

B

B

@

1 2 3 0 y1

1 0 2 −1 y2

2 1 1 2 y3

1 1 1 1 y4

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 −2 −1 −1 y2 − y1

0 −3 −5 2 y3 − 2y1

0 −1 −2 1 y4 − y1

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 2 1 1 y1 − y2

0 3 5 −2 2y1 − y3

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 0 −3 3 y1 − y2 − 2(y1 − y4)
0 0 −1 1 2y1 − y3 − 3(y1 − y4)

1

C

C

A

→

0

B

B

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 0 1 −1 y1 + y3 − 3y4

0 0 0 0 2y1 − y2 + 3y3 − 7y4

1

C

C

C

C

A

There are no solutions x in R4 unless y lies the 3-dimensional solution set of the linear
equation

2y1 − y2 + 3y3 − 7y4 = 0

– i.e. y is a solution of the matrix equation

Cy = 0 where C = [ 2 , −1 , 3 , −7 ]
1×4

Then there exist multiple solutions, and R(LA) = {y ∈ R4 : Cy = 0} is nontrivial.

Multiplying C by 1
2 puts it in echelon form, so y2, y3, y4 are free variables in solving

Cy = 0 and y1 = 1
2 (y2 − 3y3 + 7y4). Thus a vector y ∈ R4 is in the range R(LA) ⇔

y =

0

B

B

B

@

1
2 (y2 − 3y3 + 7y4)

y2

y3

y4

1

C

C

C

A

= y2 ·

0

B

B

B

@

1
2

1
0
0

1

C

C

C

A

+ y3 ·

0

B

B

B

@

−
3
2

0
1
0

1

C

C

C

A

+ y4 ·

0

B

B

B

@

7
2

0
0
1

1

C

C

C

A
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with y1, y2, y3 ∈ R3. The column vectors u2 = col(1, 2, 0, 0), u3 = col(−3, 0, 2, 0), u4 =
col(7, 0, 0, 2), obviously span R(LA) and are easily seen to be linearly independent, so they
are a basis for the range and dim(R(LA)) = 3. (Hence also |K(LA)| = |V |− |R(LA)| = 1
by the Dimension Theorem.)

The kernel: K(LA) can be found by setting y = 0 in the preceding echelon form of
[A : y], which becomes

⎛

⎜

⎜

⎝

1 2 3 0 0

0 1 2 −1 0

0 0 1 −1 0
0 0 0 0 0

⎞

⎟

⎟

⎠

Now x4 is the free variable and

x3 = x4

x2 = −2x3 + x4 = −x4

x1 = −2x2 − 3x3 = −x4 ,

hence,

K(LA) = K ·

0

B

B

@

−1
−1
1
1

1

C

C

A

is one dimensional as expected.
Given a vector y in the range R(LA) we can find a particular solution x0 of Ax = y

by setting the free variable x4 = 0. Then

x3 = x4 + y1 + y3 − 3y4 = y1 + y3 − 3y4,

x2 = −2x3 + x4 + y1 − y4 = −y1 − 2y3 + 5y4,

x1 = −2x2 − 3x3 + y1 = y1 + (2y1 + 4y3 − 10y4) + (−3y1 − 3y3 + 9y4)

= y3 − y4

and

x0 =

⎛

⎜

⎜

⎝

y3 − y4

−y1 − 2y3 + 5y4

y1 + y3 − 3y4

0

⎞

⎟

⎟

⎠

is a particular solution for Ax = y. The full set of solutions is the additive coset
x0 + K(LA) of the kernel of LA. !

1.11. Exercise. If A ∈ M(n × m, K) prove that

1. Range(LA) is equal to column space Col(A) = K-span{C1, . . . , Cm}, the subspace
of Kn spanned by the columns of A.

so
dim (Range(LA)) = dim (Col(A)) = 3

II.2. Invariant Subspaces.

If T : V → V (V = W ) is a linear operator, a subspace W is T -invariant if T (W ) ⊆ W .
Invariant subspaces are important in determining the structure of T , as we shall see.
Note that the subspaces (0), R(T ) = range(T ) = T (V ), K(T ) = ker(T ), and V are all
T -invariant. Structural analysis of T proceeds initially by searching for eigenvectors:
nonzero vectors v ∈ V such that T (v) is a scalar multiple T (v) = λ·v, for some λ ∈ K.
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These are precisely the vectors in ker(T − λI) where I : V → V is the identity operator
on V . Eigenvectors may or may not exist; when they do they have a story to tell.

2.1. Definition. Fix a linear map T : V → V and scalar λ ∈ K. The λ-eigenspace is

Eλ(T ) = {v ∈ V : T (v) = λ·v} = {v ∈ V : (T − λI)(v) = 0} = ker(T − λI)

We say that λ ∈ K is an eigenvalue for T if the eigenspace is nontrivial, Eλ(T ) ̸= (0).

If V is finite dimensional we will eventually see that the number of eigenvalues is ≤ n
(possibly zero) because it is the set of roots in K of the “characteristic polynomial”

pT (x) = det(T − xI) ∈ K[x] ,

which has degree n = dimK(V ). The set of distinct eigenvalues in K is called the
spectrum of T and is denoted

spK(T ) = {λ ∈ K : such that T (v) = λ·v for some v ̸= 0}
= {λ ∈ K : Eλ ̸= (0)}

Depending on the nature of the ground field, spK(T ) may be the empty set; it is always
nonempty if K = C, because every nonconstant polynomial has at least one root in C

(Fundamental Theorem of Algebra). The point is that all eigenspaces Eλ are T -invariant
subspaces because T and (T − λI) “commute,” hence

(T − λI)(Tv) = T ((T − λI)v) = T (0) = 0 if v ∈ Eλ

The Eλ are also “essentially disjoint” from each other in the sense that Eµ ∩Eλ = (0) if
µ ̸= λ. (You can’t have λ·v = µ·v (or (λ− µ)·v = 0) for nonzero v if µ ̸= λ.) Note that
ker(T ) is the eigenspace corresponding to λ = 0 since

Eλ=0 = {v : (T − 0·I)(v) = T (v) = 0} = ker(T ) ,

and λ = 0 is an eigenvalue in spK(T ) ⇔ this kernel is nontrivial. When λ = 1, Eλ=1 is
the set of “fixed points” under the action of T .

Eλ=1 = Fix(T ) = {v : T (v) = v} (the fixed points in V )

Decomposition of Operators. We now show that if W ⊆ V is an invariant

subspace, so T (W ) ⊆ W , then T induces linear operators in W and in the quotient
space V/W :

1. Restriction: T |W : W → W is the restriction of T to W , so (T |W)(w) = T (w),
for all w ∈ W .

2. Quotient Operator: The operator T̃ : V/W → V/W , sometimes denoted TV/W ,
is induced by the action of T on additive cosets:

(8) TV/W (x + W ) = T (x) + W for all cosets in V/W .

The outcome is determined using a representative x for the coset, but as shown
below different representatives yield the same result, so TV/W is well defined.

2.2. Theorem. Given a linear operator T : V → V and an invariant subspace W ,
there is a unique linear operator T̃ : V/W → V/W that makes the following diagram
“commute” in the sense that π ◦ T = T̃ ◦ π, where π : V → V/W is the quotient map.

V
T−→ V

π ↓ ↓ π

V/W
T̃−→ V/W
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Note: We have already shown that the quotient map π : V → V/W is a linear operator
between vector spaces.

Proof: Existence. The restriction T |W is clearly a linear operator on W . As for the
induced map T̃ on V/W , the fact that T (W ) ⊆ W implies

T (x + W ) = T (x) + T (W ) ⊆ T (x) + W for x ∈ V

This suggests that (8) is the right definition. It automatically insures that T̃ ◦π = π ◦T ;
the problem is to show the outcome T̃ (x + W ) = T (x) + W is independent of the choice
of coset representative x ∈ V . But if x′ + W = x + W we have x′ = x′ + 0 = x + w0 for
some w0 ∈ W and

T (x′) + W = T (x + w0) + W = T (x) + (T (w0) + W )

Since W is invariant T (w0) ∈ W and T (w0) + W = W by Exercise 5.2 of Chapter 1.
Hence T (v′) + W = T (v) + W and the induced operator in (8) is well-defined. Linearity
of T̃ is easily checked. Once we know T̃ is well-defined we get:

T̃ ((v1 + W ) ⊕ (v2 + W )) = T̃ (v1 + v2 + W ) (definition of(⊕) in V/W )

= T (v1 + v2) + W = T (v1) + T (v2) + W

= (T (v1) + W ) + (T (v2) + W ) (since W + W = W )

= T̃ (v1 + W ) ⊕ T̃ (v2 + W )

and similarly
T̃ (λ⊙ (v + W )) = T̃ (λ·v + W ) = λ⊙ T̃ (v + W )

Uniqueness. If T̃1, T̃2 both satisfy the commutation relation T̃i ◦ π = π ◦ Ti, then

T̃1(v + W ) = T̃1 ◦ π(v) = π(T (v)) = T̃2(π(v)) = T̃2(v + W )

so T̃1 = T̃2 on V/W . !

A Look Ahead. If T : V → V is a linear operator on a finite dimensional space, we
will explain in Section II.4 how a matrix [T ]X is associated with T once a basis X in V
has been specified. If W is a T -invariant subspace we will see that much of the structural
information about T resides in the induced operators T |W and TV/W , and that in some
sense (to be made precise) T is assembled by “joining together” these smaller pieces.
This is a big help in trying to understand the action of T on V , but it does depend on
being able to find invariant subspaces – the more the better! To illustrate: if a basis
X = {w1, . . . , wm} in W is augmented to get a basis for V ,

Z = {w1, . . . , wm, vm+1, . . . , vm+k} (m + k = n = dim(V ))

we have seen that the image vectors v̄m+i = π(vm+i) are a basis Y in the quotient space
V/W . In Section II.4 we will show that the matrix [T ]Z assumes a special “block-upper
triangular form” with respect to such a basis.

[T ]Z =

⎛

⎝

A
m×m

∗
m×k

0 k×m B
k×k

⎞

⎠

where A = [T |W ]X and B = [TV/W ]Y. Clearly, much of the information about T is
encoded in the two diagonal blocks A, B; but some information is lost in passing from T
to T |W and TV/W – the “cross-terms” in the upper right block ∗ cannot be determined
if we only know the two induced operators. Additional information is needed to piece
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them together to recover T , and there may be more than one operator T yielding a
particular pair of induced operators (T |W , TV/W ). !

Isomorphisms of Vector Spaces. A linear map T : V → W is an isomorphism
between vector spaces if it is a bijection. Since T is a bijection there is a well-defined
“set-theoretic” inverse map in the opposite direction T−1 : W → V

T−1(w) = (the unique v ∈ V such that T (v) = w)

for any w ∈ W . In general it might not be easy to describe the inverse of a bijection
f : X → Y between two point sets in closed form

f−1(y) = (some explicit formula)

(Try finding x = f−1(y) where f : R → R is y = f(x) = x3 + x + 1, which is a bijection
because df/dx > 0 for all x.) But the inverse of a linear map is automatically linear, if
it exists. We write V ∼= W if there is an isomorphism between them.

2.3. Exercise. Suppose T : V → W is linear and a bijection. Prove that the set-
theoretic inverse map T−1 : W → V must be linear, so

T−1(λw) = λ·T−1(w) and T−1(w1 + w2) = T−1(w1) + T−1(w2)

Thus T and T−1 are both isomorphisms between V and W .
Hint: T−1 reverses the action of T and vice-versa, so T ◦T−1 = idW and T−1 ◦T = idV .

We now observe that an isomorphisms between vector spaces V and W identifies impor-
tant features of V with those of W . It maps

⎧

⎨

⎩

independent sets
spanning sets

bases
in V −−−−−−−→

⎧

⎨

⎩

independent sets
spanning sets

bases
in W

To illustrate, if {v1, ..., vn} are independent in V , then

0W =
n
∑

i=1

ciT (vi) = T(
∑

i

civi) ⇒ 0V =
n
∑

i=1

civi in V ⇒ c1 = ... = cn = 0 in K

because T (0V ) = 0W and T is one-to-one. Thus the vectors {T (v1), ..., T (vn)} are inde-
pendent in W . Similar arguments yield the other two assertions.

2.4. Exercise. If T : V → W is an isomorphism of vector spaces, verify that:

1. K-span{vi} = V ⇒ K-span{T (vi)} = W ;

2. {vi} is a basis in V ⇒ {T (vi)} is a basis in W .

In particular, isomorphic vector spaces V , W are either both infinite dimensional, or
both finite dimensional with dimK(V ) = dimK(W ).

The following result which relates linear operators, quotient spaces, and isomorphisms
will be cited often in analyzing the structure of linear operators. It is even valid for infinite
dimensional spaces.

2.5. Theorem (First Isomorphism Theorem). Let T : V → R(T ) ⊆ W be a
linear map with range R(T ). If K(T ) = ker(T ), T induces a unique bijective linear map
T̃ : V/K(T ) → R(T ) that makes the following diagram “commute” (T̃ ◦ π = T ).

V
T−→ R(T ) ⊆ W

π ↓ ↗

V/K(T )
T̃
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where π : V → V/K is the quotient map. Furthermore R(T̃ ) = R(T ),
Hints: Try defining T̃ (v + K(T )) = T (v). Your first task is to show that the outcome
is independent of the particular coset representative – i.e. v′ + K(T ) = v + K(T ) ⇒
T (v′) = T (v), so T̃ is well-defined. Next show T̃ is linear, referring to the operations ⊕
and ⊙ in the quotient space V/K(T ). The commutation property T̃ ◦ π = T is built into
the definition of T̃ . For uniqueness, you must show that if S : V/K(T ) → W is any other
linear map such that S ◦ π = T , then S = T̃ ; this is trivial once you clearly understand
the question. !

Note that range(T̃ ) = range(T ) because the quotient map π : V → V/K is surjective:
w ∈ R(T̃ ) ⇔ there is a coset v + K(T ) such that T̃ (v + K(T )) = w; but then T (v) = w
and w ∈ R(T ). Since T̃ is an isomorphism between V/K(T ) and R(T ), dim(V/K(T )) =
dim(V ) − dim(K(T )) is equal to dim(R(T )).

II.3. (Internal) Direct Sum of Vector Spaces.
A vector space V is an (internal) direct sum of subspaces V1, ... ,Vn, indicated by
writing V = V1 ⊕ . . . ⊕ Vn, if

1. The linear span
∑n

i=1 Vi = {
∑n

i=1 vi : vi ∈ V } is all of V ;

2. Every v ∈ V has a unique representation as a sum v =
∑n

i=1 vi with vi ∈ Vi.

Once we know that the Vi span V , condition (2.) is equivalent to saying

2∗
n
∑

i=1

vi = 0 with vi ∈ Vi → vi = 0 for all i.

In fact, if a vector v has two different representations v =
∑

i vi =
∑

v′i then 0 =
∑n

i=1 v′′i
with v′′i = (v′i − vi) ∈ Vi. Then (2∗.) implies v′′i = 0 and v′i = vi for all i. Conversely, if
we can write 0 =

∑

wi with wi ∈ Vi not all zero, then the representation of a vector as
v =

∑

i vi (vi ∈ Vi) cannot be unique, since we could also write

0 =
∑

i

wi with wi ̸= 0 for some i ,

and then v = v + 0 =
∑

i(vi + wi) in which vi + wi ∈ Vi is ̸= vi. Thus the condition (2.)
is equivalent to (2∗.)

3.1. Example. We note the following examples of direct sum decompositions.

1. Kn = V ⊕ W where

V = {(x1, x2, 0, ..., 0) : x1, x2 ∈ K} and W = {(0, 0, x3, ..., xn) : xk ∈ K};

More generally, in an obvious sense we have Km+n ∼= Km ⊕ Kn.

2. The space of polynomials K[x] = V ⊕ W is a direct sum of the subspaces

• Even Polynomials: V = {
∑∞

i=0 aixi : ai = 0 for odd indices}
• Odd Polynomials: W = {

∑∞
i=0 aixi : ai = 0 for even indices }

3. For K = Q, R, C, matrix space M(n, K) is a direct sum A⊕ S of

• Antisymmetric Matrices: A = {A : At = −A}
• Symmetric Matrices: S = {A : At = A}.
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In fact, since (At)t = A we can write any matrix as

A = 1
2 (At + A) + 1

2 (At − A)

The first term is symmetric and the second antisymmetric, so M(n, K) = A + S,
(linear span).

If B ∈ A ∩ S then Bt = −B and also Bt = B, hence B = −B and B = 0 (the
zero matrix). Thus A ∩ S = (0) and Exercise 3.2 (below) implies that M(n, K) =
A⊕ S.
Note: This actually works for any field K in which 2 = 1 + 1 ̸= 0 because the “ 1

2”
in the formulas involves division by 2. In particular it works for the finite fields
Zp = Z/pZ except for Z2 = Z/2Z, in which [1] ⊕ [1] = [1 + 1] = [2] = [0] !

If subspaces V1, . . . , Vn span V it can be tricky to verify that V is a direct sum when
n ≥ 3, but if there are just two summands V1 and V2 (the case most often encountered)
there is a simple and extremely useful criterion for deciding whether V = V1 ⊕ V2.

3.2. Exercise. If E, F are subspaces of V show that V is the direct sum E ⊕ F if and
only if

1. They span V : E + F = {a + b : a ∈ E, b ∈ F} is all of V ;

2. Trivial intersection: E ∩ F = {0}.

It is important to note that this is not true when n ≥ 3. If
∑n

i=1 Vi = V and the spaces
are only “pairwise disjoint,”

Vi ∩ Vj = (0) for i ̸= j,

this is not enough to insure that V is a direct sum of the given subspaces (see the following
exercise).

3.3. Exercise. Find three distinct 1-dimensional subspaces Vi in the two dimensional
space R2 such that

1. Vi ∩ Vj = (0) for i ̸= j;

2.
∑3

i=1 Vi = R2

Explain why R2 is not a direct sum V1 ⊕ V2 ⊕ V3 of these subspaces.

3.4. Exercise. If V = V1 ⊕ . . . ⊕ Vn and V is finite dimensional, we have seen that
each Vi must be finite-dimensional with dim(Vi) ≤ dim(V ).

1. Given bases X1 ⊆ V1, ... , Xn ⊆ Vn, explain how to create a basis for all of V ;

2. Prove

(9) Dimension Formula for Sums: dimK(V1 ⊕ . . . ⊕ Vn) =
n
∑

i=1

dimK(Vi)

Direct sum decompositions play a large role in understanding the structure of linear
operators. Suppose T : V → V and V = V1⊕V2, and that both subspaces are T -invariant.
We get restricted operators T1 = T |V1

: V1 → V1 and T2 = T |V2
: V2 → V2, but because

both subspaces are T -invariant we can fully reconstruct the original operator T in V from
its “components” T1 and T2. In fact, every v ∈ V has a unique decomposition v = v1 +v2

(vi ∈ Vi) and then
T (v) = T (v1) + T (v2) = T1(v1) + T2(v2)
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We often indicate this decomposition by writing T = T1 ⊕ T2.
This does not work if only one subspace is invariant. But when both are invariant

and we take bases X1 = {v1, . . . , vm}, X2 = {vm+1, . . . , vm+k} for V1, V2, we will soon see
that the combined basis Y = {v1, . . . , vm, vm+1, . . . , vm+k} for all of V yields a matriix
of particularly simple “block-diagonal” form

[T ]Y =

⎛

⎝

A
m×m

0 m×k

0 k×m B
k×k

⎞

⎠

where A, B are the matrices of T1, T2 with respect to the bases X1 ⊆ V1 and X2 ⊆ V2.

Projections and Direct Sums. If V = V1 ⊕ . . . ⊕ Vn then for each i there is a
natural projection operator Pi : V → Vi ⊆ V , the “projection of V onto Vi along the
complementary subspace

⊕

j ̸=i Vj .” By definition we have

(10) Pi(v) = vi if v =
n
∑

j=1

vj is the unique decomposition with vj ∈ Vj .

Note that ker(Pi) ⊇ all Vj with j ̸= i, so K(Pi) ⊇
⊕

j ̸=i Vj . A number of properties of
these projection operators are easily verified.

3.5. Exercise. Show that the projections Pi associated with a direct sum decomposition
V = V1 ⊕ . . . ⊕ Vn have the following properties.

1. Linearity: Each Pi : V → V is a linear operator;

2. Idempotent Property: P 2
i = Pi ◦ Pi = Pi for all i;

3. Pi ◦ Pj = 0 if i ̸= j ;

4. Range(Pi) = Vi and ker(Pi) is the linear span
∑

j ̸=i Vj ;

5. P1 + . . . + Pn = I (identity operator on V ).

If we represent vectors v ∈ V as ordered n-tuples (v1, ..., vn) in the Cartesian product set
V1 × . . . × Vn, the ith projection takes the form

Pi(v1, ..., vn) = (0, ..., 0, vi, 0, ..., 0) ∈ Vi ⊆ V.

Don’t be misled by this notation into thinking that we are speaking of orthogonal projec-
tions (onto orthogonal subspaces in Rn). The following example and exercises illustrate
what’s really happening.
Note: A vector space must be equipped with additional structure such as an inner prod-
uct if we want to speak of “orthogonality of vectors,” or their “lengths.” Such notions
are meaningless in an unadorned vector space. Nevertheless, inner product spaces are
important and will be fully discussed in Chapter VI.

3.6. Example. The plane R2 is a direct sum of the subspaces V1 = Re1 and V2 =
R(e1 + e2), where X = {e2, e2} are the standard basis vectors e1 = (1, 0) and e2 = (0, 1)
in R2. The maps

• P1 projecting V onto V1 along V2,

• P2 projecting V onto V2 along V1
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Figure 2.2. Projections P1, P2 determined by a direct sum decomposition V = V1 ⊕ V2.
Here V = R2, V1 = Re1, V2 = R(e1 + e2); P1 projects vectors v ∈ V onto V1 along V2,
and likewise for P2.

are oblique projections, not the familiar orthogonal projections sending x = (x1, x2) to
(x1, 0) and to (0, x2) respectively, see Figure 2.1. Find an explicit formula for Pi(v1, v2)
in R2, for arbitrary pairs (v1, v2) in R2.

Discussion: To calculate these projections we must write an arbitrary vector v =
(v1, v2) = v1e1 + v2e2 in the form a + b ∈ V1 ⊕ V2 where V1 = Re1 and V2 = R(e1 + e2).
The vectors Y = {f1, f2}

(11) f1 = e1 and f2 = e1 + e2

that determine the 1-dimensional spaces V1, V2 are easily seen to be a new basis for R2.
If v = c1f1 + c2f2 in the new basis, the action of the projections P1, P2 can be written
immediately based on the definitions:

(12) P1(c1f1 + c2f2) = c1f1 ( = c1e1)
P2(c1f1 + c2f2) = c2f2 ( = c2(e1 + e2) )

Now v = (v1, v2) is v1e1 + v2e2 in terms of the standard basis X in R2 and we want to
describe the outcomes P1(v), P2(v) in terms of the same basis.

First observe that the action of P2 is known as soon as we know the action of P1: by
the Parallelogram Law for vector addition (see Figure 2.2) we have P1 + P2 = I, so

P2(v) = (I − P1)(v) = v − P1(v) for all v ∈ R2

Second, the projections Pi are linear so their action is known once we determine the
images Pi(ek) of the basis vectors ek because

Pi(v) = P1(v1, v2) = Pi(v1e1 + v2e2) = v1 ·Pi(e1) + v2 ·Pi(e2) (v1, v2 ∈ R)

The last step is to use the vector equations (11) to write the standard basis vectors
{e1, e2} in terms of the new basis {f1, f2}; then the action of P1 in the standard basis is
easily evaluated by applying (12). From (11) we get

e1 = f1 and e2 = f2 − f1

and then from (12),

P1(e1) = P1(f1) = f1 = e1

P1(e2) = P1(f2 − f1) = −f1 = −e1
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and similarly

P2(e1) = P2(f1) = 0

P2(e2) = P2(f2 − f1) = f2 = e1 + e2

The projections Pi can now be re-written in terms of the Cartesian coordinates in R2 as

P1(v1, v2) = v1P1(e1) + v2P1(e2)

= v1 ·e1 − v2 ·e1 = (v1 − v2, 0)

P2(v1, v2) = v1P2(e1) + v2P2(e2)

= v1 ·0 + v2 ·(e1 + e2) = (v2, v2)

It is interesting to calculate P 2
1 , P 2

2 and P1 ◦ P2 using the preceding formulas to verify
the properties listed in Exercise 3.5 !

The “idempotent property” P 2 = P for a linear operator is characteristic of projec-
tions associated with a direct sum decomposition V = V1 ⊕ V2. We have already seen
that if P, Q = (I − P ) are the projections associated with such a decomposition, then

(i) P 2 = P and Q2 = Q (ii) PQ = QP = 0 (iii) P + Q = I (identity operator)

But the converse is also true.

3.7. Proposition. If P : V → V is any linear operator such that P 2 = P , then V is a
direct sum V = R(P ) ⊕ K(P ) and P is the projection of V onto the range R(P ), along
the kernel K(P ). The operator Q = I − P is also idempotent, with

(13) R(Q) = R(I − P ) = K(P ) and K(Q) = K(I − P ) = R(P ) ,

and projects V onto R(Q) = K(P ) along K(Q) = R(P ).

Proof: First observe that Q = (I − P ) is also idempotent since

(I − P )2 = I − 2P + P 2 = I − 2P + P = (I − P ) .

Next, note that

v ∈ K(Q) ⇔ Q(v) = (I − P )v = 0 ⇔ P (v) = v ⇔ v ∈ R(P ) .

[ Implication (⇒) in the last step is obvious. Conversely, if v ∈ R(P ) then v = P (w) for
some w and then P (v) = P 2(w) = P (w) = v, proving (⇐).] Thus

1. K(Q) = K(I − P ) is equal to R(P )

2. R(Q) = R(I − P ) is equal to K(P ) ,

proving (13).
Obviously P + Q = I because v = P (v) + (I − P )(v) implies P (v) ∈ R(P ), while

(I − P )(v) ∈ R(Q) = K(P ) by (13); thus the span R(P ) + K(P ) = R(P ) + R(Q)
is all of V . Furthermore K(P ) ∩ R(P ) = (0), for if v is in the intersection we have
v ∈ K(P ) ⇒ P (v) = 0. But we also have v ∈ R(P ), so v = P (w) for some w, and then

0 = P (v) = P 2(w) = P (w) = v .

By Exercise 3.2 we conclude that V = R(P ) ⊕ K(P ).
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Finally, let P̃ be the projection onto R(P ) along K(P ) associated with this decom-
position; we claim that P̃ = P . By definition P̃ maps v = r + k ∈ R(P ) ⊕ K(P ) to r;
that, however, is exactly what our original operator P does:

P (r + k) = P (r) + P (k) = r + 0 = r .

Therefore P̃ = P as operators on V . !

Direct Sums and Eigenspaces. Let T : V → V be a linear operator on a
finite dimensional space V . As above, the spectrum of T is the set of distinct eigenvalues
sp(T ) = {λ ∈ K : Eλ ̸= 0}, where Eλ is the (nontrivial) λ-eigenspace

Eλ = {v ∈ V : T (v) = λ·v} = ker(T − λI) (I = idV )

3.8. Definition. A linear operator T : V → V is diagonalizable if V is the direct sum
of the nontrivial eigenspaces,

V =
⊕

λ∈sp(T )

Eλ(T )

We will see below that this happens if and only if V has a basis f1, . . . , fn of eigenvectors,

T (fi) = µi ·fi for some µi ∈ K

for 1 ≤ i ≤ n.

Our next result shows that T is actually diagonalizable if we only know that the
eigenspaces span V , with

V =
∑

λ∈sp(T )

Eλ(T ) = K-span{Eλ : λ ∈ spK(T )}

(a property much easier to verify).

3.9. Proposition. If T : V → V is a linear operator on a finite dimensional space, let
W be the span

∑

λ∈spK(T ) Eλ(T ) of the eigenspaces. This space is T -invariant and is in

fact a direct sum W =
⊕

λ Eλ of the eigenspaces.

Proof: Since each Eλ is invariant their span W is also T -invariant. The Eλ span W
by hypothesis, so each w ∈ W has some decomposition w =

∑

λ wλ with wλ ∈ Eλ. For
uniqueness of this decomposition it suffices to show that

0 =
∑

λ∈sp(T )

wλ with wλ ∈ Eλ ⇒ each wλ = 0 .

The operators T, (T − λI), and (T − µI) commute for all µ,λ ∈ K since the identity
element I and its scalar multiples commute with everybody. Let us fix an eigenvalue λ0;
we will show wλ0

= 0. With this λ0 in mind we define the product

A =
∏

λ̸=λ0,λ∈sp(T )

(T − λI) .

Then
0 = A(0) = A(

∑

λ

wλ) =
∑

λ

A(wλ) = A(wλ0
) +

∑

λ̸=λ0

A(wλ)
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If λ ̸= λ0 we have

A(wλ) =

⎛

⎝

∏

µ̸=λ0

(T − µI)

⎞

⎠ wλ =

⎛

⎝

∏

µ̸=λ0,λ

(T − µI)

⎞

⎠ · (T − λI)wλ = 0

because wλ ∈ Eλ. On the other hand, by writing (T − λ0I) + (λ0 − µ)I we find that

A(wλ0
) =

⎛

⎝

∏

µ̸=λ0

(T − µI)

⎞

⎠wλ0
=

⎛

⎝

∏

µ̸=λ0

(T − λ0I) + (λ0 − µ)I

⎞

⎠wλ0

When we expand this product of sums, every term but one includes a factor (T − λ0I)
that kills wλ0

:

(Term) = (product of operators) · (T − λ0I)wλ0
= 0

The one exception is the product
⎛

⎝

∏

µ̸=λ0

(λ0 − µ)

⎞

⎠ · wλ0
.

The scalar out front cannot be zero because each µ ̸= λ0, so

A(wλ0
) =

∏

µ̸=λ0

(λ0 − µ) · wλ0
̸= 0

But we already observed that

0 = A(
∑

λ

wλ) = 0 + A(wλ0
)

so we get a contradiction unless wλ0
= 0. Thus each term in

∑

λ wλ is zero and W is the
direct sum of the eigenspaces Eλ. !

If W
⊂
̸= V this result tells us nothing about the behavior of T off of the subspace W ,

but if we list the distinct eigenvalues as λ1, . . . ,λr we can construct a basis for W that
runs first through Eλ1

, then through Eλ2
, etc to get a basis for W ,

X = {f (1)
1 , . . . , f (1)

d1
; f (2)

1 , . . . , f (2)
d2

; . . . ; f (r)
1 , . . . , f (r)

dr
}

where di = dim(Eλi
) and

∑

i di = m = dim(W ). The corresponding matrix describing
T |W is diagonal, so T |W is a diagonalizable operator on W even if T is not diagonalizable
on all of V .

(14) [T |W ]X,X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1 0
. . .

λ1

. . .
λr

. . .
0 λr

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where sp(T ) = {λ1, ...,λr}.

3.10. Exercise. If a linear operator T : V → V acts on a finite dimensional space,
prove that the following statements are equivalent.
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1. T is diagonalizable: V =
⊕

λ∈sp(T )

Eλ(T )

2. There is a basis f1, . . . , fn for V such that each fi is an eigenvector, with Tfi = µifi

for some µi ∈ K.

II.4. Representing Linear Operators as Matrices.
Let T : V → W be a linear operator between finite dimensional vector spaces with
dim(V ) = m, dim(W ) = n. An ordered basis in V is an ordered list X = {e1, . . . , en}
of vectors that are independent and span V ; let Y = {f1, ..., fn} be an ordered basis for
the target space W .

The behavior of a linear map T : V → W is completely determined by what it does
to the basis vectors in V because every v =

∑m
i=1 ciei (uniquely) and

T (
∑

i=1

ciei) =
n
∑

i=1

ciT (ei)

Each image T (ei) can be expressed uniquely as a linear combination of vectors in the Y
basis,

T (ei) =
n
∑

j=1

tjifj for 1 ≤ i ≤ m

yielding a system of m = dim(V ) vector equations that tell us how to rewrite vectors in
the X-basis in terms of vectors in the Y-basis

(15)

T (e1) = b11f1 + ... + b1nfn
...

T (em) = bm1f1 + ... + bmnfn

We define the matrix of T with respect to the bases X, Y to be the n × m matrix

[T ]YX = [tij ] (the transpose of the array of coefficients B = [bij ] in (15))

Since (Bt)kℓ = Bℓ,k that means tij = bji; to put it differently, the entries tij in [T ]YX

satisfy the following identities derived from (15)

(16) T (ei) =
n
∑

j=1

tjifj or 1 ≤ i ≤ m

Note carefully: the basis vector fj in (16) is paired with tji and not tij .
The matrix description of T : V → W changes if we take different bases; nevertheless,

the same operator T (which has a coordinate-independent existence) underlies all of
these descriptions. One objective in analyzing T is to find bases that yield the simplest
matrix descriptions. When V = W the best possible outcome is of course a basis that
diagonalizes T as in (14), but alas, not all operators are diagonalizable.

Another issue worth considering is the following: If T is the identity operator I = id
on a vector space V , and we compute [id]XX, the outcome is the same for all bases X,

[id]XX = In×n (the n × n identity matrix)

But there is no reason why we couldn’t take different bases in the initial and final spaces
(even if they are the same space), regarding T = idV as a map from (V, X) to (V, Y).
Then there are some surprises when you compute [T ]XY.
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4.1. Exercise. Let V be 2-dimensional coordinate space R2. Let I : V → V be identity
map I = idV , but take different bases X = {e1, e2} and Y = {f1, f2} in the initial and
final spaces. Letting e1, e2 be the standard basis vectors in R2 and f1 = (1, 0), f2 = (1, 2),
compute the matrices

(i) [I]XX (ii) [I]YX (iii) [I]YY (iv) [I]XY

4.2. Exercise. If V, W are finite dimensional and T : V → W is linear, prove that
there are always bases X, Y and X′, Y′ in V, W such that

(i) [I]YX =

(

0 0
0 Ir×r

)

(ii) [I]Y′X′ =

(

Ir×r 0
0 0

)

where r = rk(T ) = dim(range(T )) is the rank and Ir×r is the r × r identity matrix.
Hint: Finding a basis that produces (i) is fairly easy; part (ii) requires some thought
about the order in which basis vectors are listed. Both matrices represent the same
operator T : V → W .

The matrix description of T could hardly be simpler than those in Exercise 4.2, but at
the same time much information about T has been lost in allowing arbitrary unrelated
bases in V and W . Most operators encode far more information than can be captured
by the single number rk(T ).

In addition to our description of a linear operator T : V → W as a matrix, we can also
describe vectors v ∈ V , w ∈ W as column matrices once bases X = {ei} and Y = {fj}
are specified. The correspondence φX : V → Km is a linear bijection (an isomorphism of
vector spaces) defined by letting

φX(v) = [v]X =

⎛

⎜

⎝

v1
...

vm

⎞

⎟

⎠
if v =

∑m
i=1 viei (unique expansion)

Similarly φY : W → Kn is given by

φY(w) = [w]Y =

⎛

⎜

⎝

w1
...

wn

⎞

⎟

⎠
if w =

∑n
j=1 wjfj (unique expansion)

These coordinate descriptions of linear operators and vectors are closely related.

4.3. Proposition. If T : V → W is a linear operator and X, Y are bases in V , W then
for all v ∈ V :

φY(Tv) = [T ]YX · φX(v)

or equivalently,

[T (v)]Y = [T ]YX · [v]X (an (n × m)·(m × 1) matrix product)

Thus the ith component (Tv)i of φY(Tv) is given by the familiar formula

(Tv)i =
m
∑

k=1

tikvk for 1 ≤ i ≤ n

if v =
∑m

k=1 vkek and [T ]YX = [tij ].
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Proof: If T (ei) =
∑n

j=1 tjifj and v =
∑m

k=1 vkek, then

T (v) = T(
m
∑

k=1

vkek) =
m
∑

k=1

vkT (ek) =
m
∑

k=1

vk(
n
∑

j=1

tjkfj) =
∑

j

(
∑

k

tjkvk) fj

So, the ith component (T (v))i of φY(T (v)) is
∑m

k=1 tikvk, as claimed. !

The natural linear maps φX : V → Km, m = dim(V ), and φY : W → Kn, n = dim(W ),
are bijective isomorphisms. Therefore a unique linear map T̃ = φY ◦ T ◦ φ−1

X is induced
from Km → Kn that makes the following diagram commute.

(17)
V

T−→ W
φX ↓ ↓ φY

Km T̃−→ Kn

Figure 2.3. The diagram commutes,

with φY ◦ T = T̃ ◦ φX .

It follows from Proposition 4.3 that the map T̃ we get when T : V → W is transferred
over to a map between coordinate spaces is precisely the multiplication operator LA :
Km → Kn, where

A = [T ]YX

is the coordinate matrix that describes T as in (15) and (16); see also Exercise 4.13
below.

Once bases X, Y are specified there is also a natural linear isomorphism between the
space of linear operators HomK(V, W ) and the space of matrices M(n × m, K)

4.4. Lemma. If X, Y are bases for finite dimensional vector spaces V, W the map φ
from HomK(V, W ) → M(n × m, K) given by

φ(T ) = [T ]YX

is a linear bijection, so these vector spaces are isomorphic, and

dimK (HomK(V, W )) = dimK (M(n × m, K)) = m·n

Proof: Linearity of φ follows because if X = {ei} and Y = {fj} we have

(λ·T )(ei) = λ·(T (ei)) = λ·(
n
∑

j=1

tjifj) =
m
∑

j=1

(λtji)fj

for i ≤ i ≤ m, which means that [λT ]ij = λ·[T ]ij . Similarly, if we write [Tk]YX = [t(k)
ij ]

for k = 1, 2 we get

(T1 + T2)(ei) = T1(ei) + T2(ei) =
∑

j

t(1)ji fj +
∑

j

t(2)ji fj =
∑

j

(t(1)ji + t(2)ji ) fj

So [T1 +T2]ij = [T1]ij +[T2]ij , proving linearity of φ as a map from operators to matrices.

One-to-One: The map φ is one-to-one if ker(φ) = (0) – i.e. if φ(T ) = [T ]YX = [0] then T
is the zero operator on V . This is clear: If tji = 0 for all i, j then T (ei) =

∑m
j=1 tjiej = 0

for all i, and T (v) = 0 for all v because {ei} is a basis.

Surjective: To prove φ surjective: given an n × m matrix A = [aij ] we must produce a
linear operator T : V → W and bases X, Y such that [T ]YX = [aij ]. This can done by
working the definition of [T ]YX backward: we saw earlier that there is a unique linear
operator T : V → W such that T (ei) =

∑n
j=1 ajifj, because {ei} = X is a basis in V .
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Then, by definition of [T ]YX as in (15) - (16) we have tij = aij . !

When V = W composition of operators S ◦ T makes sense and the space of linear
operators HomK(V, V ) becomes a (noncommutative) associative algebra, with the identity
operator I = idV as the multiplicative identity element. The set of matrices M(n, K)
is also an associative algebra, under matrix multiplication; its identity element is the
n×n diagonal identity matrix In×n = diag(1, 1, . . . , 1). These systems are “isomorphic”
as associative algebras, as well as vector spaces, because the bijection φ : Hom(V, V ) →
M(n, K) intertertwines the multiplication operations (◦) and (·).

4.5. Proposition. The bijective linear map φ : HomK(V, V ) → M(n, K) intertwines the
product operations in these algebras:

(18) φ(S ◦ T ) = φ(S) · φ(T ) for all S, T ∈ Hom(V, V )

Under the correspondence between operators and their matrix representations, this is
equivalent to saying that

[S ◦ T ]XX = [S]XX · [T ]XX

for every basis X in V , where we take matrix product on the right.

This is a special case of a much more general result.

4.6. Proposition. Let U
T−→ V

S−→ W be linear maps and let X = {ui}, Y = {vi},
Z = {wi} be bases in U , V , W . Then the correspondence between operators and their
matrix realizations is “covariant” in the sense that

[S ◦ T ]ZX = [S]ZY · [T ]YX

(a matrix product of compatible non-square matrices).

Proof: We have S ◦ T (ui) =
∑

k(S ◦ T )kiwk by definition, and also

S ◦ T (ui) = S(T (ui)) = S(
∑

j

tjivj) =
∑

j

tjiS(vj)

=
∑

j

(
∑

k

sklwk) tji =
∑

k

(
∑

j

skjtji)wk

=
∑

k

([S][T ])kiwk (definition of matrix product)

Thus [S ◦ T ]ki = ([S][T ])ki, for all i, k. !

4.7. Exercise. The n×m matrices Eij with a “1” in the (i, j) spot and zeros elsewhere,
are a basis for matrix space M(n × m, K) since [aij ] =

∑

i,j aijEij . When m = n the
matrices Eij have useful algebraic properties. Prove that:

(a) These matrices satsify the identities

EijEkℓ = δjk ·Eiℓ

where δrs is the Kronecker delta symbol, equal to 1 if r = s and zero otherwise.

(b) The “diagonal” elements Eii are projections, with E2
ii = Eii.

(c) E11 + . . . + Enn = In×n (the identity matrix).
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If T : V → W is an invertible (bijective) linear operator between finite dimensional
spaces, then dim(V ) = dim(W ) = n and the inverse map T−1 : W → V is also linear
(recall Exercise II.2.3). From the definition of the inverse map T−1 we have

T−1 ◦ T = idV and T ◦ T−1 = idW ,

so each operator undoes the action of the other. For any bases X, Y in V, W the corre-
sponding matrix realizations of T and T−1 are inverses of each other too. To see why,
first recall

[idV ]XX = In×n and [idW ]YY = In×n .

Then by Proposition 4.6,

[T−1]XY · [T ]YX = In×n and [T ]YX · [T−1]XY = In×n ,

which means that [T−1]XY is the inverse [T ]−1
YX of the matrix of T . When V = W and

there is just one basis X and all this reduces to the simpler statement [T−1] = [T ]−1.

4.8. Exercise. Explain why isomorphic vector space must have the same dimension,
even if one of them is infinite dimensional.

4.9. Exercise. If T : V → W is an invertible linear operator, prove that (T−1)−1 = T .

4.10. Exercise. If U
T−→ V

S−→ W are invertible linear operators, explain why S ◦ T :
U → W is invertible, with (S ◦ T )−1 = T−1 ◦ S−1. (Note the reversal of order.)

For A ∈ M(n, K), we have defined the linear operator LA : Kn → Kn via LA(x) = A·x,
regarding vectors x as n × 1 column matrices.

4.11. Exercise. Prove that the correspondence L : M(n, K) → HomK(Kn, Kn) has the
following algebraic properties.

1. LA+B = LA + LB and Lλ·A = λ·LA for all λ ∈ K;

2. LAB = LA ◦ LB;

3. If I = In×n is the identity matrix, then LI = idKn .

4. LA is an invertible linear operator if and only if the matrix inverse A−1 exists in
M(n, K), and then we have (LA)−1 = (LA−1).

4.12. Exercise. Explain why the correspondence L : M(n, K) → HomK(Kn, Kn) is a
linear bijection and an isomorphism between these associative algebras.

4.13. Exercise. If A ∈ M(n × m, K) and X, Y are the standard bases in coordinate
spaces Km, Km prove that the matrix B = [LA]Y,X that describes LA : Km → Kn for
this particular choice of bases is just the original matrix A
Note: Does this work for arbitrary bases in Kn?

4.14. Exercise. Let P = K[x] be the infinite dimensional space of polynomials over K.
Consider the linear operators

1. Derivative: D(a0 + a1x + ... + anxn) = a1 + 2a2x + ... + nanxn−1;

2. Antiderivative: A(a0 + a1x + ... + anxn) = a0x + 1
2a1x2 + . . . + 1

n+1anxn+1

Show that D◦A = idP but that A◦D ̸= idP . (What is A◦D?) Show that D is surjective
and A is one-to-one, but ker(D) ̸= (0) and the range R(D) ̸= P .

This behavior is possible only in an infinite dimensional space. We have already observed
(recall Corollary II.1.6) that if finite dimensional spaces V, W have the same dimension,
the following statements regarding a linear maop T : V → W are equivalent.
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T is one-to-one T is surjective T is bijective

4.15. Exercise. If A ∈ M(n, K) define its trace to be

Tr(A) =
n
∑

i=1

aii (sum of the diagonal entries)

Show that, for any A, B ∈ M(n, K),

1. Tr : M(n, K) → K is a linear map.

2. Tr(AB) = Tr(BA);

3. If B = SAS−1 for some invertible matrix S ∈ M(n, K) then Tr(SAS−1) = Tr(A).

Change of Basis and Similarity Transformations. If T : V → W is a
linear map between finite dimensional spaces and X, X′ ⊆ V and Y, Y′ ⊆ W are different
bases, it is important to understand how the matrix models [T ]YX and [T ]Y′X′ are related
as we seek particular bases yielding simple descriptions of T . For instance if T : V → V
we may ask if T is diagonalizable over K : Is there a basis such that

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 0
0 λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

(repeats allowed among the λi)? Not all operators are so nice, and if T is not diag-
onalizable we will eventually work out a satisfactory but more complicated “Plan B”
for dealing with such operators. All this requires a clear understanding of how matrix
descriptions behave under a “change of basis.”

4.16. Theorem (Change of Basis). Let T : V → V be a linear operator on a finite
dimensional space and let idV be the identity operator on V . If X = {e1, ..., en} and
Y = {f1, ..., fn} are bases in V , then

(19) [T ]YY = [idV ]YX ·[T ]XX ·[idV ]XY

Futhermore [idV ]XY and [idV ]YX are inverses of each other.

Proof: Since T = idV ◦ T ◦ idV : V → V → V , repeated application of Proposition 4.3
yields (19), as in the following system of commuting diagrams.

Kn
[idV ]XY

−−−−−→ Kn
LA

−−−−−→ Kn
[idV ]YX

−−−−−→ Kn

↑ ↑ ↑ ↑

(V, Y)
idV

−−−−−→ (V, X)
T

−−−−−→ (V, X)
idV

−−−−−→ (V, Y)

where A = [T ]XX. Applying the same proposition to the maps idV = idV ◦ idV we get

In×n = [idV ]YY = [idV ]YX ·[idV ]XY

which proves [idV ]XY and [idV ]YX are mutual inverses. !

To summarize: there is a unique, invertible “transition matrix” S ∈ M(n, K) such that

(20) [T ]YY = S ·[T ]XX ·S−1, where S = [idV ]YX and S−1 = [idV ]XY
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If we have explicit vector equations expressing the Y-basis vectors in terms of the X-
basis vectors, the matrix S−1 = [id]XY can be written down immediately; then we can

compute S = (S−1)
−1

from it.

4.17. Definition (Similarity Transformations). Two matrices A, B in M(n, K) are
similar if there is an invertible matrix S ∈ GL(n, K) such that B = SAS−1. The map-
ping σS : M(n, K) → M(n, K) given by σS(A) = SAS−1 is referred to as a similarity
transformation of A. It is also referred to by algebraists as “conjugation” of arbi-
trary matrices A by an invertible matrix S.

Each individual conjugation operator σS(A) = SAS−1 is an automorphism of the asso-
ciative matrix algebra – it is a bijection that respects all algebraic operations in M(n, K):

σS(A·B) = σS(A)·σS(B)

σS(A + B) = σS(A) + σS(B)

σS(λ·A) = λ·σS(A) for λ ∈ K

σS(In×n) = In×n

for all matrices A, B and all “conjugators” S ∈ GL(n, K). But there is even more to be
said: the correspondence ψ : S → σS has important algebraic properties of its own,

σS1S2
= σS1

◦ σS2
for all invertible matrices S1, S2

σIn×n
= (the identity operator idM on matrix space M = M(n, K) )

from which we automatically conclude that

The operator σS−1 is the inverse (σS)
−1

of conjugation by S.

Thus the conjugation operators {σS : S ∈ GL} form a group of automorphisms acting
on the algebra of n × n matrices.

When a linear operator T : V → V is described with respect to different bases
in V , the resulting matrices must be similar as in (20). The converse is also true: if
A = [T ]XX and B = SAS−1 for some invertible matrix S, there is a basis Y such that
B = [T ]YY. Thus, the different matrix models of T corresponding to bases Y other than
X are precisely the similarity transforms {S [T ]XXS−1 : S is invertible}.

4.18. Lemma. If T : V → V is a linear operator on a finite dimensional vector space
V and if A = [T ]XX then a n × n matrix B is equal to [T ]YY for some basis Y if and
only if B = SAS−1 for some invertible matrix S.

Proof: (⇒) follows from (20). For (⇐): since S is invertible it has a matrix inverse
S−1. (Later we will discuss effective methods to compute matrix inverses such as S−1.)
According to Theorem 4.16, what we need is a basis Y = {f1, ..., fn} such that [idV ]XY =
S−1; then [idV ]YX = (S−1)−1 = S and B = S [T ]XXS−1. If we write S−1 = [bij ] and
S = [sij ] the identity S−1 = [idV ]XY means that

fi = idV (fi) =
∑

j

bjiej for 1 ≤ i ≤ n

where X = {e1, ..., en}. This is the desired new basis Y = {fj}. To see it is a basis,
we have {fj} ⊆ K-span{e1, ..., en} by definition, but {ei} is in K-span{fj} because the
matrix S−1 = [bij ] is invertible; in fact, S−1S = I implies that

∑

i bjisik = δjk (Kronecker
delta). Then

∑

i

sikfi =
∑

i

sik(
∑

j

bjiej) =
∑

j

(
∑

i

bjisik) ej =
∑

j

δjkej = ek
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for 1 ≤ k ≤ n, so {ek} ⊆ K-span{fj} as claimed. Therefore {e1, ..., en} and {f1, ...fn}
both span V , and because {ei} is already a basis {fj} must also be a basis. !

The next example shows that it can be difficult to tell by inspection whether an
operator T is diagonalizable.

4.19. Example. Let T : C2 → C2 be the linear operator whose action on the standard
basis X = {e1 = (1, 0), e2 = (0, 1)} is

T (e1) = 4e1 T (e2) = −e2

Clearly T is diagonalized by the X-basis since

[T ]XX =

(

4 0
0 −1

)

Compute [T ]YY for the basis

f1 =
1√
2
(e1 + e2) f2 =

1√
2
(e1 − e2)

Solution: We have [T ]YY = S [T ]XXS−1 where S = [idV ]YX and S−1 = [idV ]XY. This
inverse can be computed easily from our definition of the vectors f1, f2:

(21)
f1 = id(f1) =

1√
2
e1 +

1√
2
e2

f2 = id(f2) =
1√
2
e1 −

1√
2
e2

which implies

S−1 = [id]XY =

(

1√
2

1√
2

1√
2

− 1√
2

)

=
1√
2
·
(

1 1
1 −1

)

The inverse of this matrix (found by standard matrix algebra methods or simply by
solving (21) for e1, e2 in terms of f1, f2) is

[id]YX = (S−1)−1 = S = −
1√
2
·
(

−1 −1
−1 1

)

=
1√
2
·
(

1 1
1 −1

)

(Notice that S = S−1; this is not usually the case.) Then we get

[T ]YY = [S] [T ]XXS−1 =
1√
2
·
(

1 1
1 −1

)(

4 0
0 −1

)(

1 1
1 −1

)

·
1√
2

= 1
2 ·
(

4 −1
4 1

)(

1 1
1 −1

)

= 1
2 ·
(

3 5
5 3

)

=

( 3
2

5
2

5
2

3
2

)

Diagonalizability of T would not be at all apparent if we used the basis Y = {f1, f2} to
represent T . !

4.20. Exercise. Compute the matrix [T ]YY for the linear operator T : C2 → C2 of the
previous example for each of the folowing bases Y = {f1, f2}:
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1.

{

f1 = 1√
2

(e1 + e2)

f2 = 1√
2

(−e1 + e2) (obtained by rotating the standard basis vectors by θ = +45◦)

2.

{

f1 =
√

3
2 e1 + 1

2e2

f2 = − 1
2e1 +

√
3

2 e2 (the standard basis vectors rotated by θ = +30◦)

3.

{

f1 = e1 + ie2

f2 = e1 − ie2 ( where i =
√
−1 in C and V = C2 )

4.21. Exercise. Let Pn= polynomials of degree ≤ n. Let D = d/dx : Pn → Pn,
the formal derivative of a polynomial. Compute [D]XX with respect to the basis X =
{1-, x, ..., xn}. Compute [D2]XX and [Dn+1]XX too.

An RST equivalence relation on a set X is rule declaring certain points x, y ∈ X
to be “related” (and others not). Writing x

R
∼ y when the points are related, the phrase

“RST” means the relation is

1. Reflexive: x
R
∼ x for all x ∈ X .

2. Symmetric: x
R
∼ y ⇒ y

R
∼ x.

3. Transitive: x
R
∼ y and y

R
∼ z ⇒ x

R
∼ z

For each x ∈ X we can then define its equivalence class, the subset

[x]
R

= {y ∈ X : y
R
∼ x}

The RST property forces distinct equivalence classes to be disjoint, so the whole space
X decomposes into a the disjoint union of these classes.

One example of an RST equivalence is “congruence mod a fixed prime p” in the set
X = Z,

k ∼ ℓ ⇔ k ≡ ℓ (mod p) ⇔ k and ℓ differ by a multiple of p

It is easily verified that this is an RST relation and that the equivalence class of an
integer m is its (mod p) congruence class

[m] = m + pZ = {k ∈ Z : k ≡ m (mod p) }

There are only finitely many distinct classes, namely [0], [1], . . . , [p−1], which are disjoint
and fill Z. The finite field Zp is precisely this set of equivalence classes equipped with
suitable ⊕ and ⊙ operations inherited from the system of integers (Z, +, · ).

Similarity of matrices

(22) A
R
∼ B ⇔ B = SAS−1 for some invertible matrix S ∈ GL(n, K)

is an important example of an RST relation on matrix space X = M(n, K). The RST
properties are easily verified.

4.22. Exercise. Prove that similarity of matrices (22) has each of the RST properties.

The equivalence classes partition M(n, K) into disjoint “similarity classes” (aka “con-
jugacy classes”). All the matrices [T ]XX associated with a linear operator T : V → V
constitute a single similarity class in matrix space – they are all the possible represen-
tations of T corresponding to different choice of bases in V – and different operators
correspond to disjoint similarity classes in M(n, K).

52



Figure 2.4. Similarity classes (= conjugacy classes) in M(n, K) partition matrix space
into disjoint subsets [A]. Some classes are single points, for instance [−I], [I], and [0].

Othere sre complicated hypersurfaces in Rn
2 ∼= M(n, R). A similarity class could have

seevral disconnected components.

The similarity classes don’t all look the same. Some are trivial, consisting of a single
point: for instance if

A = 0 or A = λIn×n (a scalar multiple of the identity matrix)

we have

SAS−1 = λ·SIS−1 = λ · SS−1 = λI = A for all S ∈ GL(n, K)

The similarity class [A] consists of the single point A. In particular, [0] = {0}, [I] = {I}
and [−I] = {−I}. When K = R and we identify M(n, R) with Rn2

, other similarity
classes can be large curvilinear surfaces in Euclidean space. They can be quite a mess to
compute.

4.23. Exercise. If A ∈ M(n, K) prove that

1. A commutes with all n×n matrices ⇔ A = λ·In×n, a scalar multiple if the identity
matrix for some λ ∈ K.

2. A commutes with all matrices in all invertible matrices GL(n, K) = {A : det(A) ̸=
0} ⇔ A commutes with all n × n matrices, as in (1.)

Hint: Recall the matrices Eij defined in Exercise 4.7, which are a basis for matrix
space. In (2.), if i ̸= j then I + Eij is invertible (verify that (I − Eij) is the inverse),
and commutes with A. Hence Eij commutes with A; we leave you to figure out what to
do when i = j. If A commutes with all basis vectors Eij it obviously commutes with all
n × n matrices, and (1.) can be applied.

This shows that a similarity class [A] in M(n, K) consists of a single point ⇔ A = λI (a
scalar matrix).

4.24. Exercise. When we identify M(2, R) ∼= R4 via the linear isomorphism

x = φ(A) = (a11, a12, a21, a22) ,

show that the similarity class [A] of the matrix

A =

(

1 1
0 1

)
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Figure 2.5. The diagonalization problem for A ∈ M(n, K) amounts to searching for one
(or more) diagonal matrices lying in the similarity class [A] = {SAS−1 : S ∈ GL(n, K)}.

is the 2-dimensional surface in R4 whose description in parametric form, described as the
range of a polynomial map φ : R2 → M(2, R), is

[A(s, t)] =

{(

1 − st s2

−t2 1 + st

)

: s, t ∈ R and (s, t) ̸= (0, 0)

}

Note: A matrix S =

„

a b

c d

«

is invertible if the determinant det(S) = ad− bc is not 0,

and then the inverse matrix is

S−1 =
1

det(S)

(

d −b
−c a

)

!

We will have a lot more to say about change of basis, similarity classes, and the
diagonalization problem later on. Incidentally, not all matrices can be put into diagonal
form by a similarity transformation. Our fondest hope is that in the equivalence class
[A] there will be at least one point SAS−1 that is diagonal (there may be several, as in
Figure 2.5). If A = [T ]XX for some linear operator T : V → V this is telling us which
bases Y make [T ]YY diagonal, or whether there are any such bases at all.

4.25. Exercise. Suppose T : R2 → R2 is the linear operator such that T (e1) = 0 and
T (e2) = e1, so its matrix with respect to the standard basis X = {e1, e2} is [T ]XX =
„

0 1
0 0

«

. Prove that no basis Y = {f1, f2} can make [T ]YY diagonal.

Hint: S =

„

a11 a12

a21 a22

«

is invertible ⇔ the determinant det(S) = a11a22 − a12a21 is

nonzero. We will eventually develop systematic methods to answer questions of this sort.
For the moment, you will have to do it “bare-hands.”
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Notes c⃝F.P. Greenleaf 2014 LAI-f14-duality.tex version 11/4/2014

Chapter III. Dual Spaces and Duality.

III.1 Definitions and Examples.

The linear functionals (also known as dual vectors) on a vector space V over K are
the linear maps ℓ : V → K. We denote the space of functionals by V ∗, or equivalently
HomK(V, K). It becomes a vector space when we impose the operations

1. Addition: (ℓ1 + ℓ2)(v) = ℓ1(v) + ℓ2(v) for all v ∈ V

2. Scaling: (λ·ℓ)(v) = λ·ℓ(v) for λ ∈ K, v ∈ V

The zero element in V ∗ is the zero functional ℓ(v) = 0K for all v ∈ V , for which
ker(ℓ) = V and range(ℓ) = {0K}.

Notation: We will often employ “bracket” notation in discussing functionals, writing

⟨ℓ, v⟩ instead of ℓ(v)

This notation combines inputs ℓ, v to create a map V ∗ × V → K that is linear in each
entry when the other entry is held fixed. In bracket notation both inputs play equal
roles, and either one can be held fixed while the other varies. As we shall see this has
many advantages. !

We begin with an example that is central in understanding what dual vectors are and
what they do.

1.1. Example. Let V be a finite dimensional space and X = {e1, . . . , en} an ordered
basis. Every v ∈ V has a unique expansion

v =
n

∑

i=1

ciei (ci ∈ K)

For each 1 ≤ i ≤ n the map e∗i : V → K that reads off the ith coefficient

⟨e∗i , v⟩ = ci

is a linear functional in V ∗. We will soon see that the set of functionals X∗ = {e∗1, . . . , e
∗
n}

is a basis for the dual space V ∗, called the dual basis determined by X, from which it
follows that the dual space is finite dimensional with dim(V ∗) = dim(V ) = n. !

The following examples give some idea of the ubiquity of dual spaces in linear algebra.

1.2. Example. For V = K[x] an element a ∈ K determines an “evaluation functional”
ϵa ∈ V ∗:

⟨ϵa, f⟩ =
n

∑

k=0

ckak if f =
n

∑

k=0

ckxk

These do not by themselves form a vector subspace of V ∗ because ⟨ϵa−ϵb, f⟩ = f(a)−f(b)
cannot always be written as f(c) for some c ∈ K.

More generally, if V = C[a, b] is the space of continuous complex valued functions
on the interval X = [a, b] ⊆ R we can define evaluation functionals ⟨ϵs, f⟩ = f(s) for
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a ≤ s ≤ b, but many element in V ∗ are of a quite different nature. Two examples:

(i) I(f) =

∫ b

a
f(t) dt (Riemann integral of f)

(ii) Ix(f) =

∫ x

a
f(t) dt (for any endpoint a ≤ x ≤ b)

For another example, consider the space V = C(1)(a, b) of real-valued functions on
an interval (a, b) ⊆ R that have continuous first derivative df/dx(s). We can define the
usual evaluation functionals ϵs ∈ V ∗, but since differentiation is a linear operator on
C(1)(a, b) there are also functionals ℓs involving derivatives, such as

ℓs : f →
df

dx
(s) for a < s < b ,

or even linear combinations such as ℓ̃s(f) = f(s) + df
dx

(s). !

1.3. Example. Suppose V is finite dimensional and that l ∈ V ∗ is not the zero
functional. The kernel E = ker(ℓ) = {v ∈ V : ⟨ℓ, v⟩ = 0} is a “hyperplane” in V – a
vector subspace of dimension n− 1 where n = dim(V ).

Proof: By the dimension formula,

dimK(V ) = dimK ( ker(ℓ)) + dimK (range(ℓ))

But if ℓ ̸= 0, say ⟨ℓ, v0⟩ ≠ 0, then ⟨ℓ, Kv0⟩ = K, so range(ℓ) = K has dimension 1. !

1.4. Example. On Rn we have the standard Euclidean inner product

(x,y) =
n

∑

k=1

xkyk for x,y ∈ Rn ,

familiar from Calculus, but this is just a special case of the standard inner product on
complex n-dimensional coordinate space Cn,

(23) (z,w) =
n

∑

k=1

zkwk for complex n-tuples z,w in Cn ,

where z = x−iy is the complex conjugate of z = x+iy. We will focus on the complex case,
because everything said here applies verbatim to the real case if you interpret “complex
conjugation” to mean x = x for real numbers.

In either case, imposing an inner product on coordinate space V = Kn allows us to
construct K-linear functionals ℓy ∈ V ∗ associated with individual vectors y ∈ V = Kn,
by defining

⟨ℓy,x⟩ = (x,y) for any x ∈ V

In this setting the right hand vector y is fixed, and acts on the left-hand entry to produce
a scalar in K. (Think of y as the “actor” and x as the “actee” – the vector that gets
acted upon.)

The functional ℓy is K-linear because the inner product is linear in its first entry
when the second entry y is held fixed, hence ℓy is a dual vector in V ∗. Note carefully
the placement of the “actee” on the left side of the inner product; the inner product on
a vector space over K = C is a conjugate-linear function of the right hand entry.

(z, λ ·w) = λ · (z,w) while (λ · z,w) = λ · (z,w)
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for λ ∈ K. Placing the “actee” on the right would not produce a C-linear operation on
input vectors. (When K = R, complex conjugation doesn’t do anything, and “conjugate-
linear” is the same as “linear.”)

The special case Kn = Rn is of course important in geometry. The inner product on
Rn and the functionals ℓy then have explicit geometric interpretations:

(x,y) = ⟨ℓy,x⟩ = ∥x∥ · ∥y∥ · cos(θ)

= ∥x∥ · (∥y∥ · cos θ)

= ∥x∥ ·

(

orthogonally projected length of y
on the 1-dimensional subspace R·x

)

,

where

∥x∥ = (x,x)1/2 = (
n

∑

k=1

|xk|
2)

1/2

is the Euclidean length of vector x ∈ Rn. The angle θ = θ(x,y) is the angle in radians
between x and y, measured in the plane (two-dimensional subspace) spanned by x and y
as shown in Figure 3.1. Notice that x and y are perpendicular if (x,y) = 0, so cos(θ) = 0.

Note: While the real inner product is natural in geometry, in physics the complex inner
product is the notion of choice (in electrical engineering, quantum mechanics, etc, etc).
But beware: physicists employ a convention opposite to ours. For them an inner product
is linear in the right-hand entry and conjugate linear on the left. That can be confusing
if you are not forwarned. !

Figure 3.1. Geometric interpretation of the standard inner product (x, y) = ∥x∥ ∥y∥ ·
cos(θ(x, y)) in Rn. The projected length of a vector y onto the line L = Rx is ∥y∥·cos(θ).
The angle θ(x, y) is measured within the two-dimensional subspace M = R-span{x, y}.
Vectors are orthogonal when (x, y) = 0, so cos θ = 0. The zero vector is orthogonal to
everybody.

1.5. Example. In V = R3 with the standard inner product (x,y) =
∑

i xiyi, fix a
vector u ̸= 0. The set of vectors M = {x ∈ R3 : (x,u) = 0} is the hyperplane of vectors
orthogonal to u – see Figure 3.2. As an example, if u = (1, 0, 0) ∈ R3 and ℓu(x) = (x,u)
as in Example 1.4, this orthogonal hyperplane coincides with the kernel of ℓu:

M = ker (ℓu) = {(x1, x2, 0) : x1, x2 ∈ R} = R-span{e1, e2} ! .

1.6. Exercise. If u ̸= 0 in an inner product space of dimension n, explain why the
orthogonal complement

M = (R·u)
⊥

= {x : (x,u) = 0}

is a subspace of dimension n− 1.
Hint: Reread Example 1.3.
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Figure 3.2. A nonzero vector u ∈ Rn determines a hyperplane M = (Ru)⊥ = {x : (x,y) =
0} = ker(ℓu), an (n − 1)-dimensional subspace consisting of the vectors perpendicular to
u.

1.7. Example. Let V = C[0, 1] be the ∞-dimensional space of all continuous complex-
valued functions f : [0, 1]→ C. The Fourier transform of f is the function f∧ : Z→ C

defined by integrating f(t) against the complex trigonometric functions

En(t) = e2πint = cos(2πt) + i sin(2πt) (n ∈ Z)

on the real line. The nth Fourier coefficient of f(t) is the integral:

f∧(n) =

∫ 1

0
f(t)e−2πint dt (n ∈ Z)

(Note that the En are all periodic with period ∆t = 1, so this integral is taken over
the basic period 0 ≤ t ≤ 1 common to them all.) If f(t) is smooth and periodic with
f(t+1) = f(t) for all t ∈ R, it can be synthesized as a superposition of the basic complex
trigonometric functions En, with weights given by the Fourier coefficients:

f(t) =
+∞
∑

n=−∞

f∧(n)·e2πint =
+∞
∑

n=−∞

f∧(n)·En(t)

The series converges pointwise on R if f is periodic and once continuously differentiable.
For each index n ∈ Z the map

f ∈ C[0, 1]
φn

−−−−→ f∧(n) ∈ C

is a linear functional in V ∗. It is actually another example of a functional determined
via an inner product as in Example 1.4. The standard inner product on C[0, 1] is (f, h) =
∫ 1
0 f(t)h(t) dt, and we have

φn(f) = f∧(n) =

∫ 1

0
f(t)En(t) dt = (f, En)

for all n ∈ Z, f ∈ V . So, φn is precisely the functional ℓEn
in Example 1.4. !

III.2. Dual Bases in V∗.
The dual space V ∗ of linear functionals can be viewed as the space of linear operators
HomK(V, K). For arbitrary vector spaces V, W of dimension m, n we saw earlier in Lemma
4.4 of Chapter II that HomK(V, W ) is isomorphic to the space M(n × m, K) of n × m
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matrices, which obviously has dimension m·n. In the special case when W = K we get
dim(V ∗) = m = dim(V ).

This can also be seen by re-examining Example 1.1, which provides a natural way to
construct a basis X∗ = {e∗1, . . . , e

∗
n} in V ∗, given an ordered basis X = {e1, . . . , en} in V .

The functional e∗i reads the ith coefficent in the unique expansion v =
∑

i ciei of a vector
v ∈ V , so that

(24) ⟨e∗i ,
n

∑

k=1

ckek ⟩ = ci for 1 ≤ i ≤ n

As an immediate consequence, the linear functional e∗i : V → K is completely determined
by the property

(25) ⟨ e∗i , ej ⟩ = δij (the Kronecker delta symbol = 1 if i = j and 0 otherwise)

Identity (25) follows because ej = 0 ·e1 + . . . + 1 ·ej + . . . + 0 ·en; we recover (24) by
observing that

⟨e∗i ,
n

∑

k=1

ckek ⟩ =
n

∑

k=1

ck⟨e
∗
i , ek⟩ =

n
∑

k=1

ckδik = ci

as expected.
We now show that the vectors e∗1, . . . , e

∗
n form a basis in V ∗, the dual basis to the

original basis X in V . This implies that dim(V ∗) = dim(V ) = n. Note, however, that to
define the dual vectors e∗i you must start with a basis in V ; given a single vector “v” in
V there is no way to define a dual vector “v∗” in V ∗.

2.1. Theorem. If V is finite dimensional and X is a basis for V , the vectors X∗ =
{e∗1, ..., e

∗
n} are a basis for V ∗.

Proof: Independence. If ℓ =
∑n

j=1 cje∗j is the zero vector in V ∗ then ⟨
∑

j cie∗j , v⟩ = 0
for every v ∈ V , and in particular if v = ei we get

0 = ⟨ℓ, ei⟩ =
∑

j

cj⟨e
∗
j , ei⟩ =

∑

j

cjδji = ci

for 1 ≤ i ≤ n, proving independence of the vectors e∗i .

Spanning. If ℓ ∈ V ∗ and ci = ⟨ℓ, ei⟩, we claim that ℓ is equal to ℓ′ =
∑n

j=1⟨ℓ, ej⟩ · e∗j .
It suffices to show that ℓ and ℓ′ have the same values on the basis vectors {ei} in V , but
that is obvious because

⟨ℓ′, ei⟩ = ⟨
∑

j

⟨ℓ, ej⟩e
∗
j , ei⟩

=
∑

j

⟨ℓ, ej⟩·⟨e
∗
j , ei⟩ =

∑

j

⟨ℓ, ej⟩·δij = ⟨ℓ, ei⟩

for 1 ≤ i ≤ n as claimed. !

The formula developed in this proof is often useful in computing dual bases.

2.2. Corollary. If V is finite dimensional, X = {ei} a basis in V , and X∗ = {e∗i } is the
dual basis in V ∗, then any ℓ ∈ V ∗ has

ℓ =
n

∑

i=1

⟨ℓ, ei⟩ · e
∗
i

as its expansion in the X∗ basis.
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2.3. Exercise. If v1 ̸= v2 in a finite dimensional vector space V , prove that there is an
ℓ ∈ V ∗ such that ⟨ℓ, v1⟩ ≠ ⟨ℓ, v2⟩. (Thus there are enough functionals in the dual V ∗ to
distinguish vectors in V .)
Hint: It suffices to show v0 ̸= 0 ⇒ ⟨ℓ, v0⟩ ≠ 0 for some ℓ ∈ V ∗. (Why?) Think about
bases in V that involve v0, and their duals.

Note: This result is actually true for all infinite dimensional spaces, but the proof is
harder and requires “transcendental methods” involving the Axiom of Choice. These
methods also show that every infinite dimensional space has a basis X – an (infinite)
set of independent vectors such that every v ∈ V can be written as a finite K-linear
combination of vectors from X. As an example, the basic powers X = {1-, x, x2, . . .} are a
basis for K[x] in this sense. A more challenging problem is to produce a basis for V = R

when R is regarded as a vector space over the field of rationals Q. Any such Hamel basis
for R is necessarily uncountable. !

2.4. Example. Consider the basis u1 = (1, 0, 1), u2 = (1,−1, 0), u3 = (2, 0,−1) in R3.
We shall determine the dual basis vectors u∗

i by computing their action as functionals
on an arbitrary vector v = (x1, x2, x3) in R3.

Solution: Note that (x1, x2, x3) =
∑3

k=1 xkek where {ek} is the standard basis in R3.
The basis {e∗k} dual to the standard basis {ek} has the following action:

⟨e∗k, (x1, x2, x3) ⟩ = ⟨e∗k,
3

∑

i=1

xiei⟩ = xk

because e∗k reads the kth coefficient in v =
∑

i xiei. For a different basis such as Y = {ui},
the dual vector u∗

k reads the kth coefficient ck when we expand a typical vector v ∈ R3

as v =
∑3

j=1 cjuj , so our task reduces to writing v = (x1, x2, x3) =
∑3

j=1 xiej in terms
of the new basis {uk}.

In matrix form, we have:

⎛

⎝

x1

x2

x3

⎞

⎠ =
∑

i

ciui = c1

⎛

⎝

1
0
1

⎞

⎠ + c2

⎛

⎝

1
−1
0

⎞

⎠ + c3

⎛

⎝

2
0
−1

⎞

⎠

To determine the coefficients ck we must solve for C in the matrix equation

AC = X =

⎛

⎝

x1

x2

x3

⎞

⎠ where A =

⎛

⎝

1 1 2
0 −1 0
1 0 −1

⎞

⎠

Row operations on the augmented matrix for this system yield:

[A : X] =

0

@

1 1 2 x1

0 −1 0 x2

1 0 −1 x3

1

A →

0

@

1 1 2 x1

0 1 0 −x2

0 −1 −3 x3 − x1

1

A

→

0

B

@

1 1 2 x1

0 1 0 −x2

0 0 1 1
3 (x1 + x2 − x3)

1

C

A

There are no free variables; backsolving yields the unique solution

c1 = x1 − c2 − 2c3 = 1
3x1 + 1

3x2 + 2
3x3

c2 = −x2

c3 = 1
3 (x1 + x2 − x3)
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Thus,
v = (1

3x1 + 1
3x2 + 2

3x3)u1 − x2u2 + (1
3x1 + 1

3x2 −
1
3x3)u3

Now read off the coefficients when v = (x1, x2, x3). Since ⟨u∗
i ,uj⟩ = δij we get

⟨u∗
i , v ⟩ = ⟨u∗

i , (x1, x2, x3) ⟩ = ⟨u∗
i ,

∑

i

xiei⟩

= ⟨u∗
i ,

∑

j

cjuj⟩ = ci =

⎧

⎪

⎨

⎪

⎩

1
3x1 + 1

3x2 + 2
3x3 i = 1
−x2 i = 2

1
3x1 + 1

3x2 −
1
3x3 i = 3

Since ⟨ e∗k, (x1, x2, x3) ⟩ = xk we can also rewrite this in the form

u∗
1 = 1

3e
∗
1 + 1

3e
∗
2 + 2

3e3

u∗
2 = −e∗2

u∗
3 = 1

3e
∗
1 + 1

3e
∗
2 −

1
3e∗3

by Corollary 2.2. !

III.3. The Transpose Operation. There is a natural connection between linear
operators T : V →W and operators in the opposite direction, from W ∗ → V ∗.

3.1. Theorem. The transpose T t : W ∗ → V ∗ of a linear operator T : V → W
between finite dimensional vector spaces is a linear operator that is uniquely determined
in a coordinate-free manner by requiring that

(26) ⟨T t(ℓ), v⟩ = ⟨ℓ, T (v)⟩ for all ℓ ∈ W ∗, v ∈ V

Proof: The right side of (26) defines a map φℓ : V → K such that φℓ(v) = ⟨ℓ, T (v)⟩.
Observe that φℓ is a linear functional on V (easily verified), so each ℓ ∈W ∗ determines a
well defined element of V ∗. Now let T t : W ∗ → V ∗ be the map T t(ℓ) = φℓ. The property
(26) holds by definition, but we must prove T t is linear (and uniquely determined by the
property (26)).

Uniqueness is easy: if S : W ∗ → V ∗ is another operator such that

⟨S(ℓ), v⟩ = ⟨ℓ, T (v)⟩ = ⟨T tℓ, v⟩ for all ℓ ∈W ∗ and v ∈ V ,

these identities imply S(ℓ) = T t(ℓ) for all ℓ, which means S = T t as maps on W ∗.
The easiest proof that T t is linear uses the scalar identities (26) and the following

general observation.

3.2. Exercise. If V, W are finite dimensional vector spaces, explain why the following
statements regarding two linear operators A, B : V → W are equivalent.

(a) A = B as operators.

(b) Av = Bv for all v ∈ V .

(c) ⟨ℓ, Av⟩ = ⟨ℓ, Bv⟩ for all v ∈ V, ℓ ∈W ∗.

Hint: Use Exercise 2.3 to prove (3.)⇒ (2.); implications (2.)⇒ (1.)⇒ (3.) are trivial.

To prove T t(ℓ1 + ℓ2) = T t(ℓ1) + T t(ℓ2) just bracket these with an arbitrary v ∈ V and
compute:

⟨T t(l1 + l2), v⟩ = ⟨l1 + l2, T (v)⟩

= ⟨l1, T (v)⟩+ ⟨l2, T (v)⟩ (definition of (+) in W ∗)

= ⟨T t(l1) + T t(l2), v⟩ (definition of (+) in V ∗)
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for all v ∈ V . The other identity we need, T t(λ·ℓ) = λ·T t(ℓ), is proved similarly. !

Thus T t : W ∗ → V ∗ is a well-defined linear operator that acts in the opposite direction
from T : V → W .

Basic properties of the correspondence T → T t are left as exercises. The proofs are
easy using the scalar identities (26).

3.3. Exercise. Verify that

(a) The transpose 0t of the zero operator 0(v) ≡ 0W from V →W is the zero operator
from W ∗ → V ∗, so 0t(ℓ) = 0V ∗ for all ℓ ∈W ∗.

1. When V = W the transpose of the identity map idV : V → V , with idV (v) ≡ v, is

the identity map idV ∗ : V ∗ → V ∗ – in short, (idV )
t
= idV ∗ .

2. (λ1T1 + λ2T2)t = λ1T t
1 + λ2T t

2 , for any λ1, λ2 ∈ K and T1, T2 : V →W .

3.4. Exercise. If U
T
−→ V

S
−→ W are linear maps between finite dimensional vector

spaces, prove that

(S ◦ T )
t
= T t ◦ St

Note the reversal of order when we compute the transpose of a product.

3.5. Exercise. If V, W are finite dimensional and T : V → W is an invertible linear

operator (a bijection), prove that T t : W ∗ → V ∗ is invertible too, and (T−1)
t
= (T t)

−1

as maps from V ∗ →W ∗.

Now for some computational issues

3.6. Theorem. Let T : V → W be a linear operator between finite dimensional spaces,
let X = {v1, ..., vm}, Y = {w1, ..., wn} be bases in V , W and let X∗ = {v∗i }, Y∗ = {w∗

j }
be the dual bases in V ∗, W ∗. We have defined the transpose At of an n ×m matrix to
be the m× n matrix such that (At)ij = Aji. Then “ [T t] = [T ]t” in the sense that

[T t]X∗Y∗ = ([T ]YX)
t

Important Note: This only works for the dual bases X∗, Y∗ in V ∗, W ∗. If A, B are
arbitrary bases in V ∗, W ∗ unrelated to the dual bases there is no reason to expect that

[T t]BA = the transpose of the matrix [T ]YX !

Proof: To determine [T t] we must calculate the coefficients in the system of vector
equations

T t(w∗
i ) =

m
∑

j=1

[T t]jiv
∗
j 1 ≤ i ≤ n

These are easily found by applying each of these identities to a basis vector vk in V :

(27) ⟨T t(w∗
i ), vk⟩ =

m
∑

j=1

[T t]ji ·⟨v
∗
j , vk⟩ =

m
∑

j=1

[T t]jiδjk = [T t]ki

for any 1 ≤ i ≤ n and 1 ≤ k ≤ m. Thus

[T t]ki = ⟨T t(w∗
i ), vk⟩
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Figure 3.3. The decomposition V = W1⊕W2 determines the projection P : R2 →
R2 in Example 3.7 that maps V onto W1 = Ru1 along W2 = Ru2. We show that
its transpose P t projects V ∗ onto its range R(P t) = Ru∗

1 = R(e∗
1 − e∗

2), along
K(P t) = Ru∗

2 = Re∗
2. Horizontal axis in this picture is Re∗

1 and vertical axis is
Re∗

2; a functional is then represented as ℓ = (ẋ1e
∗
1 + ẋ2e

∗
2) with respect to the basis

X∗ = {e∗
1, e

∗
2} dual to the standard basis X = {e1, e2}.

By definition of T t and the matrix [T ]YX, we can also write (27) as

⟨T t(w∗
i ), vk⟩ = ⟨w∗

i , T (vk)⟩ = ⟨w∗
i ,

n
∑

j=1

[T ]jkwj⟩

=
j

∑

j=1

[T ]jk⟨w
∗
i , wj⟩ =

n
∑

j=1

[T ]jkδij = [T ]ik

for any 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Upon comparison with (27) we conclude that [T t]ki = [T ]ik = ([T ]t)ki. Thus [T t]X∗Y∗

is the transpose of [T ]YX. !

3.7. Exercise (Computing Matrix Entries). If T : V → W and bases X = {ei},
Y = {fi} are given in V, W let X∗, Y∗ be the dual bases. Prove that

[T ]YX = [tij ] has entries tij = ⟨f∗
j , T (ei)⟩

The transpose of a projection P : V → V is a projection P t : V ∗ → V ∗ because
P t ◦ P t = (P ◦ P )t = P t, so P t maps V ∗ onto the range R(P t) along the nullspace
K(P t) = ker(P t) in the direct sum V ∗ = R(P t)⊕K(P t). The following example shows
how to calculate these geometric objects in terms of dual bases.

3.8. Example. Let V = R2 with basis Y = {u1,u2} where u1 = (1, 0), u2 = (1, 1), and
let P = projection onto W1 = Ru1 along W2 = Ru2. The standard basis X = {e1, e2}
or the basis Y = {u1,u2} can be used to describe P . The description with respect to X
has already been worked out in Example 3.6 of Chapter II.

1. Compute the dual bases X∗, Y∗ as functions ℓ : R2 → R and find the matrix
descriptions of P t:

[P t]X∗X∗ and [P t]Y∗Y∗

2. Compute the kernel K(P t) and the range R(P t) in terms of the basis X∗ dual to
the standard basis X.
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3. Repeat (2.) for the basis Y∗.

Solution: First observe that
{

u1 = e1

u2 = e1 + e2
⇒

{

e1 = u1

e2 = u2 − u1

By definition, Y = {u1,u2} is a diagonalizing basis for P , with
{

P (u1) = u1

P (u2) = 0
which ⇒ [P ]YY =

(

1 0
0 0

)

We also have
{

P (e1) = P (u1) = u1 = e1

P (e2) = P (u2 − u1) = −u1 = −e1

which ⇒ [P ]XX =

(

1 −1
0 0

)

The dual basis vectors are computed as functions R2 → R by observing that

u∗
1(v1, v2) = u∗

1(v1e1 + v2e2)

= u∗
1((v1 − v2)u1 + v2u2)

= v1 − v2 = (e∗1 − e∗2)(v1, v2)

which ⇒ u∗
1 = e∗1 − e∗2

and
u∗

2(v1, v2) = u∗
2(v1e1 + v2e2)

= u∗
2((v1 − v2)u1 + v2u2)

= v2 = e∗2(v1, v2)

which ⇒ u∗
2 = e∗2

No further calculations are needed to finish (1.), just apply Theorem 3.6 to get

[P t]X∗X∗ = ([P ]XX)
t
=

(

1 0
−1 0

)

Applying the same ideas we see that

[P t]Y∗Y∗ = ([P ]YY)
t
=

(

1 0
0 0

)t

=

(

1 0
0 0

)

.

That resolves Question 1.
For (2.), a functional ℓ = ẋ1e∗1 + ẋ2e∗2 (ẋi ∈ R) is in K(P t)⇔

[P t]X∗X∗

(

ẋ1

ẋ2

)

=

(

1 0
−1 0

)

·

(

ẋ1

ẋ2

)

=

(

ẋ1

−ẋ1

)

is equal to

(

0
0

)

That happens ⇔ ẋ1 = 0, so K(P t) = Re∗2 with respect to the X∗ basis. Since we know
e∗2 = u∗

2 we get K(P t) = Ru∗
2 with respect to the Y∗ basis.

As for R(P t), if ℓ = b1e∗1 + b2e∗2 in the X∗-basis and we let B = col(b1, b2), we must
solve the matrix equation AẊ = B, where A = [P t]X∗X∗ . Row operations on [A : B]
yield

(

1 0 b1

−1 0 b2

)

→

(

1 0 b1

0 0 b2 + b1

)

so B ∈ R(P t) ⇔ b1 + b2 = 0 ⇔ ℓ ∈ R·(e∗1 − e∗2). Thus R(P t) = R·(e∗1 − e∗2) in the X∗

basis, while in the Y∗ basis this becomes

R(P t) = R(e∗1 − e∗2) = R((u∗
2 + u∗

1)− u∗
2) = Ru∗

1 !
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The projection P t, and the corresponding decomposition V ∗ = R(P t)⊕K(P t), both
have coordinate-independent geometric meaning. But the components of the direct sum
have different descriptions according to which dual basis we use to describe vectors in
V ∗:

V ∗ = R(P t)⊕K(P t) =

{

R(u∗
1)⊕ R(u∗

2) for the Y∗ basis

R(e∗1 − e∗2)⊕ R(e∗2) for the X∗ basis
!

3.9. Exercise. Round out the previous discussion by verifying that

(a) For the standard basis X we have R(P ) = Re1 and K(P ) = R·(e1 + e2).

(b) For the Y basis we have R(P ) = Ru1 and K(P ) = R(u2).

3.9A. Exercise. Let X = {e1, . . . , em} and Y = {f1, . . . , fn} be the standard bases in
V = Km, W = Kn. If S, T are linear maps such that

(a) m ≤ n and S(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0)

(b) m ≥ n and T (x1, . . . , xn, . . . , xm) = (x1, . . . , xn)

Compute the actions of St and T t with respect to the dual bases X∗ = {e∗1, . . . , e
∗
m} and

Y∗ = {f∗1 , . . . , f∗m}.

Reflexivity of Finite Dimensional Spaces. If V is finite dimensional there
is a natural “bracketing map”

φ : V ∗ × V → K given by φ : (ℓ, v) 3→ ⟨ℓ, v⟩

The expression ⟨ℓ, v⟩ is linear in each variable when the other is held fixed. If ℓ is fixed
we get a linear functional v 3→ ℓ(v) on V , but if we fix v the map ℓ 3→ ⟨ℓ, v⟩ is a linear
map from V ∗ → K, and hence is an element j(v) ∈ V ∗∗ = (V ∗)∗, the “double dual” of
V .

3.10. Lemma. If dim(V ) < ∞ the map j : V → V ∗∗ is linear and a bijection. It is a
“natural” isomorphism (defined without reference to any coordinate system) that allows
us to identify V ∗∗ with V .

Proof: For any ℓ ∈ V ∗ we have

⟨j(v1 + v2), ℓ⟩ = ⟨ℓ, v1 + v2⟩ = ⟨ℓ, v1⟩+ ⟨ℓ, v2⟩ = ⟨j(v1), ℓ ⟩+ ⟨j(v2), ℓ ⟩

and similarly
⟨j(λ·v), ℓ⟩ = ⟨ℓ, λv⟩ = λ·⟨ℓ, v⟩ = ⟨λ·j(v), ℓ ⟩

Since these relations are true for all ℓ ∈ V ∗ we see that j(λ1v1+λ2v2) = λ1j(v1)+λ2j(v2)
in V ∗∗ and j : V → V ∗∗ is linear.

Finite dimensionality of V insures that dim(V ∗∗) = dim(V ∗) = dim(V ), so j is a
bijection ⇔ j is onto ⇔ j is one-to-one ⇔ ker(j) = (0). But j(v) = 0 if and only if
0 = ⟨j(v), ℓ ⟩ = ⟨ℓ, v⟩ for every ℓ ∈ V ∗. This forces v = 0 (and hence ker(j) = (0))
because if v ̸= 0 there is a functional ℓ ∈ V ∗ such that ⟨ℓ, v⟩ ≠ 0. [ In fact, we can extend
{v} to a basis {v, v2, ..., vn} of V . Then, if we form the dual basis {v∗, v∗2 , ..., v∗n} in V ∗

we have ⟨v∗, v⟩ = 1.] !

There is, on the other hand, no natural (basis-independent) isomorphism from V to V ∗.
The spaces V and V ∗ are isomorphic because they have equal dimension, so there are
many un-natural bijective linear maps between them. (We can create such a map given
any basis {ei} ⊆ V and any basis {fj} ⊆ V ∗ by sending ei → fi.)
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If we identify V = V ∗∗ via the natural map j, then the dual basis (X∗)∗ gets identitfied
with the original basis X in V . [ Details: In fact, the vector e∗∗i in the dual basis to X∗

coincides with the image vector j(ei) because

⟨j(ei), e
∗
j ⟩ = ⟨e∗j , ei⟩ = δij ,

which is the defining property of the vectors (e∗i )
∗ in X∗∗. Hence j(ei) = e∗∗i .] By time-

honored abuse of notation mathematicians often write “X∗∗ = X” even though this is
not strictly true.

Furthermore when we identify V ∗∗ ∼= V , the “double transpose” T tt = (T t)t mapping
V ∗∗ → V ∗∗ becomes the original operator T , allowing us to write

T tt = T (again, by abuse of notation)

The precise connection between T and T tt is shown in the following commutative diagram

V ∗∗
(T t)t

−−−−→ V ∗∗

j−1 ↓↑ j ↑ j

V
T

−−−−→ V

(Diagram commutes: T tt = j ◦ T ◦ j−1 )

3.11. Exercise. If |V | = dim V < ∞, X = {e1, ..., en} is a basis, and T : V → V a
linear operator,

(a) Fill in the details needed to show that the diagram above commutes,

(T t)t ◦ j = j ◦ T

(b) Prove the following useful fact relating matrix realizations of T and T tt

[T tt]X∗∗X∗∗ = [T ]XX

for the bases X and X∗∗ = j(X).

For infinite dimensional spaces there is still a natural linear embedding j : V → V ∗∗.
Although j is again one-to-one, it is not necessarily onto and there is a chain of distinct
dual spaces V , V ∗ , V ∗∗, V ∗∗∗, . . . When dim(V ) < ∞, this process terminates with
V ∗∗ ∼= V . For this reason finite dimensional vector spaces are said to be “reflexive.”
(Some infinite dimensional space are reflexive too, but not many.)

Annhilators. Additional structure must imposed on a vector space in order to speak
of “lengths” or “orthogonality” of vectors, or the “orthogonal complement” W⊥ of some
subspace. When K = R or C, this is most often accomplished by imposing an “inner
product” B : V × V → K on the space. However, in the absence of such extra structure
there is still a natural notion of a “complementary subspace” to any subspace W ⊆ V ;
but this complement

W ◦ = {ℓ ∈ V ∗ : ⟨ℓ, w⟩ = 0 for all w ∈ W} (the annihilator of W )

lives in V ∗ rather than V . It is easily seen that W ◦ is a vector subspace in V ∗. Obviously
(0)◦ = V ∗ and V ◦ = (0) in V ∗, and when W is a proper subspace in V the annihilator

W ◦ is a proper subspace of V ∗, with (0)
⊂
̸= W ◦ ⊂

̸= V ∗ .

3.12. Lemma. Let V be finite dimensional and W
⊂
̸= V a subspace. If v0 ∈ V lies

outside of W there is a functional ℓ ∈ V ∗ such that ⟨ℓ, W ⟩ = 0 so ℓ ∈ W ◦ but ⟨ℓ, v0⟩ ≠ 0.
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If W ̸= V , so r < n = dim(V ), the idea is to start with a basis {e1, ..., er} for W . Given
a vector v0 /∈ W , adjoin additional vectors er+1 = v0, er+2, ..., en to make a basis X for
V . The dual basis X∗ provides the answer. We leave the details as an exercise.

We list the basic properties of annihilators as a series of exercises, some of which are
major theorems (hints provided). In proving one of these results you may use any prior
exercise or theorem. In all cases we assume dim(V ) <∞.

3.13. Exercise. Let W be a subspace and X = {e1, . . . , er, . . . , en} a basis for V such
that {e1, . . . , er} is a basis in W . If X∗ = {e∗i } is the dual basis, prove that {e∗r+1, . . . , e

∗
n}

is a basis for the annihilator W ◦ ⊆ V ∗.

3.14. Exercise. (Dimension Theorem for Annihilators). If W is a subspace in a
finite dimensional vector space V , prove that

(28) dimK(W ) + dimK(W ◦) = dimK(V ) ,

or in abbreviated form, |W | + |W ◦| = |V |.

3.15. Lemma. If T : V →W is a linear operator,

(a) Prove that
K(T t) = R(T )◦ (annihilator of the range R(T ))

(b) Is it also true that R(T t) = K(T )◦ ? If not, what goes wrong?

3.16. Exercise. If V is finite dimensional, T : V → V is linear, and W a subspace of
V , prove that W is T -invariant if and only if its annihilator W ◦ is invariant under the
transpose T t.
Hint: Implication (⇒) is easy; in the other direction think about dual bases.

3.17. Exercise. If T : V → W is linear operator between finite dimensional vector
spaces, prove that rank(T t) = rank(T ).

Recall that the rank of any linear operator T : V → W is the dimension |R(T )| =
dim(R(T )) of its range. If A ∈ M(n×m, K) we defined LA : Km → Kn via LA(v) = A ·v,
for v ∈ Km, and the rank of the matrix is rk(A) = dim (R(LA)). Furthermore, recall
that the “column rank” of a matrix is the dimension of its column space: colrank(A) =
dim (Col(A)), and similarly rowrank(A) = dim (Row(A)). It is important to know that
these numbers, computed in entirely different ways, are always equal – i.e.

“row rank = column rank” = rk(A) for any matrix,

regardless of its shape. The following exercises address this issue.

3.18. Exercise. Let T : V → W be a linear map between finite dimensional spaces,
with bases X = {ei}, Y = {fj}. If A = [T ]YX prove that

(a) The range R(LA) is equal to column space Col(A), hence

rk(A) = rank(LA) = dim(R(LA)) = dim (Col(A)) = colrank(A)

for any n×m matrix.

(b) If A = [T ]Y,X then rank(T ) = rank(LA) = colrank(A)

Hint: For (b) recall the commutative diagram Figure 2.3 of Chapter II; the vertical
maps are isomorphisms and isomorphisms preserve dimensions of subspaces.

3.19. Exercise. If A is an n×m matrix,
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(a) Prove that rk(At) = rank(LAt) is equal to rank((LA)t).

(b) This would follow if it were true that “(LA)t = LAt .” Explain why this statement
does not make sense.

Hint: Keep in mind the setting for this (and the next) Exercise. If V = Km, W = Kn,
and A is n×m we get a map LA : Km → Kn. The transpose At is m×n and determines
a linear map in the opposite direction:

V
LA−→W V

L
At

←−−−W V ∗
(LA)t

←−−−−W ∗ ,

while the transpose (LA)
t

maps W ∗ → V ∗.

Use the results of the previous exercises to prove the main result below.

3.20. Exercise. If A is an n×m matrix, prove that

Theorem: For any n×m matrix, rowrank(A) = colrank(A)
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Notes c⃝F.P. Greenleaf 2014 LAI-f14-det.tex version 8/11/2014

Chapter IV. Determinants.

IV.1 The Permutation Group Sn.

The permutation group Sn consists of all bijections σ : [1, n] → [1, n] where [1, n] =
{1, ..., n}, with composition of operators

σ1 ◦ σ2(k) = σ1(σ2(k)) for 1 ≤ k ≤ n

as the group operation. The identity element e is the identity map id[1,n] such that
e(k) = k, for all k ∈ [1, n]. We recall that a group is any set G equipped with a binary
operation (∗) satisfying the following axioms:

1. Associativity: x ∗ (y ∗ z) = (x ∗ y) ∗ z;

2. Identity element: There is an e ∈ G such that e ∗ x = x = x ∗ e, for all x ∈ G;

3. Inverses: Every x ∈ G has a “two-sided inverse,” an element x−1 ∈ G such that
x−1 ∗ x = x ∗ x−1 = e.

We do not assume that the system (G, ∗) is commutative, with x∗y = y∗x; a group with
this extra property is a commutative group, also referred to as an abelian group. Here
are some examples of familiar groups.

1. The integers (Z, +) become a commutative group when equipped with (+) as the
group operation; multiplication (·) does not make Z a group. (Why?)

2. Any vector space equipped with its (+) operation is a commutatve group, for
instance (Kn, +);

3. The set (C×, ·) = C ∼ {0} of nonzero complex numbers equipped with complex
multiplication (·) is a commutative group. So is the subset S1 = {z ∈ C : |z| = 1}
(unit circle in the complex plane) because |z|, |w| = 1 ⇒ |zw| = |z| · |w| = 1 and
|1/z| = 1/|z| = 1.

4. General Linear Group. The set GL(n, K) = {A ∈ M(n, K) : det(A) ̸= 0} of
invertible n × n matrices is a group when equipped with matrix multiply as the
group operation. It is noncommutative when n ≥ 2. Validity of the group axioms
for (GL, · ) follows because

det(AB) = det(A)·det(B) det(I) = 1 det(A−1) =
1

det(A)
,

and a matrix A has a two-sided inverse ⇔ det(A) ̸= 0.
Special Linear Group. These properties of the determinant imply that the
subset SL(n, K) = {A ∈ M(n, K) : det(A) = 1} equipped with matrix multiply is
also a (noncommutative) group;

5. The set of permutations (Per(X), ◦), all bijections on a set X of n distinct objects,
is also a group when equipped with composition (◦) as its product operation. No
matter what the nature of the objects being permuted, we can restrict attention to
permutations of the set of integers [1, n] by labeling the original objects, and then
we have the group Sn.

68



Permuations. The simplest permutations are the k-cycles.

1.1. Definition. An ordered list (i1, ...., ik) of k distinct indices in [1, n] = {1, ..., n}
determines a k-cycle in Sn, the permutation that acts in the following way on the set
X = [1, n].

(29) σ maps

{

i1 → i2 → . . . → ik → i1 (a one-step “cyclic shift” of list entries)
j → j for all j not in the list {i1, . . . , ik}

A 1-cycle (k) is just the identity map idX so we seldom indicate them explicitly, though
it is permissible and sometimes quite useful to do so. The support of a k-cycle is the
set of entries supp(σ) = {i1, . . . , ik}, in no particular order. The support of a one-cycle
(k) is the one-point set {k}.

The order of the entries in the symbol σ = (i1, . . . , ik) matters, but cycle notation is
ambiguous: k different symbols

(i1, . . . , ik) = (i2, . . . , ik, i1) = (i3, . . . , ik, i1, i2) = . . . = (ik, i1, . . . , ik−1)

obtained by “cyclic shifts” of the list entries in σ; all describe the same operation in
Sn. Thus a k-cycle might best be descibed by a “cyclic list” of the sort shown below,
rather than a linearly ordered list, but such diagrams are a bit cumbersome for the
printed page. If we change the cyclic order of the indices we get a new operator. Thus
(1, 2, 3) = (2, 3, 1) = (3, 1, 2) ̸= (1, 3, 2) because (1, 2, 3) sends 1 → 2 while (1, 3, 2) sends
1 → 3.

Figure 4.1. Action of the k-cycle σ = (i1, , . . . , ik) on X = {1, 2, . . . n}. Points ℓ not in
the “support set” supp(σ) = {i1, . . . , ik} remain fixed; those in the support set are shifted
one step clockwise in this cyclically ordered list. This σ is a “1-shift.” (A 2-shift would
move points 2 steps in the cyclic order, sending i1 → i3 to . . . etc.

One (cumbersome) way to describe general elements σ ∈ Sn employs a data arrray
to show where each k ∈ [1, n] ends up:

σ =

(

1 2 3 ... n
j1 j2 j3 ... jn

)

More efficient notation is afforded by the fact that every permutation σ can be uniquely
written as a product of cycles with disjoint supports, which means that the factors
commute.

1.2. Exercise. If σ = (i1, ..., ir), τ = (j1, .., js) act on disjoint sets of indices, show that
these operators commute. This is no longer true if the sets of indices overlap. Check
this by computing the effect of the following products στ(k) = σ(τ(k)) of permutations
in S5.

1. (1, 2, 3)(2, 4);
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2. (2, 4)(1, 2, 3).

Is either product a cycle?

Thus the order of factors in a product of cycles is irrelevant if the cycles are disjoint.
The product of two cycles στ = σ ◦ τ is a composition of operators, so the action of

στ = σ ◦ τ on an element k ∈ [1, n] is evaluated by feeding k into the product from the
right as below. Taking σ = (1, 2), and τ = (1, 2, 3) in S5 we have

στ : k
(1,2,3)−→ (1, 2, 3)·k (1,2)−→ (1, 2)·((1, 2, 3)·k) = ((1, 2)(1, 2, 3)·k)

To determine the net effect we track what happens to each k:

Action Net Effect

1
(1,2,3)−→ 2

(1,2,3)−→ 1 1 → 1
2 −→ 3 −→ 3 2 → 3
3 −→ 1 −→ 2 3 → 2
4 −→ 4 −→ 4 4 → 4
5 −→ 5 −→ 5 5 → 5

Thus the product (1, 2)(1, 2, 3) is equal to (2, 3) = (1)(2, 3)(4)(5), when we include re-
dundant 1-cycles. On the other hand (1, 2, 3)(1, 2) = (1, 3) which shows that cycles need
not commute if their supports overlap. As another example we have

(1, 2, 3, 4)2 = (1, 3)(2, 4)

which shows that a power σk of a cycle need not be a cycle, although it is a product of
disjoint cycles. We cite without proof the fundamental cycle decomposition theorem.

1.3. Theorem (Cycle Decomposition of Permutations). Every σ ∈ Sn is a product
of disjoint cycles. This decomposition is unique (up to order of the commuting factors)
if we include the 1-cycles needed to account for all indices k ∈ [1, n].

1.4. Exercise. Write

σ =

(

1 2 3 4 5 6
2 4 6 5 1 3

)

as a product of disjoint commuting cycles.
Hint: Start by tracking 1 → 2 → 4 → . . . until a cycle is completed; then feed σ the
first integer not included in the previous cycle, etc.

1.5. Exercise. Evaluate the net action of the following products of cycles

1. (1, 2)(1, 3) in S3;

2. (1, 2)(1, 3) in S6 ;

3. (1, 2)(1, 2, 3, 4, 5) in S5;

4. (1, 2, 3, 4, 5)(1, 2) in S5;

5. (1, 2)2 in S5;

6. (1, 2, 3)2 in S5.

Write each as a product of disjoint cycles.

1.6. Exercise. Determine the inverses σ−1 of the following elements in S5

1. (1, 2);

2. (1, 2, 3);

3. Any 2-cycle (i1, i2) with i1 ̸= i2;

4. Any k-cycle (i1, ..., ik).

1.7. Exercise. Evaluate the following products in Sn as products of disjoint cycles

1. (1, 5)(1, 4)(1, 3)(1, 2);
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2. (1, 2)(1, 3)(1, 4)(1, 5);

3. (1, k)(1, 2, ..., k − 1).

1.8. Exercise. The order o(σ) of a permutation σ is the smallest integer m ≥ 1 such
that σm = σ ·. . .·σ = e.

1. Prove that every k-cycle has order o(σ) = k.

2. Verify that the rth power σr of a k-cycle σ = (i1, . . . , ik) is an “r-shift” that moves
every entry clockwise r steps in the cyclically ordered list of Figure 4.1.

3. If σ is a 6-cycle its square σ2 = σ ◦ σ is a cyclic 2-shift of the entries (i1, . . . , i6).
What is the order of this element in Sn?

Hint: By relabeling, it suffices to consider the standard 6-cycle (1, 2, 3, 4, 5, 6) in answer-
ing (3.)

The only element in Sn of order 1 is the identity e; two-cycles have order 2. As noted
above, in (2.) the powers σr of a k-cycle need not be cycles (but sometimes they are).

Parity of a Permutation. In a different direction we note that the 2-cycles (i, j)
generate the entire group Sn in the sense that every σ ∈ Sn can be written as a product
σ = τ1 · . . . · τr of 2-cycles. However these factors are not necessarily disjoint and need
not commute, and such decompositions are far from unique since we have, for example,

e = (1, 2)2 = (1, 2)4 = (1, 3)2 etc..

Nevertheless an important aspect of such factorizations is unique, namely its parity

sgn(σ) = (−1)r

where r = #(2-cycles in the factorization σ = τ1, . . . , τr). That means the elements
σ ∈ Sn fall into two disjoint classes: even permutations that can be written as a product
of an even number of 2-cycles, and odd permutations. It is not obvious that all 2-cycle
decompositions of a given permutation have the same parity. We prove that next, and
then show how to compute sgn(σ) effectively.

We first observe that a decomposition into 2-cycles always exists. By Theorem 1.3
it suffices to show that any k-cycle can be so decomposed. For 1-cycles this is obvious
since (k) = e = (1, 2)·(1, 2). When k > 1 it is easy to check that

(1, 2, ..., k) = (1, k) · . . . · (1, 3)(1, 2)

(with k − 1 factors)

1.9. Exercise. Verify the preceding factorization of the cycle (1, 2, . . . , k). Then by
relabeling deduce that (i1, ..., ik) = (i1, ik)(i1, ik−1) · . . . · (i1, i2) for any k-cycle.
Note: This is an example of “proof by relabeling.”

Once we verify that the parity is well defined, this tell us how to recognize the parity of
any k-cycle

(30) sgn(i1, i2, ..., ik) = (−1)k−1 for all k > 0

1.10. Theorem (Parity). All decompositions σ = τ1 · . . . · τr of a permutation as a
product of 2-cycles have the same parity sgn(σ) = (−1)r.

Proof: The group Sn acts on the space of polynomials K[x] = K[x1, ..., xn] by permuting
the variables

(σ ·f)(x1, ..., xn) = f(xσ(1), ..., xσ(n))
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For instance (1, 2, 3) · f(x1, x2, x3, x4, x5) = f(x2, x3, x1, x4, x5). This is a “covariant
group action” in the sense that

(στ)·f = σ ·(τ ·f) and e·f = f

for all f and all σ, τ ∈ Sn. The notation makes this a bit tricky to prove; one way to
convince yourself is to write

σ ·(τ ·f)(x1, . . . , xn) = τ ·f(xσ(1), . . . , xσ(n))

= τ ·f(w1, . . . , wn)|
w1=xσ(1),...,wn=xσ(n)

= f(wτ(1), . . . , wτ(n))|wk=xσ(k)

= f(xσ(τ(1)), . . . , xσ(τ(n)))

= f(x(στ)(1), . . . , x(στ)(n)) = (στ)·f(x1, . . . , xn)

Now consider the polynomial in n unknowns φ ∈ K[x1, ..., xn] given by

φ(x1, ..., xn) =
∏

i<j

(xi − xj).

We claim that σ ·φ = (−1)·φ for any 2-cycle σ = (i, j); by “covariance” it follows that
σ ·φ = (−1)rφ if σ is a product τ1 · . . . · τr of r two-cycles. Since the definition of σ ·φ
makes no reference to 2-cycle decompositions we will conclude that (−1)r must be the
same for all such decompositions of σ, completing the proof.

To show that τ ·φ = (−1)φ for a 2-cycle (i, j) we may assume i < j. Note that the
terms xk − xℓ (k < ℓ) not involving i or j are unaffected when we switch xi ↔ xj . The
remaining terms are of three types.

Case 1: Terms involving both i and j. The only such term is xi − xj which becomes

σ ·(xi − xj) = xj − xi = (−1)(xi − xj) ,

suffering a change of sign.

Case 2: Terms involving only i. The possibilities (for k ̸= j) are listed below

xk − xi xi − xk xi − xk

Terms 1 ≤ k < i i < k < j j ≤ k ≤ n

#(Terms) i − 1 j − i − 1 n − j

Effect of No change xi − xk → xj − xk No change
xi ↔ xj (since k < i < j) = (−1)(xk − xj) (since i < j < k)

on sign of term

Case 3: Terms involving only j. These are (for k ̸= i).

xk − xj xk − xj xj − xk

Terms 1 ≤ k < i i < k < j j < k ≤ n

#(Terms) j − 1 j − i − 1 n − j

Effect of No change xk − xj → xk − xi No change
xi ↔ xj (since i < j < k) = (−1)(xi − xk) (since i < j < k)

on sign of term
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The effect of switching xi ↔ xj is to permute the terms in
∏

k<l(xk − xl) changing
the sign of some, so the product gets multiplied by +1 or −1. Counting the number of
sign changes in all cases we see that

(−1)#(changes) = (−1)1+even = −1

as claimed. !

1.11. Corollary. The parity map sgn : Sn → {±1}, defined by sgn(σ) = (−1)r if σ can
be written as a product of r two-cycles, has the following algebraic properties

1. sgn(e) = +1;

2. sgn(στ) = sgn(σ) · sgn(τ);

3. sgn(σ−1) = (sgn(σ))
−1

= sgn(σ) (since sgn = ±1).

Proof: Obviously sgn(e) = 1 since we may write e = (1, 2)2. If σ = c1 · . . . · cr and
τ = c′1 · . . . · c′s where ci, c′j are 2-cycles, then στ = c1 · . . . · crc′1 · . . . · c′s is a product of
r + s cycles, proving (2.). The third property follows because

1 = sgn(e) = sgn(σσ−1) = sgn(σ) · sgn(σ−1)

since the only values of sgn are ±1. !

IV.2 Determinants.
The previous digression about the permutation group Sn is needed to formulate the
natural definition of det(A) for an n × n matrix A ∈ M(n, K), or of det(T ) for a linear
operator T : V → V on a finite dimensional vector space.

Any discussion that formulates this definition in terms of “expansion by minors” is
confusing the natural definition of det with a commonly use algorithm for computing its
value. Here is the real definition:

2.1. Definition. If A ∈ M(n, K), we define its determinant to be

(31) det(A) =
∑

σ∈Sn

sgn(σ) · a1,σ(1) · . . . · an,σ(n) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

ai,σ(i)

The products in this sum are obtained by taking σ ∈ Sn and using it to select one entry
from each row, taking each entry from a different column. Thus each σ determines a
“template” for selecting matrix entries that are to be multiplied together (the product
then weighted by the signature sgn(σ) of the permutation). The idea is illustrated in
Figure 4.2.

Many properties can be read directly from definition but the all-important multi-
plicative property det(AB) = det(A) ·det(B) is tricky no matter what definition we start
from. We begin with several easy properties:

2.2. Theorem. If A ∈ M(n, K) and c ∈ K we have

1. det(In×n) = 1;

2. det(cA) = cn ·det(A) if A is n × n;

3. det(At) = det(A);

4. When K = C we have det (A) = ( det(A)) where z̄ = the complex conjugate of
z = x + iy.
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Figure 4.2. A permutation σ ∈ Sn determines a “template” for selecting matrix entries
by marking the address (i, σ(i)) – the one in Rowi, Columnσ(i). Each row contains exactly
one marked spot, and likewise for each column.

5. If A is “upper triangular,” so

A =

⎛

⎜

⎝

a11 ∗
. . .

0 ann

⎞

⎟

⎠
,

then det(A) =
∏n

k=1 akk is the product of the diagonal entries.

Proof: Assertions (1.), (2.), (4.) are all trivial; we leave their proof to the reader. In (5.)
the typical product ±a1,σ(1) · . . . · an,σ(n) in the definition of det(A) will equal 0 if any
factor is zero. But unless σ(k) = k for all k, there will be some row such that σ(k) > k
and some other row such that σ(ℓ) < ℓ. The resulting template includes a matrix entry
below the diagonal, making the product for this template zero. The only permutation
contributing a term to the sum (31) is σ = e, and that term is equal to a11 · . . . · ann as
in (5.)

For (3.) we note that

det(At) =
∑

σ∈Sn

sgn(σ)(b1,σ(1) · . . . · bn,σ(n))

if B = At = [bij ]. By definition of At, bij = aji so the typical term becomes

b1,σ(1) ·. . .·bn,σ(n) = aσ(1),1 ·. . .·aσ(n),n

However, we may write aσ(j),j = aσ(j),σ−1(σ(j)) for each j, and then

det(At) =
∑

σ∈Sn

sgn(σ)b1,σ(1) ·. . .·bn,σ(n) =
∑

σ∈Sn

sgn(σ)aσ(1),1 ·. . .·aσ(n),n

Note that
∏

i aσ(i),i =
∏n

i=1 aσ(i),σ−1(σ(i)), so if we replace the dummy index i in the
product with j = σ(i) the product becomes

∏n
j=1 aj,σ−1(j) and

det(At) =
∑

σ∈Sn

sgn(σ) ·
n

∏

j=1

aj,σ−1(j).

Next, write τ = σ−1. The τ run through all of Sn as σ runs through Sn because Sn

is a group. (This is our first encounter with the “group” property of Sn.) Furthermore
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sgn(τ) = sgn(σ−1) so that

det(At) =
∑

τ∈Sn

sgn(τ)·
n

∏

j=1

aj,τ(j) = det(A) !

The following observation will play a pivotal role in further discussion of determinants.

2.3. Lemma. If B is obtained from A by interchanging two rows (or two columns) then

det(B) = (−1) · det(A) .

Proof: We do the case of column interchange. If A = [aij ] then B = [bij ] with bij =
aiτ(j); i.e. Colj(B) = Colτ(j)(A), for 1 ≤ j ≤ n, where τ is the two-cycle τ = (k, ℓ)
that switches the column indices when we interchange Colℓ(A) ↔ Colk(A). Then for any
σ ∈ Sm, we have

b1,σ(1) · . . . · bn,σ(n) = a1,τσ(1) · . . . · an,τσ(n)

But Sn is a group so τSn = Sn and the elements τσ run through all of Sn as σ runs
through Sn; furthermore, because τ is a 2-cycle we have sgn(τ) = −1 and sgn(τσ) =
sgn(τ)sgn(σ) = (−1)·sgn(σ). Thus

det(B) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

bi,σ(i) =
∑

σ∈Sn

sgn(σ) ·
n

∏

i=1

ai,τσ(i)

=
∑

σ∈Sn

sgn(τ) sgn(τσ) ·
n

∏

i=1

ai,τσ(i)

= sgn(τ) ·
∑

µ∈Sn

sgn(µ) ·
n

∏

i=1

ai,µ(i) = (−1) · det(A) !

2.4. Exercise. Use the previous results to show that det(A) = 0 if either:

1. A has two identical rows (or columns);

2. A has a row (or column) consisting entirely of zeros.

Recall the definition of the “elementary row operations” on a matrix A.

• Type I: Ri ↔ Rj : interchange Rowi and Rowj ;

• Type II: Ri → λ · Ri: multiply Rowi by λ (λ ∈ K);

• Type III: Ri → Ri + λRj : Add to Rowi any scalar multiple of a different row Rj

(leaving Rowj unaltered).

The effect of the first two operations on the determinant of a square matrix is easy to
evaluate. We have just seen that Type I operations cause a sign change.

2.5. Exercise. Prove that if B has Ri(B) = λ·Ri(A) with all other rows unchanged,
then det(B) = λ · det(A).

To deal with Type III operations we first observe that the map det : M(n, K) → K is a
multilinear function of the rows or columns of A.
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2.6. Lemma. If the ith row of a matrix A is decomposed as a linear combination
Ri = aR′

i + bR′′

i of two other rows of the same length, then

det(A) =

0

B

B

B

B

B

B

@

R1

...
aR

′

i + bR
′′

i

...
Rn

1

C

C

C

C

C

C

A

= a · det

0

B

B

B

B

B

B

@

R1

...
R

′

i

...
Rn

1

C

C

C

C

C

C

A

+ b · det

0

B

B

B

B

B

B

@

R1

...
R

′′

i

...
Rn

1

C

C

C

C

C

C

A

= a · det(A′) + b · det(A′′)

In other words det(A) is a multilinear function of its rows: If we vary only Ri holding
the other rows fixed, the determinant is a linear function of Ri.

Proof: If R′

i = (x1, . . . , xn) and R′′

i = (y1, . . . , yn), then Aij = axj + byj and

det(A) =
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · (axσ(i) + byσ(i)) · . . . · an,σ(n))

= a ·
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · xσ(i) · . . . · an,σ(n))

+ b ·
∑

σ∈Sn

sgn(σ) · (a1,σ(1) · . . . · yσ(i) · . . . · an,σ(n))

= a · det(A′) + b det(A′′)

as claimed. !

2.7. Corollary. If B is obtained from A by a Type III row operation Ri → Ri + cRj

(j ̸= i) then Rowi(B) = Ri + cRj and

det(B) = det

0

B

B

B

B

B

B

B

B

B

B

B

B

@

R1

.

.

.

Ri

.

.

.

Rj

.

.

.

Rn

1

C

C

C

C

C

C

C

C

C

C

C

C

A

+ c · det

0

B

B

B

B

B

B

B

B

B

B

B

B

@

R1

.

.

.

Rj

.

.

.

Rj

.

.

.

Rn

1

C

C

C

C

C

C

C

C

C

C

C

C

A

= det(A) + 0 = det(A)

because the second matrix has a repeated row.

Row Operations, Determinants, and Inverses. Every row operation on
an n×m matrix A can be implemented by multiplying A on the left by a suitable n×n
“elementary matrix” E; the corresponding column operation is achieved by multiplying
A on the right by the transpose Et.

• Type I. (Rowi) → λ · (Rowi): is equivalent to sending A to EIA where

EI =

0

B

B

B

B

B

B

@

1 0
. . .

λ

. . .
0 1

1

C

C

C

C

C

C

A

Obviously det(EI) = λ and

det(EIA) = λ · det(A) = det(EI) · det(A)
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• Type II. (Rowi) ↔ (Rowj): Now the result is achieved using the matrix

EII =

Coli Colj

0

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0
. . .

0 · · · 1
...

. . .
...

1 · · · 0
. . .

0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

A

Since EII is In×n with two rows interchanged, det(EII) = −1 and

det(EIIA) = (−1) · det(A) = det(EII) · det(A)

• Type III. (Rowi) → (Rowi) + λ(Rowj), with j ̸= i. Assuming i < j, the appro-
priate matrix is

EIII =

Coli Colj
0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 0
. . .

1 · · · λ

...
. . .

...

0 · · · 1
. . .

0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and we have det(EIII) = 1. But then by Lemma 2.6 we also have

det(EIIIA) = det(A) = det(EIII) · det(A)

This proves:

2.8. Lemma. If E is any (n × n) elementary matrix then

det(EA) = det(E) · det(A)

for any n × n matrix A.

This allows us to compute determinants using row operations, exploiting the fact that
det(A) can be calculated by inspection if A is upper triangular. First observe that the
effect of a sequence of row operations is to map A .→ Em · . . . ·E1 ·A (echelon form), but
then

det(Em · . . . · E1A) = det(Em) · det(Em−1 · . . . · E1 ·A) = (
m
∏

i=1

det(Ei))·det(A)

Thus

det(A) = (
m
∏

i=1

det(Ei)
−1 ) · det(E1 · . . . · EmA)

and calculating det(A) reduces to calculating the upper triangular row reduced form,
whose determinant can be read by inspection. (You also have to keep track of the row
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operations used, and their determinants.)

Computing Inverses. Suitably chosen row operations will put an n × n matrix
into echelon form; if we only allow elementary operations of Type II or Type III we can
achieve nearly the same result, except that the pivot entries contain nonzero scalars λi

rather than “1”s, as shown in Figure 4.3. Next recall that M(n, K) and the space of linear
operators Hom(Kn, Kn) are isomorphic as associative algebras under the correspondence

A .→ LA (LA(x) = A·x = ((n × n)·(n × 1) matrix product) ,

as we showed in the discussion surrounding Exercise 4.12 of Chapter II. That means the
following statements are equivalent.

(32)

1. A matrix inverse A−1 exists in M(n, K);

2. LA : Kn → Kn is an invertible linear operator;

3. ker(LA) = (0);

4. The matrix equation AX = 0 has only the trivial solution X = 0n×1.

We say that a matrix is nonsingular if any of these conditions holds; otherwise it is
singular.

2.9. Exercise. If A, B are square matrices prove that

1. The product AB is singular if at least one of the factors is singular.

2. The product AB is nonsingular if both factors are nonsingular.

With this in mind we can deduce useful facts about matrix inverses from the preceding
discussion of row operations and determinants.

2.10. Proposition. The following statements regarding an n×n matrix are equivalent.

1. det(A) ̸= 0;

2. A has a multiplicative inverse A−1 in M(n, K);

3. The multiplication operator LA : Kn → Kn is an invertible (bijective) linear opera-
tor on coordinate space.

Proof: We already know (2.) ⇔ (3.). Row operations of Type II and III reduce A to one
of the two “modified echelon forms” A′ (see Figure 4.3(a–b)), in which the step corners
contain nonzero scalars λ1, . . . , λr that need not equal 1, and r = rank(A). Obviously
if there are columns that do not meet a step-corner, as in 4.3(a), then the product of
diagonal entries det(A) is zero; at the same time, the matrix equations A′X = 0 and
AX = 0 will have nontrivial solutions, so the left multiplication operator LA : Kn → Kn

fails to be invertible (because ker(LA) ̸= (0)) and a matrix inverse A−1 fails to exist.
The situation in Figure 4.3(b) is better: since Type II and Type III operations can only
change det(A) by a ± sign, det(A) = ± det(A′) = ±

∏n
i=1 λi is nonzero. Concurrently,

AX = 0 has only the trivial solution, LA is an invertible linear operator on Kn, and a
matrix inverse A−1 exists. !

To summarize, we have proved the following result (and a little more).

2.11. Theorem. If A ∈ M(n, K) then A−1 exists if and only if Type II and Type II
row operations yield a modified echelon form that is upper triangular, with all diagonal
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Figure 4.3. Row operations of Type II and III reduce an n × n matrix A to one of the
two “modified echelon forms” A′ shown in 4.3(a)–4.3(b); in both the step corners contain
nonzero scalars λ1, . . . , λr that need not = 1, and r = rank(A) with r = n in 4.3(b).

If there are columns that do not meet a step-corner as in 4.3(a), then some diagonal
entries in in A′ are zero and det(A) = ± det(A′) = 0. In the situation of 4.3(b) det(A) =
± det(A′) = ±(λ1 ·. . .·λn) because Type II and III elementary operations have determinant
= ±1. In this case det(A) is nonzero and its value can be determined by inspection, except
for a (±) sign.

entries nonzero.

Em · . . . · E1A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 0 ∗
0 λ2

. .
. .

0 0 λn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(λi ̸= 0)

Then the determinant is

det(A) =
m
∏

k=1

det(Ek)−1 ·
n

∏

i=1

λi

The factor
∏n

k=0 det(Ek)−1 attributed to the row operations can only be ±1 since no
Type I operations are involved. On the other hand, if the modified echelon form contains
columns that do not meet a setp corner, then det(A) = 0 and A−1 does not exist.

The basic definition (31) of the determinant is computationally very costly. Below
we will give an algorithm (“expansion by minors”) which is often useful in studying the
algebraic properties of determinants, but it is still pretty costly compared to the row
reduction method developed above. To illustrate:

n = Matrix Size Expansion by Minors Row Reduction

Adds Multiplies Adds Multiplies

2 1 2 1 3
4 23 40 14 23
5 119 205 30 45
10 3.6 × 106 6.2 × 106 285 339

The technique used above also yields a fairly efficient algorithm for computing A−1

(which at the same time determines whether A is in fact invertible). Allowing all three
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types of row operations, an invertible matrix can be driven into its reduced echelon form,
which is just the identity matrix In×n. In this case

(33) Em · . . . · E1 · A = In×n and A−1 = E−1
1 · . . . · E−1

m · In×n

Each inverse E−1
k is easily computed; it is just another elementary matrix of the same

type as Ek. This can be codified as an explicit algorithm:

The Gauss-Seidel Algorithm. Starting with the augmented n× 2n matrix
[A : In×n], perform row operations to put A into “reduced” echelon form
(upper triangular with zeros above all step corners). If rank(A) < n and A
is not invertible this will be evident – not all columns include a step-corner –
and the algorithm reports that det(A) = 0 and A is not invertible. Otherwise,
every column is a pivot column and the reduced echelon form of A is just the
identity matrix. Applying the same operations to the entire augmented matrix
transforms [A : In×n] → [In×n : B] in which B = A−1. (Why?)

Another consequence of the preceding discussion is the very important multiplicative
property of determinants.

2.12. Theorem (Multiplicative Property). If A, B ∈ M(n, K) then

det(AB) = det(A) · det(B)

Proof: If A is singular then AB is singular (Exercise 2.9) so det(A) = 0 and det(AB) = 0
by Proposition 2.10. Thus

det(AB) = 0 = 0·det(B) = det(A)·det(B) ,

and similarly if B is the singular factor.
Otherwise A and B are nonsingular and so is AB, so we can find elementary matrices

such that Em ·. . .·E1A = In×n, which implies A = E−1
1 ·. . .·E−1

m . By repeated application
of Lemma 2.8 we see that

det(A) =
m
∏

i=1

det(E−1
i )

and

det(AB) = det(E−1
1 ) · det (E−1

2 · . . . · E−1
m B )

=
∏

i det(E−1
i ) · det(B) = det(A) · det(B). !

2.13. Exercise. If A ∈ M(n, K) is invertible then det(A−1) = det(A)−1. If A, B ∈
M(n, K) and S is an invertible matrix such that B = SAS−1 then det(B) = det(A).

Thus det(A) is a “similarity invariant”– it has constant value for all matrices in a similar-
ity class. We will encounter several other similarity invariants of matrices in the following
discussion.

2.14. Exercise. Explain why rank(A) of an n × n matrix is a similarity invariant.

2.15. Exercise. An n × n matrix A is said to be orthogonal if AtA = In×n. Prove
that

1. AtA = I ⇒ AAt = I, so A is orthogonal ⇔ At = A−1 (two-sided inverse).

2. det(A) = ±1 for any orthogonal matrix, over any field.
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Hint: Recall the comments posted in (32). For (1.) it suffices to show AtA = I ⇒ the
operator LA : Kn → Kn is one-to-one.

2.16. Exercise. Use Type II and III row operations to find the determinant of the
following matrix.

A =

⎛

⎜

⎜

⎝

1 2 1 2
2 1 2 1
1 3 3 1
1 3 3 4

⎞

⎟

⎟

⎠

2.17. Exercise. Use Type II and III row operations to show that det(A) = −16i for
the following matrix in M(4, C), where i =

√
−1.

0

B

B

@

1 1 1 1
1 i −1 −i

1 −1 1 −1
1 −i −1 i

1

C

C

A

2.18. Exercise. Apply the Gauss-Seidel algorithm to find A−1 for the matrices

(i) A =

⎛

⎝

1 3 1
2 8 4
0 4 7

⎞

⎠ (ii) A =

⎛

⎝

1 3 2
2 4 1
0 4 2

⎞

⎠

2.19. Exercise. Consider the set of matrices Hn of the form

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 x1 · · · xn z
0 1 yn

. . .
...

1 y1

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with xi, yj , z in K. When K = R this is the n-dimensional Heisenberg group of quantum
mechanics.

1. Prove that Hn is closed under matrix product.

2. Prove that the inverse A−1 of any matrix in Hn is also in Hn (compute it explicitly
in terms of the parameters xi, yj , z).

Since the identity matrix is also in Hn, that means Hn is a matrix group contained in
GL(n + 2, K).

2.20. Exercise. For n ≥ 2 let

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0
1 0 1
0 1 0 1

. . .
1 0 1

0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Use row operations to

1. Calculate det(A).

2. Calculate the inverse A−1 if it exists.
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Note: The outcome will depend on whether n is even or odd.

2.21. Exercise. Given a diagonal matrix D = diag(λ1, . . . , λn) with distinct entries,
find an invertible matrix S such that conjugation D .→ SDS−1 interchanges the ith and
jth diagonal entries (i ̸= j):

S

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

λ1 0
. . .

λi

. . .

λj

. . .
0 λn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S
−1 =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

λ1 0
. . .

λj

. . .

λi

. . .
0 λn

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Hint: Think row and column operations on D. Note that if EII is a Type II elementary
matrix then E−1 = E = Et, and right multiplication by Et effects the corresponding
column operation.

Determinants of Matrices vs Determinants of Linear Operators.
A determinant det(T ) can be unambiguously assigned to any linear operator T : V → V
on a finite dimensional space. Given a basis X = {ei} in V , we get a matrix [T ]XX and
could entertain the idea of assigning

(34) det(T ) = det([T ]XX) ,

but for this to make sense the outcome must be independent of the choice of basis. This
actually works. If Y is any other basis we know there is an invertible matrix S = [idV]YX

such that [T ]YY = S [T ]XXS−1, and then by Theorem 2.12

det ([T ]YY) = det(S) · det ([T ]XX) · det(S−1)

= det(SS−1)·det ([T ]XX) = det(In×n) · det ([T ]XX)
= det ([T ]XX)

as required. Thus the determinant (34) of a linear operator is well defined.
The trace Tr(T ) is another well-defined attribute of an operator T : V → V when

dim(V ) < ∞. Recall Exercise 4.19 of Chapter II: For n × n matrices the trace Tr(A) =
∑n

i=1 Aii is a linear operator Tr : M(n, K) → K such that Tr(In×n) = n and Tr(AB) =
Tr(BA). If X, Y are bases for V , we get

Tr([T ]YY) = Tr(S [T ]XXS−1) = Tr(S−1S · [T ]XX) = Tr([T ]XX)

Thus

(35) Tr(T ) = Tr([T ]XX)

determines a well-defined trace on operators. Note, however, that if T : V → W with
V ̸= W , there is no natural way to assign a “determinant” or “trace” to T , even if
dim(V ) = dim(W ). The problem is philosophical: there is no natural way to say that a
basis X in V is the “same as” another basis Y in W .

The operator trace has the same algebraic properties as the matrix trace.

2.22. Exercise. If A, B : V → V are linear operators on a finite dimensional space V ,
prove that

82



1. Tr : HomK(V, V ) → K is a K-linear map between vector spaces:

Tr(A + B) = Tr(A) + Tr(B) and Tr(λ · A) = λ · Tr(A)

2. Tr(idV ) = n·dim(V );

3. Tr(AB) = Tr(BA) (composition product of operators);

4. If S is an invertible operator and B = SAS−1 then Tr(B) = Tr(A).

The last statement shows that Tr is a similarity invariant for linear operators; so is the
determinant det.

2.23. Exercise. If T : V → V is a linear operator on a finite dimensional space prove
that

Tr(T ) = Tr(T t) and det(T ) = det(T t)

Note: A conceptual issue arises here: T maps V → V while the transpose T t : V ∗ → V ∗

acts on an entirely different vector space! But if you take a basis X in V and the dual
basis X∗ in V ∗ the definitions (34) and (35) still have something useful to say.

2.24. Exercise. Let P : V → V be a projection (associated with some direct sum
decomposition V = E ⊕ F ) that projects vectors onto E along F . Prove that Tr(P ) =
dimK(E).

Expansion by Minors and Cramer’s Rule. The following result allows a
recursive computation of an n × n determinant once we can compute (n − 1) × (n − 1)
determinants. Although it is useful for determining algebraic properties of determinants,
and is handy for small matrices, it is prohibitively expensive in computing time for
large n. This expansion is keyed to a particular row (or column) of A and involves an
(n − 1) × (n − 1) determinant (the “minors” of the title) for each row entry.

2.25. Theorem (Cramer’s Rule). For any row 1 ≤ i ≤ n, we can write

det(A) =
n

∑

j=1

(−1)i+jaij ·det (Ãij)

where Ãij = the (n− 1)× (n− 1) submatrix obtained by deleting Rowi and Colj from A.
Similarly, for any column 1 ≤ j ≤ n we have

det(A) =
n

∑

i=1

(−1)i+jaij ·det (Ãij)

Proof: Since det(A) = det(At), it is enough to prove the result for expansion along a
row. Each term in the sum

det(A) =
∑

σ∈Sn

sgn(σ) · (a1σ(1) · . . . · anσ(n))

contains just one term from Rowi(A) = (ai1, . . . , ain), so by gathering together terms we
may write

det(A) = ai1a
∗

i1 + . . . + aina∗

in

in which a∗

ij involves no entry from Rowi(A).

Our task is to show a∗

ij = (−1)i+j det (Ãij). One approach is to reduce to the case
when i = j = n. In that special situation, we get

anna∗

nn =
∑

σ∈S′

n

sgn(σ) · (a1σ(1) · . . . · anσ(n))
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where S′
n ⊆ Sn is the subgroup of permutations such that σ(n) = n (the subgroup that

“stabilizes” the element “n” in X = {1, 2, . . . , n}).

2.26. Exercise. If σ̃ ∈ Sn−1 is regarded as the permutation σ ∈ S′
n ⊆ Sn such that

σ(n) = n and σ(k) = σ̃(k) for 1 ≤ k ≤ n − 1, show that sgn(σ̃) = sgn(σ).

In view of this the sum
∑

σ∈S′

n

(...) becomes
∑

σ̃∈Sn−1
(...). Thus

a∗

nn = (−1)n+n det (Ãnn) = det(Ann)

Now consider any i and j. Interchange Rowi(A) with successive adjacent rows (“flips”)
until it is at the bottom. This does not affect the value of det(Ãij) because the relative
positions of the other rows and columns are not affected; however each flip switched the
sign of aij in the formula, and there are n − i such changes. Similarly we may move
Colj(A) to the nth column, incurring n − j sign changes. Thus

a∗

ij = (−1)n−i+n−j det(Ãij) = (−1)i+j det(Ãij)

for all i and j, proving the theorem. !

We post the following formula for A−1 without proof (cf Schaums, p 267-68). If matrix
A ∈ M(n, K) is invertible we have

(36) A−1 =
1

det(A)
· (Cof(A))

t

where the n × n “cofactor matrix” Cof(A) has i, j entry = (−1)i+jÃij , and Ãij =
determinant of the (n − 1) × (n − 1) submatrix obtained by deleting (Rowi) and (Colj)
from A.
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Chapter VI. Inner Product Spaces.

VI.1. Basic Definitions and Examples.

In Calculus you encountered Euclidean coordinate spaces Rn equipped with additional
structure: an inner product B : Rn × Rn → R.

Euclidean Inner Product: B(x,y) =
∑n

i=1 xiyi

which is often abbreviated to B(x, y) = (x, y). Associated with it we have the Euclidean
norm

∥x∥ =
n

∑

i=1

|xi|2 = (x,x)1/2

which represents the “length” of a vector, and a distance function

d(x,y) = ∥x− y∥

which gives the Euclidean distance from x to y. Note that y = x + (y − x).

Figure 6.1. The distance between points x, y in an inner product space is interpreted as
the norm (length) ∥y − x∥ of the difference vector ∆x = y − x.

This inner product on Rn has the following geometric interpretation

(x,y) = ∥x∥ · ∥x∥ · cos (θ(x,y))

where θ is the angle between x and y, measured in the plane M = R-span{x,y}, the 2-
dimensional subspace in Rn spanned by x and y. Orthogonality of two vectors is then
interpreted to mean (x,y) = 0; the zero vector is orthogonal to everybody, by definition.
These notions of length, distance, and orthogonality do not exist in unadorned vector
spaces.

We now generalize the notion of inner product to arbitrary vector spaces, even if they
are infinite-dimensional.

1.1. Definition. If V is a vector space over K = R or C, an inner product is a map
B : V ×V → K taking ordered pairs of vectors to scalars B(v1, v2) ∈ K with the following
properties

1. Separate Additivity in each Entry. B is additive in each input if the other
input is held fixed:

• B(v1 + v2, w) = B(v1, w) + B(v2, w)

• B(v, w1 + w2) = B(v, w1) + B(v, w2).
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Figure 6.2. Geometric interpretation of the inner product (x,y) = ∥x∥ ∥y∥·cos(θ(x, y))
in Rn. The projected length of a vector y onto the line L = Rx is ∥y∥·cos(θ). The angle
θ(x, y) is measured within the two-dimensional subspace M = R-span{x, y}. Vectors are
orthogonal when cos θ = 0, so (x,y) = 0. The zero vector is orthogonal to everybody.

for v, vi, w, wi in V .

2. Positive Definite. For all v ∈ V ,

B(v, v) ≥ 0 and B(v, v) = 0 if and only if v = 0

3. Hermitian Symetric. For all v, w ∈ V ,

B(v, w) = B(w, v) when inputs are interchanged.

Conjugation does nothing for x ∈ R (x = x for x ∈ R), so an inner product on a
real vector space is simply symmetric, with B(w, v) = B(v, w).

4. Hermitian. For λ ∈ K, v, w ∈ V ,

• B(λv, w) = λB(v, w) and,

• B(v, λw) = λ̄B(v, w).

An inner product on a real vector space is just a bilinear map – one that is R-linear in
each input when the other is held fixed – because conjugation does nothing in R.

The Euclidean inner product in Rn is a special case of the standard Euclidean inner
product in complex coordinate space V = Cn,

(z,w) =
n

∑

j=1

zjwj ,

which is easily seen to have properties (1.)–(4.) The corresponding Euclidean norm and
distance functions on Cn are then

∥z∥ = (z, z)1/2 = [
n

∑

j=1

|zj|2 ]
1/2

and d(z,w) = ∥z−w∥ = [
n

∑

j=1

|zj − wj |2 ]
1/2

Again, properties (1.) - (4.) are easily verified.
For an arbitrary inner product B we define the corresponding norm and distance

functions
∥v∥B = B(v, v)1/2 dB(v1, v2) = ∥v1 − v2∥B

which are no longer given by such formulas.

1.2. Example. Here are two important examples of inner product spaces.
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1. On V = Cn (For Rn) we can define “nonstandard” inner products by assigning
different positive weights αj > 0 to each coordinate direction, taking

Bα(z,w) =
n

∑

j=1

αj · zjwj with norm ∥z∥α = [
n

∑

j=1

αj · |zj|2 ]
1/2

This is easily seen to be an inner product. Thus the standard Euclidean inner
product on Rn or Cn, for which α1 = . . . = αn = 1, is part of a much larger family.

2. The space C[a, b] of continuous complex-valued functions f : [a, b]→ C becomes an
inner product space if we define

(f, h)2 =

∫ b

a
f(t)h(t) dt (Riemann integral)

The corresponding “L2-norm” of a function is then

∥f∥2 = [
∫ b

a
|f(t)|2 dt ]

1/2
;

the inner product axioms follow from simple properties of the Riemann integral.
This infinite-dimensional inner product space arises in many applications, particu-
larly Fourier analysis. !

1.3. Exercise. Verify that both inner products in the last example actually satisfy
the inner product axioms. In particular, explain why the L2-inner product (f, h)2 has
∥f∥2 > 0 when f is not the zero function (f(t) ≡ 0 for all t).

We now take up the basic properties common to all inner product spaces.

1.4. Theorem. On any inner product space V the associated norm has the following
properties

1. ∥x∥ ≥ 0;

2. ∥λx∥ = |λ| · ∥x∥ (and in particular, ∥ − x∥ = ∥x∥ );

3. (Triangle Inequality) For x, y ∈ V , ∥x ± y∥ ≤ ∥x∥+ ∥y∥.

Proof: The first two are obvious. The third is important because it implies that the
distance function dB(x, y) = ∥x− y∥ satisfies the “geometric triangle inequality”

dB(x, y) ≤ dB(x, z) + dB(z, y), for all x, y, z ∈ V

as indicated in Figure 6.3. This follows directlly from (3.) because

dB(x, y) = ∥x− y∥ = ∥(x− z) + (z − y)∥ ≤ ∥x− z∥+ ∥z − y∥ = dB(x, z) + dB(z, y)

The version of (3.) involving a (−) sign follows from that featuring a (+) because
v − w = v + (−w) and ∥ − w∥ = ∥w∥.

The proof of (3.) is based on an equally important inequality:

1.5. Lemma (Schwartz Inequality). If B is an inner product on a real or complex
vector space then

|B(x, y)| ≤ ∥x∥B · ∥y∥B
for all x, y ∈ V .
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Figure 6.3. The meaning of the Triangle Inequality: direct distance from x to y is always
≤ the sum of distances d(x, z) + d(z, y) to any third vector z ∈ V .

Proof: For all real t we have φ(t) = ∥x + ty∥2B ≥ 0. By the axioms governing B we can
rewrite φ(t) as

φ(t) = B(x + ty, x + ty)

= B(x, x) + B(ty, x) + B(x, ty) + B(ty, ty)

= ∥x∥2B + t B(x, y) + t B(x, y) + t2∥y∥2B
= ∥x∥2B + 2t Re(B(x, y)) + t2∥y∥2B

because B(tx, y) = tB(x, y) and B(x, ty) = tB(x, y) (since t ∈ R), and z + z = 2 Re(z) =
2x for z = x + iy in C. Now φ : R → R is a quadratic function whose minimum value
occurs at t0 where

dφ

dt
(t0) = 2t0∥y∥2B + Re(B(x, y)) = 0

or

t0 =
−Re(B(x, y))

2∥y∥2B
Inserting this into φ we find the actual minimum value of φ:

0 ≤ min{φ(t) : t ∈ R} =
∥x∥2B · ∥y∥2B − 2|Re(B(x, y))|2 + |Re(B(x, y))|2

∥y∥2B

Thus
0 ≤ ∥x∥2B · ∥y∥2B − |Re(B(x, y))|2

which in turn implies

|ReB(x, y)| ≤ ∥x∥B · ∥y∥B for all x, y ∈ V.

If we replace x )→ eiθx this does not change ∥x∥ since |eiθ| = | cos(θ) + i sin(θ)| = 1 for
real θ; in the inner product on the left we have B(eiθx, y) = eiθB(x, y). We may now
take θ ∈ R so that eiθ · B(x, y) = |B(x, y)|. For this particular choice of θ we get

0 ≤ |Re(B(eiθx, y))| = |Re(eiθB(x, y))|
= Re(|B(x, y)|) = |B(x, y)| ≤ ∥x∥B · ∥y∥B .

That proves the Schwartz inequality. !

Proof (Triangle Inequality): The algebra is easier if we prove the (equivalent) in-
equality obtained when we square both sides:

0 ≤ ∥x + y∥2 ≤ (∥x∥+ ∥y∥)
2

= ∥x∥2 + 2∥x∥·∥y∥+ ∥y∥2

109



In proving the Schwartz inequality we saw that

∥x + y∥2 = (x + y , x + y) = ∥x∥2 + 2 Re(x, y) + ∥y∥2

so our proof is finished if we can show 2 Re(x, y) ≤ 2∥x∥·∥y∥. But

Re(z) ≤ |Re(z)| ≤ |z| for all z ∈ C

and then the Schwartz inequality yields

Re(B(x, y)) ≤ |B(x, y)| ≤ ∥x∥B ·∥y∥B

as desired. !

1.6. Example. On V = M(n, K) we define the Hilbert-Schmidt inner product and
norm for matrices:

(44) (A, B)
HS

= Tr(B∗A) and ∥A∥2
HS

=
∑

i,j=1

|aij |2 = Tr(A∗A)

It is easily verified that this is an inner product. First note that the trace map from
M(n, K)→ K

Tr(A) =
n

∑

i=1

aii

is a complex linear map and Tr(A ) = Tr(A); then observe that

∥A∥22 = (A, A)
HS

=
n

∑

i,j=1

|aij |2 is > 0 unless A is the zero matrix.

Alternatively, consider what happens when we identify M(n, C) ∼= Cn2

as complex vector

spaces. The Hilbert-Schmidt norm becomes the usual Euclidean norm on Cn2

, and
likewise for the inner products; obviously (A, B)

HS
is then an inner product on matrix

space.
The norm ∥A∥

HS
and the sup-norm ∥A∥∞ discussed in Chapter V are different ways

to measure the “size” of a matrix; the HS-norm turns out to be particularly well adapted
to applications in statistics, starting with “least-squares regression” and moving on into
“analysis of variance.” Each of these norms determines a notion of matrix convergence
An → A as n→∞ in M(N, C).

∥ · ∥2-Convergence: ∥An −A∥
HS

= [
∑

i,j

|a(n)
ij − aij |2 ]

1/2
→ 0 as n→∞

∥ · ∥∞-Convergence: ∥An −A∥∞ = max
i,j

{ |a(n)
ij − aij | } → 0 as n→∞

However, despite their differences both norms determine the same notion of matrix con-
vergence.

An → A in ∥ · ∥2-norm ⇔ An → A in ∥ · ∥∞-norm

The reason is explained in the next exercise. !

1.7. Exercise. Show that there exist bounds M2, M∞ > 0 such that the ∥ ·∥2 and ∥ ·∥∞
norms mutually dominate each other

∥x∥2 ≤M∞ ∥x∥∞ and ∥x∥∞ ≤M2 ∥x∥2
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for all x ∈ Cn. Explain why this leads to the conclusion that An → A in ∥ · ∥2-norm if
and only if An → A in ∥ · ∥∞-norm.
Hint: The Schwartz inequality might be helpful in one direction.

The polarization identities below show that inner products over R or C can be
reconstructed if we only know the norms of vectors in V . Over C we have

(45) B(x, y) =
1

4

3
∑

k=0

1

ik
B(x + iky , x + iky) =

1

4

3
∑

k=0

1

ik
∥x + iky∥2, where i =

√
−1

Over R we only need 2 terms:

B(x, y) =
1

4
(B(x + y , x + y) + (−1)B(x− y , x− y) )

1.8. Exercise. Expand

(x + iky , x + iky) = ∥x + iky∥2

to verify the polarization identities.

Orthonormal Bases in Inner Product Spaces. A set X = {ei : i ∈ I} of
vectors is orthogonal if (ei, ej) = 0 for i ̸= j; it is orthonormal if

(ei, ej) = δij (Kronecker delta) for all i, j ∈ I .

An orthonormal set can be infinite (in infinite dimensional inner product spaces), and all
vectors in it are nonzero; an orthogonal family could have vi = 0 for some indices since
(v, 0) = 0 for any v. The set X is an orthonormal basis (ON basis) if it is orthonormal
and V is spanned by {X}.

1.9. Proposition. Orthonormal sets have the following properties.

1. Orthonormal sets are independent;

2. If X = {ei : i ∈ I} is a finite orthonormal set and v is in M = K-span{X} then by
(1.) X is a basis for M and the expansion of any v in M with respect to this basis
is just

v =
∑

i∈I

(v, ei) ei

(Finiteness of X required for
∑

i∈I(. . .) to make sense; otherwise the right side is
an infinite series).

In particular if X = {e1, ..., en} is an orthonormal basis for a finite-dimansional inner
product space V , the coefficients in the expansion

v =
n

∑

i=1

(v, ei) ei, for every v ∈ V

are easily computed by taking inner products.

Proof: For (1.), if a finite sum
∑

i ciei equals 0 we have

0 = (v, ek) =
∑

i

ci(ei, ek) =
∑

i

ciδik = ck
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for each k, so the ei are independent. Part (2.) is an immediate consequence of (1.): we
know {ei} is a basis, and if v =

∑

i ciei is its expansion the inner product with a typical
basis vector is

(v, ek) =
∑

i

ci(ei, ek) =
∑

i

ciδik = ck . !

1.10. Corollary. If vectors {v1, ..., vn} are nonzero, orthogonal, and a vector basis in V ,
then the renormalized vectors

ei =
vi

∥vi∥
for 1 ≤ i ≤ n

are an orthonormal basis. !

Entries in the matrix [T ]YX of a linear operator are easily computed by taking inner
products if the bases are orthonormal (but not for arbitrary bases).

1.11. Exercise. Let T : V → W be a linear operator between finite-dimensional inner
product spaces and let X = {ei}, Y = {fi} be orthonormal bases. Prove that the entries
in [T ]YX are given by

Tij = (T (ej), fi)W = (fi, T (ej))W

for 1 ≤ i ≤ dim(W ), 1 ≤ j ≤ dim(V ).

The fundamental fact about ON bases is that the coefficients in v =
∑n

k=1 (v, ei) ei

determine the norm ∥v∥ via a generalization of Pythagoras’ Formula for Rn,

Pythagoras: If x =
n

∑

i=1

xiei then ∥x∥2 =
n

∑

i=1

|xi|2

We start by proving a fundamental inequality.

1.12. Theorem (Bessel’s Inequality). Let X = {e1, . . . , em} be any finite orthonor-
mal set in an inner product space V (possibly infinite-dimensional). Then

(46)
n

∑

i=1

|(v, ei)|2 ≤ ∥v∥2 for all v ∈ V

Furthermore, if v′ = v −
∑n

i=1(v, ei) ei, this vector is orthogonal to each ej and hence is
orthogonal to all the vectors in the linear span M = K-span{X}.
Note: The inequality (46) becomes an equality if X is an orthonormal basis for V because
then v′ = 0.

Proof: Since inner products are conjugate bilinear, we have

0 ≤ ∥v′∥2 = (v′, v′) = (v −
m

∑

i=1

(v, ei) ei , v −
m

∑

j=1

(v, ej) ej )

= (v, v)− (
∑

i

(v, ei) ei , v)− (v ,
∑

j

(v, ej) ej) + (
∑

i

(v, ei) ei ,
∑

j

(v, ej) ej )

= ∥v∥2 −
∑

i

(v, ei)·(ei, v)−
∑

j

(v, ej)·(v, ej) +
∑

i,j

(v, ei)·(v, ej)·(ei, ej)

= ∥v∥2 −
∑

i

|(v, ei)|2 −
∑

j

|(v, ej)|2 +
∑

i

|(v, ei)|2 (since (ek, v) = (v, ek) )

= ∥v∥2 −
∑

i

|(v, ei)|2
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Therefore
∑

i=1

|(v, ei)|2 ≤ ∥v∥2

as required.
The second statement now follows easily because

(v′, ek) = (v −
∑

j

(v, ej) ej , ek) = (v, ek)−
∑

j

(v, ej)·(ej, ek)

= (v, ek)− (v, ek) = 0 for all k

Furthermore, if w =
∑m

k=1 ckek is any vector in M we also have

(v′, w) =
∑

k

ck(v′, ek) = 0 ,

so v′ is orthogonal to M as claimed. !

1.13. Corollary (Pythagoras). If X is an orthonormal basis in a finite dimensional
inner product space, then

∥v∥2 =
m

∑

i=1

|(v, ei)|2

(sum of squares of the coefficients in the basis expansion v =
∑

i(v, ei) ei).

1.14. Theorem. Orthonormal bases exist in any finite dimensional inner product space.

Proof: We argue by induction on n = dim(V ); the result is trivial if n = 1 (any vector
of length 1 is an orthonormal basis). If dim(V ) = n + 1, let v0 be any nonzero vector.
The linear functional ℓ0 : v → (v, v0) is nonzero, and as in Example 1.3 of Chapter III
its kernel

M = {v : (v, v0) = 0} = (Kv0)
⊥

is a hyperplane of dimension dim(V ) − 1 = n. By the induction hypothesis there is an
ON basis X0 = {e1, , . . . , en} in M , and every vector in M is orthogonal to v0. If we
rescale v0 and adjoin en+1 = v0/∥v0∥ to X0 the enlarged set X = {e1, . . . , en, en+1} is
obviously orthonormal; it is also a basis for V . [ By Lemma 4.4 of Chapter III, X is a
basis for W = K-span{X} ⊆ V , and since dim(W ) = |X| = n + 1 = dim(V ) we must
have W = V .] !

VI.2. Orthogonal Complements and Projections.
If M is a subspace of a (possibly infinite-dimensional) inner product space V , its or-
thogonal complement M⊥ is the set of vectors orthogonal to every vector in M ,

M⊥ = { v ∈ V : (v, m) = 0, for all m ∈M } = { v : (v, M) = {0} } .

Obviously {0}⊥ = V and V ⊥ = {0} from the Axioms for inner product.

2.1. Exercise. Show that M⊥ is again a subspace of V , and that

M1 ⊆M2 ⇒ M⊥
2 ⊆M⊥

1 .

2.2. Proposition. If M is a finite dimensional subspace of a (possibly infinite-
dimensional) inner product space V , then

1. M ∩M⊥ = {0} and M + M⊥ = V , so we have a direct sum decomposition V =
M ⊕M⊥.
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2. If dim(V ) < ∞ we also have (M⊥)⊥ = M ; if |V | = ∞ we can only say that
M ⊆ (M⊥)⊥.

Proof: If v ∈ M ∩M⊥ then ∥v∥2 = (v, v) = 0 so v = 0 and M ∩M⊥ = {0}. Now let
{e1, ..., en} be an orthonormal basis for M . If v ∈ V write

v = (v −
m

∑

i=0

(v, ei) ei) +
m

∑

i=1

(v, ei) ei = v⊥ + v∥

in which v⊥ is orthogonal to M and v∥ is the component of v “parallel to” the subspace
M (because it lies in M). Then for all v ∈ V we have

(v, v⊥) = (v⊥ + v∥ , v⊥) = (v⊥, v⊥) + (v∥, v⊥) = ∥v⊥∥2 + 0 = ∥v⊥∥2

If v ∈ (M⊥)⊥, so (v, v⊥) = 0, we conclude that ∥v⊥∥ = 0 and hence v = v⊥ + v∥ = 0+ v∥
is in M . That proves the reverse inclusion M⊥⊥ ⊆M . !

The situation is illustrated in Figure 6.4.

Figure 6.4. Given an ON basis {ei, . . . , em} in a finite dimensional subspace M ⊆ V , the
vector v∥ =

Pm
k=1(v, ek) ek is in M and v⊥ = v − v∥ is orthogonal to M . These are the

components of v ∈ V “parallel toM” and “perpendicular to M ,” with v = v⊥ + v∥.

Orthogonal Projections on Inner Product Spaces. If an inner product
space is a direct sum V = V1 ⊕ . . . ⊕ Vr we call this an orthogonal direct sum if the
subspaces are mutually orthogonal.

(Vi, Vj) = 0 if i ̸= j

We indicate this by writing V = V1⊕̇ . . . ⊕̇Vr = ˙⊕r

i=1Vi. The decomposition V =
M⊕̇M⊥ of Proposition 2.2 was an orthogonal decomposition.

In equation Exercise 3.5 of Chapter II we defined the linear projection operators
Pi : V → V associated with an ordinary direct sum decomposition V = V1⊕ . . . ⊕Vr, and
showed that such operators are precisely the linear operators that have the idempotent
property P 2 = P . In fact there is a bijective correspondence

(idempotent linear operators) ←→ (direct sum decompositions V = R⊕K) ,

described in Proposition 3.7 of Chapter II, and reprised below.

Theorem. If a linear operator P : V → V is idempotent operator, so P 2 =
P , there is a direct sum decomposition V = R ⊕ P such that P projects V
onto R along K. In particular,

R = R(P ) = range(P ) and K = K(P ) = ker(P )
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Furthermore Q = I − P is also idempotent and

R(Q) = K(P ) and K(Q) = R(P )

When V is an inner product space we will see that the projections associated with an
orthogonal direct sum V = E⊕̇F have special properties. They are also easy to compute
using the inner product. (Compare what follows with the calculations in Example 3.6
of Chapter II, of projections associated with an ordinary direct sum decomposition V =
E ⊕ F in a space without inner product.)

Projections associated with an orthogonal direct sum decomposition V = V1⊕̇ . . . ⊕̇Vr

are called orthogonal projections.

2.3. Lemma. If V = E⊕̇F is an orthogonal direct sum decomposition of a finite
dimensional inner product space, then

E⊥ = F and F⊥ = E E⊥⊥ = E and F⊥⊥ = F

Proof: The argument for F is the same as that for E. We proved that E⊥⊥ = E in
Proposition 2.2 and we know that E ⊆ F⊥ by definition; based on this we will prove the
reverse inequality E ⊇ F⊥.

Since |V | <∞ we have V = F ⊕ F⊥, so that |V | = |F | + |F⊥|; since V = E ⊕ F we
also have |V | = |F | + |E|. Therefore |E| = |F⊥|. But E ⊆ F⊥ in an orthogonal direct
sum E⊕̇F , so we conclude that E = F⊥. !

2.4. Exercise. Let V = V1⊕̇ . . . ⊕̇Vr be an orthogonal direct sum decomposition of an
inner product space (not necessarily finite dimensional).

(a) If Wi is the linear span
∑

j ̸=i Vj , prove that Wi ⊥ Vi for each i, and V = Vi⊕̇Wi.

(b) If v = v1 + . . . + vr is the unique decomposition into pairwise orthogonal vectors
vi ∈ Vi, prove that ∥v∥2 =

∑

i ∥vi∥2.

The identity (2.) is yet another version of Pythagoras’ formula.

2.5. Exercise. In a finite dimensional inner product space, prove that the Parseval
formula

(v, w) =
n

∑

i=1

(v, ei)·(ei, w)

holds for every orthonormal basis {e1, . . . , en}.

The Gram-Schmidt Construction. We now show how any independent set of
vectors {v1, . . . , vn} in an inner product space can be modified to obtain an orthonormal
set of vectors {e1, . . . , en} with the same linear span. This Gram-Schmidt construc-
tion is recursive, and at each step we have

1. ek ∈ K-span{v1, ..., vk}

2. Mk = K-span{e1, ..., ek} is equal to K-span{v1, .., vk} for each 1 ≤ k ≤ n.

The result is an orthonormal basis {e1, ..., en} for M = K-span{v1, .., vn} (and for all
of V if the {vi} span V ). The construction procedes inductively by constructing two
sequences of vectors {ui} and {ei}.
Step 1: Take

u1 = v1 and e1 =
v1

∥v1∥

Conditions (1.) and (2.) obviously hold and K·v1 = K · u1 = K·e1.
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Step 2: Define
u2 = v2 − (v2|e1)·e1 and e2 =

u2

∥u2∥
.

Obviously u2 ∈ K-span{v1, v2} and u2 ̸= 0 because v2 /∈ Kv1 = Ke1 = M1; thus e2 is
well defined. Furthermore

1. u2 ⊥M1 because

(u2, e1) = (v2 − (v2, e1)e1 , e1) = (v2, e1)− (v2, e1)·(e1, e1) = 0 ⇒ e2 ⊥M1

hence {e1, e2} is an orthonormal set of vectors;

2. M2 = K-span{e1, e2} = Ku2 + Ke1 = Kv2 + Ke1 = Kv2 + Kv1 = K-span{v1, v2}.

If n = 2 we’re done; otherwise continue with

Step 3: Define

u3 = v3 −
2

∑

i=1

(v3, ei)·ei = v3 −
2

∑

i=1

(v3, ui)

∥ui∥2
ui

Then u3 ̸= 0 because the sum is in K-span{v1, v2} and the vi are independent; thus
e3 = u3

∥u3∥ is well defined. We have u3 ⊥M2 because

(u3, e1) = (v3 −
2

∑

i=1

(v3, ei)ei , e1 )

= (v3, e1)−
2

∑

i=1

(v3, ei)·(ei, e1)

= (v3, e1)− (v3, e1) = 0 ,

and similarly (u3, e2) = 0, hence e3 ⊥M2 = K-span{e1, e2}. Finally,

K-span{e1, e2, e3} = Ku3 + K-{e1, e2} = Kv3 + K-{e1, e2}
= Kv3 + K-{v1, v2} = K-{v1, v2, v3}

At the kth step we have produced orthonormal vectors {e1, ..., ek} with K-span{e1, ..., ek} =
K-span{v1, ..., vk} = Mk. Now for the induction step:

Step k + 1: Define

uk+1 = vk+1 −
k

∑

i=1

(vk+1, ei) ei = vk+1 −
k

∑

i=1

(vk+1, ui)

∥ui∥2
ui

and
ek+1 =

uk+1

∥uk+1∥
.

Again uk+1 ̸= 0 because vk+1 /∈Mk = K-span{v1, ..., vk} = K-span{e1, ..., ek}, so ek+1 is
well defined. Furthermore uk+1 ⊥Mk because

(uk+1, ej) = (vk+1 −
k

∑

i=1

(vk+1, ei) ei , ej)

= (vk+1, ej)−
k

∑

i=1

(vk+1, ei)·(ei, ej)

= (vk+1, ej)− (vk+1, ej) = 0
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hence also ek+1 ⊥Mk. Then

K-{e1, ..., ek+1} = Kuk+1 + K-{e1, ...., ek} = Kvk+1 + K-{e1, ...., ek}
= K-{v1, ..., vk+1} .

By induction, {e1, ..., en} has the properties claimed. !

Note that the outcome of Step(k+1) depends only on the {e1, ..., ek} and the new vector
vk+1; the original vectors {v1, ..., vk} play no further role in the inductive process.

2.6. Example. The standard inner product in C[−1, 1] is the L2 inner product

(f, h)2 =

∫ 1

−1
f(t)h(t) dt

for functions f : [−1, 1] → C. Regarding v1 = 1-, v2 = x, v3 = x2 as functions from
[−1, 1] → C, these vectors are independent. Find the orthonormal set {e1, e2, e3} pro-
duced by the Gram-Schmidt process.

Solution: We have u1 = v1 = 1- and since ∥u1∥2 =
∫ 1
−1 1- dx = 2, we get e1 = 1√

2
· 1-. At

the next step

u2 = v2 − (v2, e1) e1 = v2 −
(v2, u1)

∥u1∥2
u1 = x−

∫ 1
−1 x · 1- dx

∥u1∥2
· 1- = x− 0 = x

and

∥u2∥2 =

∫ 1

−1
x2 dx = 2

∫ 1

0
x2 dx = 2

[

1

3
x3|1

0

]

=
2

3

The second basis vector is

e2 =
u2

∥u2∥
=

√

3

2
· x

At the next step:

u3 = v3 − ((v3|e1)e1 + (v3, e2)e2)

= v3 − ( (v3, u2)

∥u2∥2
· u2 +

(v3, u1)

∥u1∥2
· u1 )

= x2 −
∫ 1
−1 x2 ·xdx

2
3

· x −
∫ 1
−1 x2 ·1- dx

2
· 1-

= x2 − 0−
1

3
1- = x2 −

1

3

Then

∥u3∥2 =

∫ 1

−1
|u3(x)|2 dx =

∫ 1

−1
(x2 −

1

3
)
2
dx

=

∫ 1

−1
(x4 −

2

3
x2 +

1

9
)dx

= 2 ·
[

x5

5
−

2

9
x3 +

1

9
x |1

0

]

=
8

45

and the third orthonormal basis vector is

e3 =
u3

∥u3∥
=

√

45

8
(x2 −

1

3
) =

√

5

8
(3x2 − 1) !
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If we extend the original list to include v4 = x4 we may compute e4 knowing only e1, e2, e3

(or u1, u2, u3) and v4; there is no need to repeat the previous calculations!

2.7. Exercise. Find u4 and e4 in the above situation.

This process can be continued indefinitely to produce the orthonormal family of Leg-
endre polynomials e1(t), e2(t), . . . , en(t) . . . in the space of polynomials C[x] restricted
to the interval [−1, 1]. (This is also true for R[x] restricted to [−1, 1] since the Legen-
dre polynomials all have real coefficients.) Clearly the (n + 1)-dimensional subspace Mn

obtained by restricting the space of polynomials of degree ≤ n

Pn = K-span{e1, ..., en+1} = K-span{1-, x, . . . , xn}

to the interval (so Mn = Pn|[−1, 1] ) has {e1, . . . , en+1} as an ON basis with respect to
the usual inner product on C[−1, 1]

(f, h)2 =

∫ 1

−1
f(t)h(t) dt .

Restricting the full set of Legendre polynomials e1(t), . . . , en+1(t), . . . to [−1, 1] yields
an orthonormal set of vectors in the infinite-dimensional inner product space C[−1, 1].
The orthogonal projection Pn : C[−1, 1]→Mn ⊆ C[−1, 1] associated with the orthogonal
direct sum decomposition V = Mn ⊕ (Mn)⊥ (in which dim(Mn)⊥ = ∞) is given by the
explicit formula

Pnf(t) =
n+1
∑

k=1

(f, ek) ek(t) (−1 ≤ t ≤ 1)

=
n+1
∑

k=1

(
∫ 1

−1
f(x)ek(x) dx) · ek(t)

=
n

∑

k=0

ck tk (ck ∈ C)

for any continuous function on [−1, 1]. The projected image Pnf(t) is a polynomial of
degree ≤ n even though f(t) is continuous and need not be differentiable.

A standard result from analysis shows that the partial sums of the infinite series
∑∞

k=0 ck tk converge in the L2-norm to the original function f(t) throughout the interval
−1 ≤ t ≤ 1,

∥f − Pnf∥2 =

[
∫ 1

−1
|f(t)− Pnf(t)|2 dt

]1/2

→ 0 as n→∞

for all f ∈ C[−1, 1].
It must be noted that this series expansion of f(t) ∼

∑∞
k=0 ck tk is not at all the

same thing as a Taylor series expansion about t = 0, which in any case would not make
sense because f(t) is only assumed continuous (the derivatives used to compute Taylor
coefficients might not exist!) In fact, convergence of this series in the L2-norm is much
more robust than convergence of Taylor series, which is why it is so useful in applications.

Fourier Series Expansions. The complex trig polynomials En(t) = e2πint (n ∈ Z)
are periodic complex-valued functions on R ; each has period ∆t = 1 since

e2πin(t+1) = e2πint · e2πin = e2πint for all t ∈ R and n ∈ Z.
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If en(t) is the restriction of En(t) to the “period-interval” I = [0, 1] we get an ON family of

vectors with respect to the usual inner product (f, h) =
∫ 1
0 f(t)h(t) dt on C[0, 1], because

∥en∥2 =

∫ 1

0
|en(t)|2 dt =

∫ 1

0
1- dt = 1

(em, en) =

∫ 1

0
em(t)en(t) dt =

∫ 1

0
e2πi(m−n)tdt

=

[

e2πi(m−n)t

2πi(m− n)
|1
0

]

= 0 if m ̸= n.

Thus {en : n ∈ Z} is an orthonormal family in C[0, 1].
For N ≥ 0 let MN = K-span{ek : −N ≤ k ≤ N}. For f in this subspace we have the

basis expansion:

f =
N

∑

k=−N

(f, ek) ek =
N

∑

k=−N

cke2πikt

where ck is the kth Fourier coefficient

(47) ck = (f, ek) =

∫ 1

0
f(t)e−2πiktdt.

By Bessel’s inequality:

∥f∥22 =

∫ 1

0
|f(t)|2dt ≥

N
∑

k=−N

|ck|2 =
N

∑

k=−N

|(f, ek)|2

and this is true for N = 1, 2, .... The projection PN of C[0, 1] onto MN along M⊥
N is then

given by

PNf(t) =
N

∑

k=−N

ckek(t) =
N

∑

k=−N

(f, ek) e2πikt, N = 0, 1, 2, ...

because PN (f) ∈MN by definition, and (f − PNf, ek) = 0 for −N ≤ k ≤ N .
The Fourier series of a continuous (or bounded Riemann integrable) complex-valued

function f : [0, 1]→ C is the infinite series

(48) f ∼
∑

k∈Z

(f, ek)·e2πikt

whose coefficients ck = (f, en) are the Fourier coefficients defined in (47).
It is not immediately clear when this series converges, but when convergence is suit-

ably interpreted it can be proved that the series does converge, and to the initial function
f(t). This expansion has proved to be extremely useful in applications. Its significance
is best described as follows.

If t is regarded as a time variable, and F (t) is some sort of periodic “signal” or
“waveform” such that F (t + 1) = F (t) for all t, then F is completely determined by
its restriction f = F | [0, 1] to the basic period interval 0 ≤ t ≤ 1. The Fourier series
expansion of f on this interval can in turn be regarded as a representation of the original
waveform as a “superposition,” with suitable weights, of the basic periodic waveforms
En(t) = e2πint (t ∈ R).

F (t) ∼
+∞
∑

n=−∞
cn ·En(t) for all t ∈ R
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For instance, this implies that any periodic sound wave F (t) with period ∆t = 1 can
be reconstructed by superposing scalar multiples of the “pure tones” En(t), which have
frequencies ωn = n cycles per second. This is precisely how sound synthesizers work.
It is remarkable, that the correct “weight” assigned to each pure tone is the Fourier
coefficient cn = (f, en); even more remarkable is the fact that complex-valued weights
ck ∈ C must be allowed, even if the signal is real-valued, because the functions En(t) =
cos(2πnt) + i sin(2πnt) are complex-valued.

If f is piecewise differentiable the infinite series (48) converges (except at points of
discontinuity) to the original periodic function f(t). Furthermore the following results
can be proved for any continuous (or Riemann integrable) function on [0, 1].

Theorem. If f(t) is bounded and Riemann integrable for 0 ≤ t ≤ 1, then

1. L2-Norm Convergence: The partial sums of the Fourier series (48)
converge to f(t) in the L2-norm.

∥f −
N

∑

k=−N

(f, ek) ek∥2 → 0 as N →∞

2. Extended Bessel: ∥f∥2 =
∫ 1
0 |f(t)|2 dt is equal to

∑

k∈Z
|(f, ek)|2 .

The norm ∥f − h∥2 = [
∫

|f − h|2 dt ]
1/2

is often referred to as the “RMS = Root Mean
Square” distance between f and h.

Figure 6.5. Various waveforms with period ∆t = 1, whose Fourier transforms can be
computed by Calculus methods.

2.8. Example. Let

f(t) =

{

t for 0 ≤ t < 1
0 for t = 1

This is the restriction to [0, 1] of the periodic “sawtooth” waveform in Figure 6.5(a).
Find its Fourier series.
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Solution: If k ̸= 0 integration by parts yields

ck =

∫ 1

0
te−2πikt dt

=

[

−1

2πik
e−2πikt · t |1

0

]

−
∫ 1

0

−1

2iπik
e−2πikt dt

=
−1

2πik
+

1

2πik
(ek, e0) (where e0(t) ≡ 1 for all t)

=
−1

2πik
if k ̸= 0 .

For k = 0 we get a different result:

c0 =

∫ 1

0
t dt = 1

2

By Bessel’s Inequality we have

∥f∥22 =

∫ 1

0
|f(t)|2 dt =

∫ 1

0
t2 dt = 1

3 (by direct calculation)

≥
N

∑

k=−N

|(f, ek)|2 =
N

∑

k=−N

|ck|2

=
1

4
+

∑

k ̸=0,−N≤k≤N

1

4π2k2

for any N = 1, 2, ... If we multiply both sides by 4π2, then for all N we get

4

3
π2 ≥

∑

0<|k|≤N

1

k2
+ π2

1

3
π2 ≥ 2 ·

N
∑

k=1

1

k2

π2

6
≥

N
∑

k=1

1

k2
for all N = 1, 2, . . . ⇒

π2

6
≥

∞
∑

k=1

1

k2

(the infinite series converges by the Integral Test). Once we know that ∥f∥2 =
∑

k∈Z
|ck|2

we get the famed formula
∞
∑

k=1

1

k2
=

π2

6

The Fourier series associated with the sawtooth function f(t) is

f(t) ∼
∞
∑

k=−∞

(f, ek) ek(t) =
1

2
· 1- +

∑

k ̸=0

−1

2πik
e2πikt ,

which converges pointwise for all t ∈ R except the “jump points” t ∈ Z, where the series
converges to the middle value 1

2 . !

2.9. Exercise. Compute the Fourier transforms of the periodic functions whose graphs
are shown in Figure 6.5 (b) – (d).

A Geometry Problem. The following result provides further insight into the
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meaning of the projection PN (v) =
∑N

i=1(v, ei) ei where {ei} is an orthonormal family
in an inner product space V .

2.10. Theorem. If {e1, . . . , en} is an orthonormal family in an inner product space,
and PM (v) =

∑n
i=1(v, ei) ei the projection of v onto M = K-span{e1, ..., en} along M⊥,

then the image PM (v) is the point in M closest to v,

∥PM (v) − v∥ = min{ ∥u− v∥ : u ∈M}

for any v ∈ V . In particular the minimum is achieved at the unique point PM (v) ∈M .

Proof: Write v = v∥ + v⊥ where v∥ = PM (v) =
∑N

i=1(v, ei) ei and v⊥ = v−
∑

i(v, ei) ei.
Obviously v∥ ⊥ v⊥ and if z is any point in M we have (v∥ − z) ∈M and (v − v∥) ⊥M ,
so by Pythagoras

∥v − z∥2 = ∥(v − v∥) + (v∥ − z)∥2

= ∥v − v∥∥2 + ∥v∥ − z∥2

Thus
∥v − z∥2 ≥ ∥v − v∥∥2

for all z ∈M , so ∥v− z∥2 is minimized at z = v∥ =
∑N

i=1(v, ei) ei. Figure 6.6 shows why
the formula ∥v∥2 = ∥v∥∥2 + ∥v⊥∥2 really is equivalent to Pythagora’s formula for right
triangle (see the shaded triangle). !

Figure 6.6. If M is a finite dimensional subspace of inner product space V and v ∈ V ,
the unique point in M closest to v is m0 = v∥ =

P

i(v, ei) ei, and the minimized distance
is ∥v − m)∥. The shaded plane is spanned by the orthogonal vectors v∥ and v⊥ and we

have ∥v∥2 = ∥v∥∥
2 + ∥v⊥∥2 (Pythagoras’ formula).

V.3. Adjoints and Orthonormal Decompositions.
Let V be a finite dimensional inner product space over K = R or C. Recall that a
linear operator T : V → V is diagonalizable if there is a basis {e1, . . . , en} of eigenvectors
(so T (ei) = µiei for some µi ∈ K). We have seen that this happens if and only if
V =

⊕

λ∈sp(T ) Eλ(T ) where

sp(T ) = (the distinct eigenvalues of T in K) = {λ ∈ K : Eλ(T ) ̸= (0)}
Eλ(T ) = {v ∈ V : (T − λI)v = 0} = ker(T − λI)

We say T is orthogonally diagonalizable if there is an orthonormal basis {e1, . . . , en}
of eigenvectors, so T (ei) = µiei for some µi ∈ K.

3.1. Lemma. A linear operator T : V → V on a finite dimensional inner product space
is orthogonally diagonalizable if and only if the eigenspaces span V and are pairwise
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orthogonal, so Eλ(T ) ⊥ Eµ(T ) for λ ̸= ν in sp(T ).

Proof (⇐): is easy. We have seen that the span W =
∑

λ∈sp(T ) Eλ(T ) is a direct sum
whether or not W = V . If W = V and the Eλ are orthogonal then we have an orthogonal
direct sum decomposition V = ˙⊕

λEλ(T ). Taking an orthonormal basis in each Eλ we
get a diagonalizing orthonormal basis for all of V .

Proof (⇒): If X = {e1, . . . , en} is a diagonalizing orthonormal basis with T (ei) = µiei,
each µi is an eigenvalue. Define

sp′ = {λ ∈ sp(T ) : λ = µi for some i } ⊆ sp(T )

and for λ ∈ sp(T ) let

Mλ =
∑

{Kei : µi = λ} ⊆ Eλ(T )

(which will = (0) if λ does not appear among the scalars µi). Obviously |Mλ| ≤ |Eλ|;
furthermore, each ei lies in some eigenspace Eλ, so

V = K-span{e1, . . . , en} ⊆
∑

λ∈sp(T )

Eλ ⊆ V

and these subspaces coincide. Thus

|V | =
∑

λ∈sp(T )

|Eλ| ≥
∑

λ∈sp′

|Eλ| ≥
∑

λ∈sp′

|Mλ| ≥ |V |

and all sums are equal. (The last inequality holds because
∑

λ∈sp′ Mλ ⊇
∑n

j=1 Kej = V .)

Now if sp(T ) ̸= sp′ the first inequality would be strict, and if Mλ
⊂
̸= Eλ the second

the second would be strict, both impossible. We conclude that |Mλ| = |Eλ(T )| so
Mλ = Eλ(T ). But the Mλ are mutually orthogonal by definition, so the eigenspaces Eλ

are pairwise orthogonal as desired. !

Simple examples (discussed later) show that a linear operator on an inner product space
can be diagonalizable in the ordinary sense but fail to be orthogonally diagonalizable. To
explore this distinction further we need additional background, particularly the definition
of adjoints of linear operators.

Dual Spaces of Inner Product Spaces. There is a natural identification of
any finite dimensional inner product space V with its dual space V ∗. It is implemented
by a map J : V → V ∗ where J(v) = the functional ℓv ∈ V ∗ such that

⟨ℓv, x⟩ = (x, v) for all x ∈ V .

Each map ℓv is a linear functional because the inner product (∗, ∗) is K-linear in its left
hand entry (but conjugate linear in the right hand entry unless K = R). The map J is
one-to-one because

J(v1) = J(v2) ⇒ 0 = ⟨ℓv1
, x⟩ − ⟨ℓv2

, x⟩ = (x, v1)− (x, v2) = (x, v1 − v2)

for all x ∈ V . Taking x = v1 − v2, we get 0 = ∥v1 − v2∥2 which implies v1 − v2 = 0
and v1 = v2 by positive definiteness of the inner product. To see J is also surjective we
invoke:

3.2. Lemma. If V is finite dimensional inner product space, {e1, . . . , en} an orthonor-
mal basis, and ℓ ∈ V ∗, then

ℓ = J(v0) where v0 =
n

∑

i=1

⟨ℓ, ei⟩ ei
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(proving J surjective).

Proof: For any x ∈ V we have x =
∑

i(x, ei) ei. Hence by conjugate-linearity of (∗, ∗)

⟨J(v0), x⟩ = (x, v0) = (
∑

i

xiei ,
∑

j

⟨ℓ, ej⟩ ej) =
∑

i,j

xi⟨ℓ, ej⟩·(ei, ej)

=
∑

i

xi⟨ℓ, ei⟩ = ⟨ℓ, ∑
i

xiei⟩ = ℓ(x) for all x ∈ V.

Therefore J(v0) = ℓ as elements of V ∗. !

3.3. Exercise. Prove that J : V → V ∗ is a conjugate linear bijection: it is additive,
with J(v + v′) = J(v) + J(v′) for all v, v′ ∈ V , but J(λv) = λJ(v) for v ∈ V , λ ∈ C.

The Adjoint Operator T∗. If T : V → W is a linear operator between finite
dimensional vector spaces we showed that there is a natural transpose T t : W ∗ → V ∗.
Since V ∼= V ∗ for inner product spaces, it follows that there is a natural adjoint operator
T ∗ : V →W between the original vector spaces, rather than their duals.

3.4. Theorem (Adjoint Operator). Let V, W be finite dimensional inner product
spaces and T : V → W a K-linear operator. Then there is a unique K-linear adjoint
operator T ∗ : W → V such that

(49) (T (v), w)
W

= (v, T ∗(w))
V

for all v ∈ V, w ∈ W ,

or equivalently (T ∗(w), v)
V

= (w, T (v))
W

owing to Hermitian symmetry of the inner
product.

Proof: We define T ∗(w) for w ∈ W using our observations about dual spaces. Given
w ∈W , we get a well defined linear functional φw on V if define

⟨φw, v⟩ = (T (v), w)
W

(w is fixed; the variable is v).
Obviously φw ∈ V ∗ because (∗, ∗)

W
is linear in its left-hand entry. By the previous

discussion there is a unique vector in V , which we label T ∗(w), such that J(T ∗(w)) = φw

in V ∗, hence
(T (x), w)

W
= ⟨φw , x⟩ = ⟨J(T ∗(w)), x⟩ = (x, T ∗(w))

V

We obtain a well defined map T ∗ : W → V .
Once we know a map T ∗ satisfying (49) exists, it is easy to use these scalar identities

to verify that T ∗ is a linear operator, and verify its important properties. For linearity
we first observe that two vectors v1, v2 are equal in V if and only if (v1, x) = (v2, x), for
all x ∈ V because the inner product is positive definite.

Then T ∗(w1 + w2) = T ∗(w1) + T ∗(w2) in V follows: for all v ∈ V we have

(T ∗(w1 + w2), v)
V

= (w1 + w2, T (v))
W

= (w1, T (v))
W

+ (w2, T (v))
W

= (T ∗(w1), v)
V

+ (T ∗(w2, v)
V

(definition of T ∗(wk))

= (T ∗(w1) + T ∗(w2), v)
V

(linearity of (∗|∗) in first entry)

Similarly, T ∗(λw) = λT ∗(w), for all λ ∈ K, w ∈ W (check that λ comes forward instead
of λ). !

Note: A general philosophy regarding calculations with adjoints: Don’t look at T ∗(v);
look at (T ∗(v), w) instead, for all v ∈ V, w ∈ W .

3.5. Lemma. On an inner product space (T ∗)∗ = T as linear maps from V → W .
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Proof: It suffices to check the scalar identities (T ∗∗(v), w)
W

= (T (v), w)
W

, for all v ∈ V ,
w ∈W . But by definition,

(T ∗∗(v), w)
W

= (v, T ∗(w))
V

= (T (v), w)
W

Done. !

The adjoint T ∗ : W → V of a linear operator T : V → W between inner product
space is analogous to the transpose T t : W ∗ → V ∗. In fact, if V, W are inner product
spaces and we identify V = V ∗, W = W ∗ via the maps JV : V → V ∗, JW : W → W ∗

then T ∗ becomes the transpose T t : W ∗ → V ∗ in the sense that the following diagram
commutes:

W
T∗

−→ V
JW ↓ ↓ JV

W ∗ T t

−→ V ∗

That is ,
T t ◦ JW = JV ◦ T ∗ ( or T ∗ = J−1

V ◦ T t ◦ JW )

3.6. Exercise. Prove this last identity from the definitions.

Furthermore, as remarked earlier, when V is just a vector space, there is a natural
identification of V ∼= V ∗∗

j : V → V ∗∗ ⟨j(v), ℓ⟩ = ℓ(v) for all ℓ ∈ V ∗, v ∈ V

We remarked that under this identification of V ∗∗ ∼= V we have T tt = T for any linear
operator T : V →W , in the sense that the following diagram commutes

V ∗∗ T tt

−→ W ∗∗

jV ↑ ↑ jW

V
T−→ W

If V, W are inner product spaces, we may actually identify V ≃ V ∗ (something that
cannot be done in any natural way in the absence of the extra structure an inner product
provides). Then we may identify V ∼= V ∗ ∼= V ∗∗ ∼= V ∗∗∗ ∼= ... and W ∼= W ∗ ∼= W ∗∗ ∼=
W ∗∗∗ ∼= ...; when we do, T t becomes T ∗ and T tt becomes T ∗∗ = T .

3.7. Exercise (Basic Properties of Adjoints). Use (49) to prove:

(a) I∗ = I and (λI)∗ = λI,

(b) (T1 + T2)∗ = T ∗
1 + T ∗

2 ,

(c) (λT )∗ = λ̄T ∗ (conjugate-linearity)

3.8. Exercise. Given linear operators V
S−→W

T−→ Z between finite dimensional inner
product spaces, prove that

(T ◦ S)∗ = S∗ ◦ T ∗ : Z → V .

Note the reversal of order when we take adjoints.

3.9. Exercise. If A ∈ M(n, C) and (A∗)ij = Aji is the usual adjoint matrix, consider
the operator LA : Cn → Cn such that LA(z) = A·z. If Cn is given the standard inner
product prove that
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(a) If X = {e1, . . . , en} is the standard orthonormal basis then [LA]XX = A.

(b) (LA)
∗

= LA∗ as operators on Cn.

3.10. Example (Self-Adjointness of Orthogonal Projections). On an unadorned
vector space V the “idempotent” relation P 2 = P identifies the linear operators that
are projections associated with an ordinary direct sum decomposition V = M ⊕N . The
same is true of an inner product space, but if we only know P = P 2 the subspaces M, N
are not necessarily orthogonal. We now show that an idempotent operator P on an inner
product space corresponds to an orthogonal direct sum decomposition V = M⊕̇N if and
only if it is self-adjoint (P ∗ = P ), so that

(50) P 2 = P = P ∗

Discussion: If M ⊥ N it is fairly easy to verify (Exercise 3.11) that the associated
projection PM of V onto M = range(PM ) along N = ker(PM ) is self-adjoint. If v, w ∈ V ,
let us indicate the components by writing v = vM + vN , w = wM + wN . With (49) in
mind, self-adjointness of PM emerges from the following calculation.

(v, P ∗
M (w)) = (PM (v), w) = (vM , wM + wN ) (definition of PM (v) = vM )

= (vM , wM ) (since wN ⊥ wM )

= (vM + vN , wM ) = (v, wM ) = (v, PM (w))

Since the is true for all v ∈ V we get P ∗
M (w) = PM (w) for all w, whence P ∗

M = PM as
operators.

For the converse we must prove: If the projection PM associated with an ordinary
direct sum decomposition V = M ⊕ N is self-adjoint, so that P ∗

M = PM , then the
subspaces must be orthogonal. We leave this proof as an exercise. !

3.11. Exercise. If P : V → V is a linear operator on a vector space such that P 2 = P
it is the projection operator associated with the decomposition

V = R⊕K where R = range(P ), K = ker(P )

If V is an inner product space prove that the subspaces must be orthogonal (R ⊥ K) if
the projection is self-adjoint, so P 2 = P = P ∗. !

Matrix realizations of adjoints are easily computed, provided we restrict attention to
orthonormal bases in both V and W . With respect to arbitrary bases the computation
of [T ∗]XY can be quite a mess.

3.12. Proposition. Let T : V → W be a linear operator between finite dimensional
inner product spaces and let X = {ei}, Y = {fj} be orthonormal bases in V , W . Then

(51) [T ∗]XY = ( [T ]YX)
∗

(taking matrix adjoint on the right)

where A∗ is the usual m × n “adjoint matrix,” the conjugate-transpose of A such that
(A∗)ij = Aji for A ∈M(n×m, K).

Proof: By definition, the entries of [T ]YX are determined by the vector identities

T (ei) =
n

∑

k=1

Tki fk which imply (T (ei), fj)
W

=
n

∑

k=1

Tki (fk, fj)W
= Tji,

for all i, j. Hence

T ∗(fi) =
n

∑

k=1

[T ∗]kiek ⇒ (T ∗(fi), ej) = [T ∗]ji ,
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from which we see that

[T ∗]ij = (T ∗(fj), ei)
V

= (fj , T (ei))W
= (T (ei), fj)W

= [T ]ji = ( [T ]∗)
ij

where (A∗)ij = Aji for any matrix. !

3.13. Exercise. Let VN be the restrictions to [0, 1] of polynomials f ∈ C[x] having
degree ≤ N . Give this (N + 1)-dimensional space of C[0, 1] the usual L2 inner product

(f, h)2 =
∫ 1
0 f(t)h(t) dt inherited from the larger space of continuous functions. Let

D : VN → VN be the differentiation operator

D(a0 + a1t + a2t
2 + . . . + aN tN ) = a1 + 2a2 t + 3a3 t2 + . . . + Nan tN−1

(a) Is D one-to-one? Onto? What are range(D) and ker(D)?

(b) Determine the matrix [D]XX with respect to the vector basis X = {1-, x, x2, . . . , xN}.

(c) Determine the eigenvalues of D : VN → VN and their multiplicities.

(d) Compute the L2-inner product (f, h)2 in terms of the coefficients ak, bk that deter-
mine f and h.

(e) Is D a self-adjoint operator? Skew-adjoint?

3.14. Exercise. If D∗ is the adjoint of the differentiation operator D : VN → VN , entries
D∗

ij in its matrix [D∗]X with respect to the basis X = {1-, x, x2, . . . , xN} are determined

by the vector identities D∗(xi) =
∑N

k=0 D∗
ki xk. By definition of the adjoint D∗ we have

(xi , D(xj))2 = (D∗(xi) , xj)2 =
N

∑

k=0

D∗
ik (xk , xj)2 for 0 ≤ i, j ≤ N

and since X is a basis these identities implicitly determine the D∗
ij . Compute explicit

matrices B and C such that [D∗]X = C·B−1. As in the preceding problem, D(xk) = k·xk−1

and inner products in VN are integrals

(f , h)2 =

∫ 1

0
f(x)·h(x) dx

for polynomials f, h ∈ VN .
Hint: Beware: The powers xi are NOT an orthonormal basis, so you will have to use
some algebraic brute force instead of (51). This could get complicated. For something
more modest, just compute the action of D∗ on the three-dimensional space V = C-
span{1-, t, t2}.

3.15. Exercise. Let V = C∞
c (R) be the space of real-valued functions f(t) on the real

line that have continuous derivatives Dkf of all orders, and have “bounded support” –
each f is zero off of some bounded interval (which is allowed to vary with f). Because
all such functions are “zero near ∞” there is a well defined inner product

(f, h)2 =

∫ ∞

−∞
f(t)h(t) dt

The derivative Df = df/dt is a linear operator on this infinite dimensional space.

(a) Prove that the adjoint of D is skew-adjoint, with D∗ = −D.

127



(b) Prove that the second derivative D2 = d2/dt2 is self-adjoint.

Hint: Integration by parts.

Normal and Self-Adjoint Operators. Various classes of operators T : V → V
can be defined on an finite dimensional inner product space.

1. Self-adjoint: T ∗ = T

2. Skew-adjoint: T ∗ = −T

3. Unitary: T ∗T = I (which implies TT ∗ = I because T : V → V is one-to-one
⇔ onto ⇔ bijective.) Thus “unitary” is equivalent to say-
ing that T ∗ = T−1, at least when V is finite dimensional.
(In the infinite-dimensional case we need both identities
TT ∗ = T ∗T = I to get T ∗ = T−1.)

4. Normal: T ∗T = TT ∗ (T commutes with T ∗)

The spectrum spK(T ) = {λ ∈ K : Eλ(T ) ̸= (0)} of T is closely related to that of T ∗.

3.16. Lemma. On any inner product space

sp(T ∗) = sp(T ) = {λ : λ ∈ sp(T )}

Proof: If (T − λI)(v) = 0 for some v ̸= 0, then 0 = det(T − λI) = det ([T ]X − λIn×n)
for any basis X in V . If X is an orthonormal basis we get [T ∗]X = [T ]∗X = [T ]tX. Then

det ([T ∗]X − λIn×n) = det ([T ]tX − λIn×n) = det ([T ]X − λIn×n)
t

= det ([T ]X − λIn×n) = 0

because
det(At) = det(A) and det(A) = det(A) .

Hence λ ∈ sp(T ∗). Since T ∗∗ = T , we get

sp(T ) = sp(T ∗∗) ⊆ sp(T ∗) ⊆ sp(T ) = sp(T ) !

3.17. Exercise. If A ∈ M(n, K) prove that its matrix adjoint (A∗)ij = Aji has deter-
minant

det(A∗) = det(A).

If T : V → V is a linear map on an inner product space, prove that det(T ∗) = det(T ).

3.18. Exercise. If T : V → V is a linear map on an inner product space, show that the
characteristic polynomial satisfies

pT∗(λ) = pT (λ) or equivalently pT (λ) = pT (λ)

for all λ ∈ K. In particular,

spK(T ∗) = spK(T ) = {λ : λ ∈ spK(T )}.

Proof: Since I∗ = I and (λI)∗ = λI we get

pT∗(λ) = det(T ∗ − λI) = det (T ∗ − (λI)∗)

= det ( (T − λI)∗) = det(T − λI) = pT (λ)
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Recall that µ ∈ spK(T )⇔ pT (µ) = 0. !

VI.4. Diagonalization in Inner Product Spaces.
If M is a T -invariant subspace of inner product space V it does not follow that T ∗(M) ⊆
M . The true relationship between invariance under T and under T ∗ is:

4.1. Exercise. If V is any inner product space and T : V → V a linear map, prove that

(a) A subspace M ⊆ V is T -invariant (so T (M) ⊆M)⇒M⊥ is T ∗-invariant.

(b) If dimK(V ) <∞ (so M⊥⊥ = M) then T (M) ⊆M ⇔ T ∗(M⊥) ⊆M⊥.

4.2. Proposition. If T : V → W is a linear map between finite dimensional inner
product spaces, let R(T ) = range(T ), K(T ) = ker(T ). Then T ∗ : W → V and

K(T ∗) = R(T )⊥ in W

R(T ∗) = K(T )⊥ in V

In particular if T is self-adjoint then ker(T ) ⊥ range(T ) and we have an orthogonal direct
sum decomposition V = K(T )⊕̇R(T ).

Proof: If w ∈W then

T ∗(w) = 0 ⇔ (v, T ∗(w))
V

= 0 for all v ∈ V

⇔ 0 = (v, T ∗(w))V = (T (v), w)W , for all v ∈ V

⇔ w ⊥ R(T ) .

Hence w ∈ K(T ∗) if and only if w ⊥ R(T ). The second part follows because T ∗∗ = T
and M⊥⊥ = M for any subspace. !

We will often invoke this result.

Orthogonal Diagonalization. Not all linear operators T : V → V are diago-
nalizable, let alone orthogonally diagonalizable, but if V is an inner product space we
can always find a basis that at least puts it into upper-triangular form, which can be
helpful. In fact, this can be achieved via an othonormal basis provided the characteristic
polynomial splits into linear factors over K (always true if K = C).

4.3. Theorem (Schur Normal Form). Let T : V → V be a linear operator on a finite
dimensional inner product space over K = R or C such that pT (x) = det(T − xI) splits
over K. Then there are scalars λ1, . . . , λn and an orthonormal basis X in V such that

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 ∗
λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

Proof: Work by induction on n = dimK(V ); the case n = 1 is trivial. For n > 1, since
pT splits there is an eigenvalue λ in K and a vector v0 ̸= 0 such that T (v0) = λv0. Then
λ is an eigenvalue for T ∗, so there is some w0 ̸= 0 such that T ∗(w0) = λw0.

Let M = Kw0; this one-dimensional space is T ∗-invariant, so M⊥ is invariant under
(T ∗)∗ = T and has dimension n − 1. Scale w0 if necessary to make ∥w0∥ = 1. By the
Induction Hypothesis there there is an orthonormal basis X0 = {e1, ..., en−1} in M⊥ such
that

[ T |M⊥]X0
=

⎛

⎜

⎜

⎜

⎝

λ1 ∗
λ2

. . .
0 λn−1

⎞

⎟

⎟

⎟

⎠
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Then letting en = w0 (norm = 1) we get an orthonormal basis for V such that [T ]XX has
the form:

[T ]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 ∗ c1

. . .
...

0 λn−1 cn−1

0 0 λn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where

T (en) = T (w0) = λnen +
n−1
∑

j=1

cj ej

(Remember: M = Kw0 need not be invariant under T .) !

4.4. Exercise. Explain why the diagonal entries in the Schur normal form must be the
roots in K of the characteristic polynomial pT (x) = det(T − xI), each counted according
to its algebraic multiplicity.

Note: Nevertheless, it might not be possible to find an orthonormal basis such that all
occurrences of a particular eigenvalue λ ∈ spK(T ) appear in a consecutive string λ, . . . , λ
on the diagonal. !

Recall that a linear operator T : V → V on an inner product space is normal if it
commutes with its adjoint, so that T ∗T = TT ∗. We will eventually show that when
K = C (or when K = R and the characteristic polynomial of T splits into linear factors:
pT (x) =

∏n
i=1(x − αi) with αi ∈ K), then T is orthogonally diagonalizable if and only

if T is normal. Note carefully what this does not say: T might be (non-orthogonally)
diagonalizable over K = C even if T is not normal. This latter issue can only be resolved
by determining the pattern of eigenspaces Eλ(T ) and demonstrating that they span all
of V .

Figure 6.7. The (non-orthogonal) basis vectors u1 = e1 and u2 = e1 + e2 in Exercise 4.5.

4.5. Exercise. Let {e1, e2} be the standard orthonormal basis vectors in V = K2, and
consider the ordinary direct sum decomposition

V = V1 ⊕ V2 = Ke1 ⊕K(e1 + e2) = K f1 ⊕K f2 where f1 = e1, f2 = e1 + e2 .

These subspaces are not orthogonal with respect to the standard Euclidean inner product

(x1e1 + x2e1 , y1e1 + y2e2) = x1y1 + x2y2

Define a K-linear map T : V → V , letting

T (e1) = 2e1 T (e1 + e2) = 1
2 (e1 + e2)
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(see Figure 6.7). Then T is diagonalized by the basis Y = {f1, f2} with f1 = e1 and
f2 = e1 + e2 (which is obviously not orthonormal), with

[T ]YY =

(

2 0

0 1
2

)

(a) Determine the action of T on the orthonormal basis vectors X = {e1, e2} and find
[T ]XX;

(b) Describe the operator T ∗ by determining its action on the standard orthonormal
basis X, and find [T ∗]XX;

(c) Explain why T is not a normal operator on V . Explain why no orthonormal basis
{f1, f2} in V can possibly diagonalize T .

Hint: The discussion is exactly the same for K = R and C, so assume K = R if that
makes you more comfortable.

Diagonalizing Self-Adjoint and Normal Operators. We now show that
a linear operator T : V → V on a finite dimensional inner product space is orthogonally
diagonalizable if and only if T is normal. First, we analyze the special case of self-adjoint
operators (T ∗ = T ), which motivates the more subtle proof needed for normal operators.

4.6. Theorem (Diagonalizing Self-Adjoint T). On a finite dimensional inner prod-
uct space any self-adjoint linear operator T : V → V is orthogonally diagonalizable.

Proof: If µ, λ ∈ spK(T ), we first observe that:

1. If T = T ∗ all eigenvalues are real, so spK(T ) ⊆ R + i0.

Proof: If v ∈ Eλ(T ), v ̸= 0, we have

λ ∥v∥2 = (Tv, v) = (v, T ∗v) = (v, T v) = (v, λv) = λ ∥v2∥2

which implies λ = λ.

2. If λ ̸= µ in sp(T ) the eigenspaces Eλ(T ) and Eµ(T ) must be orthogonal.

Proof: If v ∈ Eλ(T ), w ∈ Eµ(T ) then

λ(v, w) = (Tv, w) = (v, T ∗w) = (v, µw) = µ (v, w) = µ (v, w)

since eigenvalues are real when T ∗ = T . But µ ̸= λ, hence (v, w) = 0 and Eλ(T ) ⊥
Eµ(T ). Thus the linear span E =

∑

Eλ(T ) (which is always a direct sum) is

actually an orthogonal sum E = ˙⊕
λ∈sp(T )Eλ(T ).

3. If T ∗ = T the span of the eigenspaces is all of V , hence T is orthogonally diagonal-
izable.

Proof: If λ ∈ spK(T ), then Eλ(T ) ̸= (0) and M = Eλ(T )⊥ has dim(M) < dim(V ).
By Exercise 4.1 the orthogonal complement is T ∗-invariant, hence T -invariant be-
cause T ∗ = T . It is easy (see Exercise 4.7 below) to check that if W ⊆ V is
T -invariant and T ∗ = T on V , then the restriction T |W : W → W is self-adjoint
on W if one equips W with the restricted inner product from V .

4.7. Exercise. If T : V → V is linear and T ∗ = T , prove that

(T |W )∗ = (T ∗|W )

for any T -invariant subspace W ⊆ V equipped with the restricted inner product.
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To complete our discussion we show that self-adjoint operators are orthogonally diag-
onalizable, arguing by induction on n = dim(V ). This is clear if dim(V ) = 1, so assume
it true whenever dim(V ) ≤ n and consider a space of dimension n + 1. Since all eigen-
values (roots of the characteristic polynomial) are real there is a nontrivial eigenspace
M = Eλ(T ), and if this is all of V we’re done: T = λI. Otherwise, M has lower di-
mension and by Exercise 4.7 it has an orthonormal basis that diagonalizes T |M . But
V = M⊕̇M⊥ (an orthogonal direct sum), and M = Eλ obviously has an orthonormal
basis of eigenvectors. Combining these bases we get an orthonormal diagonalizing basis
for all of V . !

We now elaborate the basic properties of normal operators on an inner product space.

4.8. Proposition. A normal linear operator T : V → V on a finite dimensional inner
product space has the following properties.

1. If T : V → V is normal, ∥T (v)∥ = ∥T ∗(v)∥ for all v ∈ V .
Proof: We have

∥T (v)∥2 = (Tv, T v) = (T ∗T (v), v) = (TT ∗(v), v)

= (T ∗v, T ∗v) = ∥T ∗(v)∥2

2. For any c ∈ K, T − cI is also normal because (T − cI)∗ = T ∗− cI and cI commutes
with all operators.

3. If T (v) = λv then for the same vector v we have T ∗(v) = λv. In particular,
Eλ(T ∗) = Eλ(T ). (This is a much stronger statement than our earlier observation

that spK(T ∗) = spK(T ) = {λ : λ ∈ spK(T )} ).

Proof: (T − λ) is also normal. Therefore if v ∈ V and T (v) = λv, we have

T (v) = λv ⇒ ((T − λ)∗(T − λ) v , v) = ∥(T − λ) v∥2 = 0

which implies that

0 = ((T − λ)(T − λ)∗ v , v) = ∥(T ∗ − λI) v∥2 ⇒ T ∗(v) = λv

4. If λ ̸= µ in spK(T ), then Eλ ⊥ Eµ.

Proof: If v, w are in Eλ, Eµ then

λ(v, w) = (λv, w) = (Tv, w) = (v, T ∗w) = (v, µ w) = µ(v, w)

since T ∗(w) = µw if T (w) = µ w. Therefore (v, w) = 0 if µ ̸= λ.

If M =
∑

λ∈sp(T ) Eλ(T ) for a normal operator T , it follows that this is a direct sum

of orthogonal subspaces M = ˙⊕
λ∈sp(T )Eλ(T ), and that there is an orthonormal basis

{e1, . . . , en} ⊆M consisting of eigenvectors.

4.9. Corollary. If T : V → V is normal and K = C (or if K = R and the characteristic
polynomial pT splits over R), there is a diagonalizing orthonormal basis {ei} and V is

an orthogonal direct sum ˙⊕
λ∈sp(T )Eλ(T ).

Proof: The characteristic polynomial pT (x) = det(T − xI) splits in C[x], so there is
an eigenvalue λ0 such that T (v0) = λ0v0 for some v0 ̸= 0. The one-dimensional space
M = Cv0 is T -invariant, but is also T ∗-invariant since T ∗(v0) = λ0v0 by (3.). Then

T ∗(M) ⊆M ⇒ T ∗∗(M⊥) = T (M⊥) ⊆M⊥ .
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We also have T ∗(M⊥) ⊆M⊥ because T (M) ⊆M ⇔ T ∗(M⊥) ⊆M⊥. !

4.10. Exercise. If N is a subspace in an inner product space that is invariant under
both T and T ∗, prove that T |N satisfies

(T |N )∗ = (T ∗|N )

Note: Here we do not assume T ∗ = T , which was assumed in Exercise 4.7.

Since T |M⊥ is again a normal operator with respect to the inner product M⊥ inherits
from the larger space V , but dim(M⊥) < dim(V ), we may argue by induction to get an
orthonormal basis of eigenvectors. !

4.11. Theorem (Orthogonal Diagonalization). Let T : V → V be a linear operator
on a finite dimensional inner product space. Assume that the characteristic polynomial
pT (x) splits over K (certainly true for K = C). There is an orthonormal basis that
diagonalizes T if and only if T is normal: T ∗T = TT ∗

Note: It follows that V = ˙⊕
λ∈spK(T )Eλ(T ); in particular, the eigenspaces are mutually

orthogonal. Once the eigenspaces are determined it is easy to construct the diagonalizing
orthonormal basis for T .

Proof: (⇒) has just been done.

Proof: (⇐). If there is an orthonormal basis X = {ei} that diagonalizes T then

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

But [T ∗]XX is the adjoint of the matrix [T ]XX,

[T ∗]XX = [T ]tXX =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .

0 λn

⎞

⎟

⎟

⎟

⎠

Obviously these diagonal matrices commute (all diagonal matrices do), so

[T ∗T ]XX = [T ∗]XX[T ]XX = [T ]XX[T ∗]XX = [TT ∗]XX

which implies T ∗T = TT ∗ as operators on V . !

4.12. Example. Let LA : C2 → C2 be the multiplication operator determined by

A =

(

1 2
0 2

)

so that LA(e1) = e1 and LA(e1 + e2) = 2 ·(e1 + e2), where X = {e1, e2} is the stan-
dard orthonormal basis. As we saw in Chapter 2, [LA]XX = A. But LA is obviously
diagonalizable with respect to the non-orthonormal basis Y = {f1, f2} where f1 = e1,
f2 = e1 + e2. The fi are basis vectors for the (one-dimensional) eigenspaces of LA, which
are uniquely determined without any reference to the inner product in V = C2; if there
were an orthonormal basis that diagonalized LA the eigenspaces would be orthogonal.
which they are not. This operator cannot be orthogonally diagonalized with respect to
the standard inner product in C2. !
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4.13. Exercise. Let T : C2 → C2 be LA for the matrix

A = A∗ =

(

1 −1
−1 2

)

in M(2.C). Determine the eigenvalues in C and the eigenspaces, and exhibit an orthonor-
mal basis Y = {f1, f2} that diagonalizes T .

4.14. Exercise. Prove that |λ| = 1 for all eigenvalues λ ∈ sp(T ) of a unitary operator
(so λ lies on the unit circle if K = C, or λ = ±1 if K = R).

4.14A. Exercise. If P is a projection on a finite dimensional vector space (so P 2 = P ),

(a) Explain why P is diagonalizable, over any field K. What are the eigenvalues and
eigenspaces?

(b) Give an explicit example of a projection operator on a finite dimensional inner
product space that is not orthogonally diagonalizable.

4.14B. Exercise. If P is a projection operator (so P 2 = P ) on a finite dimensional
inner product space, prove that P is a normal operator ⇔ K(P ) = ker(P ) and R(P ) =
range(P ) are orthogonal subspaces.
Note: (⇒) is trivial since K(P ) = Eλ=0(P ) and R(P ) = Eλ=1(P ).

4.14C. Exercise. A projection operator P (with P 2 = P ) on an inner product space is
fully determined once we know its kernel K(P ) and range R(P ), since V = R(P )⊕K(P ).
The adjoint P ∗ is also a projection operator because (P ∗P ∗) = (PP )∗ = P ∗.

(a) In an inner product space, how are K(P ) and R(P ) related to K(P ∗) and R(P ∗)?

(b) For the non-orthogonal direct sum decomposition of Exercise VI-4.5 give explicit
descriptions of the subspaces K(P ∗) and R(P ∗). (Find bases for each.)

If T : V → V is an arbitrary linear operator on an inner product space we showed in
IV.3.16 that sp(T ∗) is equal to sp(T ); in VI-3.48 we showed that

Eλ(T ∗) = Eλ(T ) (λ ∈ sp(T ))

for normal operators. Unfortunately the latter property is not true in general.

4.14D. Exercise. If T : V → V is a linear operator on an inner product space and
λ ∈ sp(T ), prove that

(a) Eλ(T ∗) = K(T ∗ − λI) is equal to R(T − λI)⊥.

(b) dim Eλ̄(T ∗) = dim Eλ(T ).

(c) T diagonalizable ⇒ T ∗ is diagonalizable.

As the next example shows, Eλ(T ∗) = K(T ∗ − λI) is not always equal to Eλ(T ) unless
T is normal.

4.14E. Exercise. If P : V → V is an idempotent operator on a finite dimensional vector
space (so P 2 = P ), explain why P must be diagonalizable over any field. If P ̸= 0 and
P ̸= I, what are its eigenvalues and its eigenspaces.

4.14F. Exercise. Let P be the projection operator on an inner product space V corre-
sponding to a non-orthogonal direct sum decomposition V = R(P )⊕K(P ). Its adjoint
P ∗ is also a projection, onto R(P ∗) along K(P ∗).

(a) What are the eigenvalues and eigenspaces for P and P ∗?
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(b) For λ = 1, is Eλ(T ∗) = K(T ∗ − λI) is equal to Eλ(T )?

Hint: See Exercise VI-4.14C and D.

Unitary Equivalence of Operators. We say that two operators T , T ′ on a
vector space V are similar, written as T ′ ∼ T , if there is an invertible linear operator S
such that T ′ = SAS−1; this means they are represented by the same matrix [T ′]YY =
[T ]XX with respect to suitably chosen bases in V . We say T ′ is unitarily equivalent
to T if there is a unitary operator U such that T ′ = UTU∗(= UTU−1). This relation,
denoted T ′ ∼= T , is an RST equivalence relation between operators on an inner product
space, but is more stringent than mere similarity. We now show T ′ ∼= T if and only if
there are orthonormal bases X, Y such that [T ′]YY = [T ]XX.

4.15. Definition. A linear isometry is a linear operator U : V → W between inner
product spaces that preserve distances in mapping points from V into W ,

(52) ∥Uv − Uv′∥W = ∥U(v − v′)∥W = ∥v − v′∥V ;

in particular ∥U(v)∥W = ∥v∥V for all v ∈ V . Isometries are one-to-one but need not be
bijections unless dim V = dim W (see exercises below).

A linear map U : V → W is unitary if U∗U = idV and UU∗ = idW , which means
U is invertible with U−1 = U∗ (hence dim V = dim W ). Obviously the inverse map
U−1 : W → V is also unitary. Unitary operators U : V →W are also isometries since

∥Ux∥2W = (Ux, Ux)W = (x, U∗Ux)V = ∥x∥2V ,

Thus unitary maps are precisely the bijective linear isometries from V to W .

If V is finite dimensional and we restrict attention to the case V = W , either of the
conditions UU∗ = idV or U∗U = idV implies U is invertible with U−1 = U∗ because

U one-to-one ⇔ U is surjective ⇔ U is bijective,

for any linear operator U : V → V when dim(V ) <∞.

4.16. Exercise. If V, W are inner product spaces of the same finite dimension, explain
why there must exist a bijective linear isometry T : V →W . Is T unique? Is the adjoint
T ∗ : W → V also an isometry?

4.17. Exercise. Let V = Cm, W = Cn with the usual inner products. Exhibit examples
of linear operators U : V →W such that

(a) UU∗ = idW but U∗U ̸= idV .

(b) U∗U = idV but UU∗ ̸= idW .

Note: This might not be possible for all choices of m, n (for instance m = n).

4.18. Exercise. If m < n and the coordinate spaces Km, Kn are equipped with the
standard inner products, consider the linear operator

T : K
m → K

n T (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , , 0)

This is an isometry from Km into Kn, with trivial kernel K(T ) = (0) and range R(T ) =
Km × (0) in Kn = Km ⊕ Kn−m.

(a) Provide an explicit description of the adjoint operator T ∗ : Kn → Km and deter-
mine K(T ∗), R(T ∗).
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(b) Compute the matrices of [T ] and [T ∗] with respect to the standard orthonormal
bases in Km, Kn.

(c) How is the action of T ∗ related to the subspaces K(T ), R(T ∗) in Km and R(T ), K(T ∗)
in Kn? Can you give a geometric description of this action?

Unitary operators can be described in several different ways, each with its own ad-
vantages in applications.

4.19. Theorem. The statements below are equivalent for a linear operator U : V →W
between finite dimensional inner product spaces.

(a) UU∗ = idW and U∗U = idV (so U∗ = U−1 and dim V = dim W ).

(b) U maps some orthonormal basis {ei} in V to an orthonormal basis {fi = U(ei)}
in W .

(c) U maps every orthonormal basis {ei} in V to an orthonormal basis {fi = U(ei)}
in W .

(d) U is a surjective isometry, so distances are preserved:

∥U(x)− U(y)∥W = ∥x− y∥V for x, y ∈ V

(Then U is invertible and U−1 is also an isometry).

(e) U is a bijective map that preserves inner products, so that

(U(x), U(y))W = (x, y)V for all x, y ∈ V.

Figure 6.8. The pattern of implications in proving Theorem 4.19.

Proof: We prove the implications shown in Figure 6.8.

Proof: (d) ⇔ (e). Clearly (e)⇒ (d). For the converse, (d) implies U preserves lengths
of vectors, with V ertUx∥W = ∥x∥V for all x. Then by the Polarization Identity for inner
products

(x, y) =
1

4

3
∑

k=0

1

ik
∥x + iky∥2 ,

so inner products are preserved, proving (d) ⇒ (e) when K = C; same argument but
with only 2 terms if K = R.

Proof: (e) ⇒ (c) ⇒ (b). These are obvious since “orthonormal basis” is defined in
terms of the inner product. For instance if (e) holds and X = {ei} is an orthonormal
basis in V then Y = {fi = U(ej)} is an orthonormal family in W because

(fi, fj)W = (U(ei), U(ej))W = (ei, U
∗Uej)V = (ei, ej)V = δij (Kronecker delta).
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But
K-span{fj = U(ej)} = U(K-span{ej}) = U(V ) = W ,

so Y spans W and therefore is a basis.

Proof (a) ⇔ (e). We have

U∗U = idV ⇔ U∗Ux = x for all x⇔ (Ux, Uy)W = (x, U∗Uy)V = (x, y)V

for all x, y ∈ V .

Proof: (b)⇒ (e). Given an orthonormal basis X = {ei} in V such that the vectors Y =
{fi = U(ei)} are an orthonormal basis in W , we may write x, y ∈ V as x =

∑

i(x, ei) ei,
etc. Then

U(x) =
∑

i

(x, ei)V
U(ei) =

∑

i

(x, ei)V
fi, etc ,

hence by orthonormality

(Ux, Uy)W = (
∑

i

(x, ei)V
fi ,

∑

j

(y, ej)V
fj)W

=
∑

i,j

(x, ei)V
(y, ej)

V
(fi, fj)W

=
∑

k

(x, ek)
V
(ek, y)

V
= (x, y)V !

Here we applied a formula worth remembering (Parseval’s identity).

4.20. Lemma (Parseval). If x =
∑

i aiei, y =
∑

bjej with respect to an orthonormal
basis in a finite dimensional inner product space then (x, y) =

∑n
k=1 akbk. Equivalently,

since ai = (x, ei) , ... etc, we have

(x, y) =
n

∑

k=1

(x, ek)(ek, y) for all x, y

in any finite dimensional inner product space, since (y, ek) = (ek, y). !

Unitary Operators vs Unitary Matrices.

4.21. Definition. A matrix A ∈ M(n, K) is unitary if AA∗ = I (which holds ⇔ AA∗ =
I ⇔ A∗ = A−1), where A∗ is the adjoint matrix such that (A∗)ij = Aji. The set of
all unitary matrices is a group since products and inverses of such matrices are again
unitary. When K = C this is the unitary group

U(n) = {A ∈M(n, C) : A∗A = I} = {A ∈M(n, C) : A∗ = A−1} .

But when K = R and A∗ = At (the transpose matrix), it goes by another name and is
called the orthogonal group,

O(n) = {A ∈ M(n, R) : AtA = I} = {A ∈ M(n, R) : At = A−1}

Both groups lie within the general linear group of nonsingular matrices GL(n, K) =
{A : det(A) ̸= 0}, and both contain noteworthy subgroups

Special Unitary Group: SU(n) = {A : A∗A = I and det(A) = +1}
Special Orthogonal Group: SO(n) = {A : AtA = I and det(A) = +1}

The group SU(3), for instance, seems to be the symmetry group that governs the relations
between electromagnetic forces and the weak and strong forces of nuclear physics. As we
will see in the next section, SO(3) is the group of rotations in Euclidean space R3, by
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any angle about any oriented line through the origin (with a similar interpretation for
SO(n) in higher dimensional spaces Rn).

Given a matrix A ∈M(n, K) it is important to know when the operator LA : Kn → Kn

is unitary with respect to the standard inner product. The answer extends the list of
condititions (a) – (e) of Theorem VI-4.19 describing when an operator is unitary, and is
quite useful in calculations.

4.22. Proposition. If A ∈M(n, K) the following conditions are equivalent.

1. LA : Kn → Kn is unitary;

2. A is a unitary matrix, so A∗A = AA∗ = I in M(n, K)

3. The rows in A form an orthonormal basis in Kn.

4. The columns in A form an orthonormal basis in Kn.

Proof: With respect to the standard basis X = {e1, . . . , en} in Kn we know that [LA]X =
A, but since X is an orthonormal basis we also have [(LA)∗]X = [LA]∗X = A∗ (the adjoint
matrix), by Exercise 3.12. Next observe that

LA∗ = (LA)
∗

as operators on Kn

(This may sound obvious, but it actually needs to be proved keeping in mind how the
various “adjoints” are defined – see Exercise 4.24 below.) Then we get

A∗A = I ⇔ idKn = [LA∗A]X = [LA∗ ]X · [LA]X = [(LA)∗]X · [LA]X

⇔ (LA)∗LA = idKn ⇔ (LA is a unitary operator) ,

proving (1.) ⇔ (2.)
By definition of row-column matrix multiplication we have

δij = (AA∗)ij =
∑

k

Aik(A∗)kj =
∑

k

AikAjk = (Rowi(A) , Rowj(A))
Kn

This says precisely that the rows are an orthonormal basis with respect to the standard
inner product in Kn. Thus (2.) ⇔ (3.), and similarly A∗A = I ⇔ the columns form an
orthonormal basis in Kn. !

A similar criterion allows us to decide when a general linear operator is unitary.

4.23. Proposition. A linear operator T : V → V on a finite dimensional inner product
space is unitary⇔ its matrix A = [T ]X with respect to any orthonormal basis is a unitary
matrix (so AA∗ = A∗A = I).

Proof: For any orthonormal basis we have

I = [idV ]X = [T ∗T ]X = [T ∗]X [T ]X = ([T ]X)
∗
[T ]X = A∗A

and similarly AA∗ = I, so A is a unitary matrix.
Conversely, if A = [T ]X is a unitary matrix we have

(Tei, T ej) = (
∑

k

Aki ek ,
∑

ℓ

Aℓj ej ) =
∑

k,ℓ

AkiAℓj δkℓ

=
∑

k

Aki(A
∗)jk = (AA∗)ji = δji = (ei, ej)

Thus T maps orthonormal basis X to a new orthonormal basis Y = {T (ei)}, and T is
unitary by Theorem 4.19(c). !
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4.24. Exercise. Prove that LA∗ = (LA)
∗

when Kn is given the standard inner product.
Hint: Show that (A∗x,y) = (x, Ay) for the standard inner product.

This remains true when A in an n×m matrix, LA : Km → Kn, and (LA)∗ : Kn → Km.

4.24A. Exercise. If A ∈M(n, C) give a careful proof that A∗A = I ⇔ AA∗ = I.

4.25. Exercise. Given two orthonormal bases {ei}, {fj} in finite dimensional inner
product spaces V , W of the same dimension, construct a unitary operator U : V → W
such that U(ei) = fi for all i.

Change of Orthonormal Basis. If T : V → V is a linear operator on a finite
dimensional inner product space, and we know its matrix [T ]XX with respect to one
orthonormal basis, what is its matrix realization with respect to a different orthonormal
basis Y?

4.26. Definition. Matrices A, B ∈ M(n, K) are unitarily equivalent, indicated by
writing A ∼= B, if there is some unitary matrix S ∈ M(n, K) such that B = SAS∗ =
SAS−1. !

4.27. Theorem (Change of Orthonormal Basis). If X = {ei} and Y = {fj} are
orthonormal bases in a finite dimensional inner product space and T : V → V is any
linear operator, the corresponding matrices A = [T ]XX and B = [T ]YY are unitarily
equivalent: there is some unitary matrix S such that

(53) [T ]YY = S [T ]XXS∗ = S [T ]XXS−1 where S = [idV ]YX = [idV ]−1
XY = [idV ]∗XY

The identity (53) remains true if the transition matrix S is multiplied by any scalar such
that |λ|2 = λλ = 1.

Proof: For arbitrary vector bases X, Y in V we have [id]XY = [id]−1
YX and

(54) [T ]YY = [id]YX · [T ]XX · [id]XY = S [T ]XXS−1

where S = [id]YX is given by the vector identities ei = id(ei) =
∑

j Sjifj . But we also
have ei =

∑

j(ei, fj) fj , so Sij = (ej , fi), for 1 ≤ i, j ≤ n.
The transition matrix S in (54) is unitary because Sij = (ej , fi) ⇒

(Rowi(S) , Rowj(S))
Kn =

∑

k

SikSjk =
∑

k

(ek, fi) (ek, fj)

=
∑

k

(fj , ek) (ek, fi) = (fj , fi) = δij

by Parseval’s identity. Then S∗ = S−1 = [id]−1
YX = [id]XY by Theorem 4.22, and

[T ]YY = S [T ]XXS∗ = S [T ]XXS−1
!

We conclude that the various matrix realizations of T with respect to orthonormal bases
in V are related by unitary equivalence (similarity modulo a unitary matrix) rather than
similarity modulo a matrix that is merely invertible. Unitary equivalence is therefore a
more stringent condition on two matrices than similarity (as defined in Chapter V).

Elements U in the unitary group U(n) act on matrix space X = M(n, C) by conjuga-
tion, sending

A )→ UAU−1 = UAU∗ .

This group action U(n)×X → X partitions X into disjoint orbits

OA = U(n) · A = {UAU∗ : U ∈ U(n)} ,
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which are the the unitary equivalence classes in matrix space. There is a similar group
action O(n)×M(n, R)→ M(m, R) of the orthogonal group on real matrices. Recall that
the similarity class of an n × n matrix A is its orbit GL(n, K) · A = {EAE−1 : E ∈
GL(n, K)} under the action of the general linear group GL(n, K) = {A : det(A) ̸= 0},
which is considerably larger than U(n) or O(n) and has larger orbits.

Diagonalization over K = C: A Summary. We recall that the spectra
spC(T ) of operators over C and their adjoints have the following properties.

1. For any T , sp(T ∗) = sp(T ) and dim Eλ(T ∗) = dim Eλ(T ). But as we will see in
4.14E below, the λ̄ eigenspace Eλ̄(T ∗) is not always equal to Eλ(T ) unless T is
normal.

2. If T = T ∗ then T is orthogonally diagonalizable, and all eigenvalues are real because
T (v) = λ⇒

λ∥v∥2 = (T (v), v) = (v, T ∗(v)) = (v, λv) = λ∥v∥2

3. If T is unitary then all eigenvalues satisfy |λ| = 1 (they lie on the unit circle in C),
because

T (v) = λ · v ⇒ ∥v∥2 = (T ∗Tv, v) = (Tv, T v) = (λv, λv) = |λ|2 · ∥v∥2

⇒ |λ|2 = 1 if v ̸= 0

4. If T is skew-adjoint, so T ∗ = −T , then all eigenvalues are pure imaginary because

λ∥v∥2 = (Tv, v) = (v, T ∗v) = (v,−T (v)) = (v,−λv) = −λ∥v∥2

Consequently, λ = −λ and λ ∈ 0 + iR in C.

5. A general normal operator is orthogonally diagonalizable, but there are no restric-
tions on the pattern of eigenvalues.

In Theorem 4.11 we proved the following necessary and sufficient condition for a linear
operator on a complex inner product space to be diagonalizable.

4.28. Theorem (Orthogonal Diagonalization). A linear operator T : V → V on
a finite dimensional complex inner product space is orthogonally diagonalizable ⇔ T is
normal (so T ∗T = TT ∗). !

VI.5. Some Operators on Real Inner Product Spaces:

Reflections, Rotations and Rigid Motions.
All this works over K = R except that in this context unitary operators are referred
to as orthogonal transformations. The corresponding matrices A = [T ]X,X with
respect to orthonormal bases satisfy AtA = I = AAt, so At = A−1 in M(n, R). An
orthogonal transformation might not have enough real eigenvalues to be diagonalizable,
which happens ⇔ the eigenspaces Eλ(T ) (λ ∈ R) fail to span V . In fact there might not
be any real eigenvalues at all. For example, if Rθ = (counterclockwise rotation about
origin by θ radians) in R2, and if θ is not an integer multiple of π, then with respect to
the standard R-basis X = {e1, e2} we have

[Rθ]XX =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

whose complex eigenvalues are eiθ and e−iθ; there are no real eigenvalues if θ ̸= nπ, even
though Rθ is a normal operator. (A rotation by θ ̸= nπ radians cannot send a vector
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v ̸= 0 to a scalar multiple of itself.)

The Group of Rigid Motions M(n). Rigid motions on Rn are the bijective
maps ρ : Rn → Rn that preserve distances between points,

∥ρ(x)− ρ(y)∥ = ∥x− y∥ for all x, y .

We do not assume ρ is linear. The rigid motions form a group M(n) under composition;
it includes two important subgroups

1. Translations: Operators T = {tb : b ∈ Rn} where

tb(x) = x + b for all x ∈ R
n (b ∈ R

n fixed)

Under the bijective map φ : Rn → T with φ(t) = tb we have φ(s + t) = φ(s) ◦ φ(t)
and φ(0) = idRn . Obviously translations are isometric mappings since

∥ tb(x)− tb(y)∥ = ∥(x + b)− (y − b)∥ = ∥x− y∥ for all b and x, y

but they are not linear operators on Rn (unless b = 0) because the zero element
does not remain fixed: tb(0) = b.

2. Linear Isometries: Operators H = {LA : A ∈ O(n)} where LA(x) = A·x and A
is any orthogonal real n× n matrix (so A is invertible with At = A−1).

Although rigid motions need not be linear operators, it is remarkable that they are
nevertheless simple combinations of a linear isometry (an orthogonal linear mapping on
Rn) and a translation operator.

(55) ρ(x) = (tb ◦ LA)(x) = A·x + b (b ∈ R
n, A ∈ O(n))

for all x ∈ Rn. In particular, any rigid motion ρ : Rn → Rn that leaves the origin fixed
is automatically linear.

5.1 Proposition. If ρ : Rn → Rn is a rigid motion that fixes the origin (so ρ(0) = 0),
then ρ is in fact a linear operator on Rn, ρ = LA for some A ∈ O(n). In general, every
rigid motion is a composite of the form (55).

Proof: The second statement is immediate from the first, for if ρ moves the origin to
b = ρ(0), the operation t−b ◦ρ is a rigid motion that fixes the origin, and ρ = tb ◦(t−b◦ρ).

To prove the first assertion, let {ej} be the standard orthonormal basis in Rn written
as column vectors and let e′j = ρ(ej). Since ρ(0) = 0 lengths are preserved because
∥ρ(x)∥ = ∥ρ(x)− ρ(0)∥ = ∥x∥, and then inner products are also preserved because

−2 (ρ(x), ρ(y)) = ∥ρ(x)− ρ(y)∥2 − ∥ρ(x)∥2 − ∥ρ(y)∥2

= ∥x− y∥2 − ∥x∥2 − ∥y∥2 = −2 (x,y)

Hence the images e′i = ρ(ei) of the standard basis vectors are also an orthonormal basis.
Now let A be the matrix whose ith column is e′i = col(0, . . . , 1, . . . , 0), so LA(ei) =

A · ei = e′i. Then A is in O(n), LA and (LA)−1 = LA−1 are both linear orthogonal
transformations on Rn, and the product L−1

A ◦ ρ as a rigid motion that fixes each ei as
well as the zero vector. But any such motion must be the identity map. In fact if x ∈ Rn

then (x, ei) = (ρ(x), ρ(ei)) = (ρ(x), e′i), and since e′i = ei we get

xi = (x, ei) = (ρ(x), e′i) = (ρ(x), ei) = x′
i

for all i. Hence x′ = ρ(x) = x for all x, as claimed. !
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Every rigid motion on Rn,

T (x) = A·x + tb = (tb ◦ LA) with A ∈ O(n) and b ∈ Rn

has two components, an orthogonal linear map LA and a translation tb. Rigid motions
are of two types, orientation preserving and orientation reversing. Translations
always preserve orientation of geometric figures, so the nature of a rigid motion T is
determined by its linear component LA, which preserves orientation if det(A) > 0 and
reverses it if det(A) < 0. As a simple illustration, consider the matrices (with respect to
the standard basis X in R2) of a rotation about the origin Rθ (orientation preserving),
and a reflection ry across the y-axis (orientation reversing).

[Rθ]XX =

(

cos θ − sin θ
sin θ cos θ

)

[ry ]XX =

(

−1 0
0 1

)

Rotation: Rθ, det [Rθ] = +1 Reflection: ry, det [ry] = −1

Rotations and reflections can be described in terms of the inner product in Rn.

5.2 Example (Reflections in Inner Product Spaces). If V is a finite dimensional
inner product space over R, a hyperplane in V is any vector subspace M with dim(M) =
n− 1 (so M has “codimension 1” in V ). This determines a reflection of vectors across
M .

Discussion: Since V = M⊕̇M⊥ (orthogonal direct sum) every vector v splits uniquely as
v = v∥+v⊥ (with “parallel component” v∥ ∈M , and v⊥ ∈M⊥). By definition, reflection
rM across M is the (linear) operator that reverses the “perpendicular component” v⊥,
so that

(56) rM (v∥ + v⊥) = v∥ − v⊥ = v − 2·v⊥

as shown in Figure 6.9.

Figure 6.9. Geometric meaning of reflection rM across an (n−1)-dimensional hyperplane
in an n-dimensional inner product space over R

Now, let {e1, ..., en−1} be an orthonormal basis in the subspace M and let en be v⊥
renormalized to make ∥en∥ = 1, so M⊥ = Ren. We have seen that

v∥ =
n−1
∑

k=1

(v, ek) ek ,

so v⊥ = v − v∥ = c · en for some c ∈ R. But in fact c = (v, en) because

c = (cen, en) = (v − v∥, en) = (v, en) + 0
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This yields an important formula involving only the inner product.

(57) rM = v∥ − v⊥ = (v∥ + v⊥)− 2·v⊥ = v − 2(v, en)·en

Note: we need ∥en∥ = 1 to make this work. !

5.3 Exercise. Show that (57) implies the following properties for any reflection.

(a) rM ◦ rM = idV , so rM is its own inverse;

(b) det(rM ) = −1, so all reflections are orientation-reversing.

(c) M is the set of fixed points Fix(rM ) = {x : rM (x) = x}. !

5.4 Exercise. Prove that every reflection rM on an inner product space preserves
distances,

∥rM (x) − rM (y)∥ = ∥x− y∥

for all x, y ∈ V .

5.5 Exercise. If M is a hyperplane in a finite dimensional real inner product space V
and b /∈ M , the translate b + M (a coset in V/M) is an n − 1 dimensional hyperplane
parallel to M (but is not a vector subspace). Explain why the operation that reflects
vectors across M ′ = b + M must be the rigid motion T = tb ◦ rM ◦ t−b.
Hint: Check that T 2 = T and that the set of fixed points Fix(T ) = {v ∈ V : T (v) = v}
is precisely M ′.

In another direction, we have Euler’s famous geometric characterization of orientation
preserving orthogonal transformations LA : R3 → R3 with AtA = I = AAt in M(3, R)

and det(A) > 0. In fact, det(A) = +1 since AtA = I implies ( det(A))
2

= 1, so
det(A) = ±1 for A ∈ O(n).

5.6 Theorem (Euler). Let A ∈ SO(3) = {A ∈ M(3, R) : AtA = I and det(A) = 1}. If
A ̸= I then λ = 1 is an eigenvalue such that dimR (Eλ=1) = 1. If v0 ̸= 0 in Eλ=1 and
ℓ = R v0 there is some angle θ /∈ 2πZ such that

LA = Rℓ,θ = (rotation by θ radians about the oriented line ℓ through the origin).

(Rotations by a positive angle are determined by the usual “right hand rule,” with your
thumb pointing in the direction of v0).

Proof: The characteristic polynomial pT (x) for T = LA has real coefficients. Regarded
as a polynomial pT ∈ R[x] ⊆ C[x], its complex roots are either real or occur in conjugate
pairs z = x + iy, z = x − iy with y ̸= 0. Since degree(pT ) = 3 there must be at least
one real root λ. But because T = LA is unitary its complex eigenvalues have |λ| = 1,
because if v ̸= 0 in Eλ,

∥v∥2 = (T (v), T (v)) = (λv, λv) = |λ|2 ∥v∥2 ⇒ |λ|2 = 1 .

If λ is real the only possibilities are λ = ±1. The real roots cannot all be −1, for then
det(T ) = (−1)3 = −1 and we require det(T ) = +1. Thus λ = 1 is an eigenvalue, and we
will see below that dimR (Eλ=1) = 1.

If v0 ̸= 0 in Eλ=1, let M = Rv0. Then M⊥ is 2-dimensional and is invariant under
both T and T ∗ = T−1. Furthermore (see Exercise 5.7) the restriction T |M⊥ is a unitary
(= orthogonal) transformation on the 2-dimensional space M⊥ equipped with the inner
product it inherits from R3. If we fix an orthonormal basis {f1, f2} in M⊥ and let
f0 = v0/∥v0∥, we obtain an orthonormal basis for R3. The matrix A of T |M⊥ with
respect to X0 = {f1, f2} is in

SO(2) = {A ∈M(2, R) : AtA = I and det(A) = 1}
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because the matrix of T with respect to the orthonormal basis X = {f0, f1, f2} is

[T ]X =

[

1 0
0 A

]

.

Thus A ∈ SO(2) because 1 = det ([T ]X) = 1 · det(A). As noted below in Exercise VI-5.8,
if A ∈ SO(2) the rows form an orthonormal basis for R2 and so do the columns, hence
there exist a, b ∈ R such that

a2 + b2 = 1 and A =

(

a −b
b a

)

It follows easily that there is some θ ∈ R such that

A =

(

cos θ − sin θ
sin θ cos θ

)

.

This is the matrix A = [Rθ]X0
of a rotation by θ radians about the origin in M⊥, so

T : R3 → R3 is a rotation Rℓ,θ by θ radians about the axis ℓ = Rv0. !

We cannot have θ ∈ 2πZ because then T = id is not really a rotation about any well-
defined axis); that’s why we required A ̸= I in the theorem.

5.7 Exercise. Let T : V → V be a linear operator on a finite dimensional inner product
space, and M a subspace that is invariant under both T and T ∗. Prove that the restriction
(T |M) : M →M is unitary with respect to the inner product M inherits from V .
Hint: Recall Exercise 4.10.

5.8 Exercise. If A = [a, b; c, d] ∈ M(2, R) verify that AtA = I ⇔ the rows of A are an
orthonormal basis in R2, so that

a2 + b2 = 1 c2 + d2 = 1 ac + bd = 0

If, in addition we have
det(A) = ad− bc = +1

prove that c = −b, d = a and a2 + b2 = 1, and then explain why there is some θ ∈ R

such that a = cos(θ) and b = − sin(θ).
Note: Thus LA : R2 → R2 is a counterclockwise rotation about the origin by θ radians.
Hint: For the last step, think of a2+b2 = 1 in terms of a right triangle whose hypoteneuse
has length = 1.

5.9 Exercise. Consider the linear map LA : R2 → R2 for the matrix

A =

(

−1 1
1 1

)

in O(2)

What is the geometric action of LA? If a rotation, find the angle θ; if not, show that the
set of fixed points for LA is a line through the origin L, and LA = (reflection across L).

5.10 Exercise. If A =

[

a b
c d

]

is in O(2) and has det(A) = −1,

1. Prove that LA : R2 → R2 is reflection across some line ℓ through the origin.

2. Explain why

a2 + b2 = 1 c2 + d2 = 1 ac + bd = 0 det(A) = ad− bc = −1

and then show there is some θ such that A =

[

cos θ sin θ
sin θ − cos θ

]
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Note: The preceding matrix is not a rotation matrix since det(A) = −1. The angle θ
determined here is related to the angle between the line of reflection ℓ and the +x-axis.
Hints: The map LA : C2 → C2 is unitary, and in particular is orthogonally diagonal-
izable. What are the possible patterns of complex eigenvalues (counted according to
multiplicity), and how do they relate to the requirement that det(A) = −1?

VI.6. Spectral Theorem for Vector and Inner Product
Spaces.
If V is a vector space over a field K (not necessarily an inner product space), and if
T : V → V is diagonalizable over K, then V =

⊕

λ∈sp(T ) Eλ(T ) (an ordinary direct sum)

– see Proposition II-3.9. This decomposition determines projection operators Pλ = P 2
λ

of V onto Eλ(T ) along the complementary subspaces
⊕

µ̸=λ Eµ(T ). The projections
Pλ = Pλ(T ) have the following easily verified properties:

1. P 2
λ = Pλ

2. PλPµ = PµPλ = 0 if λ ̸= µ in sp(T );

3. I =
∑

λ Pλ;

Condition (1.) simply reflects the fact that Pλ is a projection operator. Each v ∈ V has
a unique decomposition v =

∑

λ vλ with vλ ∈ Eλ(T ), and (by definition) Pλ(v) = vλ.
Property (3.) follows from this. For (2.) write v =

∑

λ vλ and consider distinct α ̸= β in
sp(T ). Then

PαPβ(v) = PαPβ(
∑

λ

vλ) = Pα(vβ) = 0 (since α ̸= β)

and similarly for PβPα. The operators {Pλ : λ ∈ spK(T )} are the spectral projections
associated with the diagonalizable operator T .

Now let V be an inner product space. If T is orthogonally diagonalizable we have
additional information regarding the spectral projections Pλ(T ):

4. The eigenspaces Eλ(T ) are orthogonal, Eλ ⊥ Eµ if λ ̸= µ, and V = ˙⊕
λEλ(T ) is

an orthogonal direct sum decomposition.

5. The Pλ are orthogonal projections, hence they are self-adjoint in addition to having
the preceeding properties, so that P 2

λ = Pλ = P ∗
λ .

In this setting we can prove useful facts relating diagonalizability and eigenspaces of an
operator T : V → V and its adjoint T ∗. These follow by recalling that there is a natural
isomorphism between any finite dimensional inner product space V and its dual space
V ∗, as explained in Lemma VI-3.2. Therefore given any basis X = {e1, . . . , en} in V
there exists within V a matching basis X′ = {f1, . . . , fn} that is “dual to” X in the sense
that

(ei , fj) = δij (Kronecker delta)

These paired bases can be extremely useful in comparing properties of T with those of
its adjoint T ∗ .

6.1 Exercise. Let X = {e1, . . . , en} be an arbitrary basis (not necessarily orthonormal)
in a finite dimensional inner product space V .

(a) Use induction on n to prove that there exist vectors Y = {f1, . . . , fn} such that
(ei, fj) = δij .

(b) Explain why the fj are uniquely determined and a basis for V .
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Note: If the initial basis X is orthonormal then fi = ei and the result trivial; we are
interested in arbitrary bases in an inner product space.

6.1A Exercise. Let V be an inner product space and T a linear operator that is
diagonalizable in the ordinary sense, but not necessarily orthogonally diagonalizable.
Prove that

(a) The adjoint operator T ∗ is diagonalizable. What can you say about its eigenvalues
and eigenspaces?

(b) If T is orthogonally diagonalizable so is T ∗.

Hint: If {ei} diagonalizes T what does the “dual basis” {fj} of Exercise 6.1 do for T ∗?

6.1B Exercise. If V is a finite dimensional inner product space and T : V → V is
diagonalizable in the ordinary sense, prove that the spectral projections for T ∗ are the
adjoints of those for T :

Pλ(T ∗) = (Pλ(T ))
∗

for all λ ∈ sp(T )

Hint: Use VI-6.1A and dual diagonalizing bases; we already know sp(T ∗) = sp(T ).

Note: (Pλ(T ))
∗

might differ from Pλ(T ).

We now procede to prove the spectral theorem and examine its many applications.

6.2 Theorem (The Spectral Theorem). If a linear operator T : V → V is diagonal-
izable on a finite dimensional vector space V over a field K, and if {Pλ : λ ∈ spK(T )} are
the spectral projections, then T has the following description in terms of those projections

(58) T =
∑

λ∈sp(T )

λ·Pλ

If f(x) =
∑

k=0 ckxk ∈ K[x] is any polynomial the operator f(T ) =
∑

k=0 ckT k takes the
form

(59) f(T ) =
∑

λ∈sp(T )

f(λ)·Pλ

In particular, the powers T k are diagonalizable, with T k =
∑

λ∈sp(T ) λk ·Pλ.
If we define the map Φ : K[x] → HomK(V, V ) from polynomials to linear operators

on V , letting Φ(1-) = I and

Φ(f) =
∑

k=0

ckT k for f(x) =
∑

k=0

ckxk ,

then Φ is linear and a homomorphism of associative algebras over K , so that

(60) Φ(fg) = Φ(f) ◦ Φ(g) for f, g ∈ K[x]

Finally, Φ(f) = 0 (the zero operator on V ) if and only if f(λ) = 0 for each λ ∈ spK(T ).
Thus Φ(f) = Φ(g) if and only if f and g take same values on the spectrum sp(T ), so
many polynomials f ∈ K[x] can yield the same operator f(T ).

Note: This is all remains true for orthogonally diagonalizable operators on an inner
product space, but in this case we have the additional property

(61) Φ( f ) = Φ(f)∗ (adjoint operator)
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where f(x) =
∑

k=0 ckxk and c is the complex conjugate of c. !

Proof of (6.2): If v ∈ V decomposes as v =
∑

λ vλ ∈
⊕

λ∈sp(T ) Eλ(T ), then

T (v) = T(
∑

λ

vλ) =
∑

λ

λ · vλ =
∑

λ

λ · Pλ(v)

= (
∑

λ∈sp(T )

λ · Pλ) v

for all v ∈ V , proving (58). Then T k =
∑

λ λkPλ becomes

T k(v) = T k(
∑

λ

vλ) =
∑

λ

T kvλ

But T (vλ) = λvλ ⇒

T 2(vλ) = T (λ·vλ) = λ2vλ, T 3(vλ) = λ3vλ, etc

so if v =
∑

λ vλ we get

T k(v) =
∑

λ

λkvλ =
∑

λ

λkPλ(v) = (
∑

λ

λkPλ) v

for all v ∈ V . Noting that the powers T k and the sum f(T ) are linear operators, (59)
follows: For any f(x) =

∑

k ckxk we have

f(T )(v) = f(T )(
∑

λ

vλ) =
∑

λ

f(T )(vλ)

=
∑

λ

(
∑

k

ckT k)(vλ) =
∑

λ

∑

k

ckT k(vλ)

=
∑

λ

∑

k

ckλkvλ =
∑

λ

(
∑

k

ckλk) vλ

=
∑

λ

f(λ) vλ =
∑

λ

f(λ)Pλ(v)

= (
∑

λ

f(λ)Pλ) v for all v ∈ V

Thus f(T ) =
∑

λ f(λ)Pλ as operators on V .
When f(x) is the constant polynomial f(x) = 1- we get

∑

λ∈sp(T )

f(λ)Pλ =
∑

λ

Pλ = I

as expected. Linearity of Φ is easily checked by applying the operators on either side
to a typical vector. As for the multiplicative property, let f =

∑

k=0 akxk and g =
∑

ℓ≥0 bℓxℓ, so fg =
∑

k,ℓ=0 akbℓ xk+ℓ. First notice that the multiplicative property holds

for monomials f = xk, g = xℓ because

Φ(xk)Φ(xℓ) = (
∑

λ∈sp(T )

λkPλ)·(
∑

µ∈sp(T )

µℓPµ)

=
∑

λ,µ

λkµℓ PλPµ =
∑

λ

λk+ℓPλ

= Φ(xk+ℓ)
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(PλPµ = 0 if λ ̸= µ, and P 2
λ = Pλ). Then use linearity of Φ to get

Φ(fg) = Φ(
∑

k,ℓ=0

akbℓ xk+ℓ) =
∑

k,ℓ=0

akbℓΦ(xk+ℓ)

=
∑

k,ℓ

akbℓΦ(xk)Φ(xℓ) = (
∑

k=0

akΦ(xk)) · (
∑

ℓ=0

bℓΦ(xℓ))

= Φ(f) ◦ Φ(g)

That completes the proof of Theorem 6.2. !

Although the operator Φ(f) =
∑

λ f(λ)Pλ was defined for polynomials in K[x], this
sum involves only the values of f on the finite subset sp(T ) ⊆ K, so it makes sense for all
functions h : sp(T )→ K whether or not they are defined off of the spectrum, or related
in any way to polynomials. Thus the spectral decomposition of T determines a linear
map

(62) Φ : E → HomK(V, V ) Φ(h) =
∑

λ∈sp(T )

h(λ)Pλ

defined on the larger algebra E ⊇ F[x] whose elements are arbitrary functions h from
spK(T )→ K. The same argument used for polynomials shows that the extended version
of Φ is again a homomorphism between associative algebras, as in (60). Incidentally,
the Lagrange Interpolation formula tells us that any h(x) in E is the restriction of some
(nonunique) polynomial f(x), so that

Φ(h) = Φ(f|
sp(T )

) = Φ(f)

All this applies to matrices as well as operators since a matrix is diagonalizable ⇔ the
left multiplication operator LA : Km → Km on coordinate space is diagonalizable.

We can now define “functions h(T ) of an operator” for a much broader class of
functions than polynomials, as in the next examples.

6.3 Example. If a diagonalizable linear operator T : V → V over C has spectral
decomposition T =

∑

λ λ·Eλ, we can define such operators h(T ) as

1. |T | =
∑

λ |λ|Pλ = h(T ) taking h(z) = |z|.

2. eT =
∑

λ eλ Pλ = h(T ) taking h(z) = ez =
∑∞

n=0 zn/n!

3.
√

T =
∑

λ λ1/2Pλ assigning any (complex) determination of h(z) =
√

z at each
point in the spectrum. Thus there are r2 possible operator square roots if T has
r distinct eigenvalues that are all nonzero. As in Exercise 6.4 below, every such
“square root” has the property h(T )2 = T .

4. The indicator function of a finite subset E ⊆ C is

1E(z) =

{

1 if z ∈ E
0 otherwise

Then by (60), 1E(T ) is a projection operator with 1E(T )2 = 1E(T ). In particular,
if E = {λ1, . . . , λs} ⊆ sp(T ) we have

1E(T ) =
∑

λ∈E

Pλ =
s

⊕

i=1

Pλi
(projection onto

s
⊕

i=1

Eλi
(T )) .

We get 1E(T ) = I if E = sp(T ), and if E = {λ0} is a single eigenvalue we recover
the individual spectral projections: 1E(T ) = Pλ0

. !
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6.4 Exercise. Let T : V → V be a diagonalizable linear operator over any ground field
K. If T is invertible (λ = 0 not in the spectrum), explain why

h(T ) =
∑

λ∈sp(T )

1

λ
·Pλ (h(x) =

1

x
for x ̸= 0)

is the usual inverse T−1 of T .
Hint: Show T ◦ h(T ) = h(T ) ◦ T = I

Similarly we have

T−k = (T−1)
k

=
∑

λ

1

λk
Pλ

for k = 0, 1, 2 . . ., with T 0 = I.

6.5 Exercise. Prove (61) when V is an inner product space over C. (There is nothing
to prove when K = R.)

6.6 Exercise. Prove that a normal operator T : V → V on a finite dimensional inner
product space over C is self adjoint if and only if its spectrum is real: spC(T ) ⊆ R + i0.
Note: We already explained (⇒); you do (⇐).

6.7 Exercise. If T is diagonalizable over R or C, prove that

eT =
∑

λ∈sp(T )

eλPλ

is the same as the linear operator given by the exponential series

eT =
∞
∑

k=0

1

k!
T k

. Note: If T has spectral decomposition T =
∑

λ λ ·Pλ then T k =
∑

λ λkPλ. To
discuss convergence of the operator-valued exponential series in Exercise VI-6.7, fix a
basis X ⊆ V . Then a sequence of operators converges, with Tn → T as n → ∞, if and
only if the corresponding matrices converge entry-by-entry, [Tn]XX → [T ]XX as n → ∞
in matrix space, as described in Chapter II, Section 5.3. The partial sums of a series
converge to a limit

Sn = I + T +
1

2!
T 2 + . . . +

1

n!
T n → S0 ,

⇔ (Sn)ij → (S0)ij in C for all 1 ≤ i, j ≤ N . !

6.8 Exercise. Let S ∈ M(2, C) be a symmetric matrix, so At = A

(a) Is LA : C2 → C2 diagonalizable in the ordinary sense?

(b) Is LA : C2 → C2 orthogonally diagonalizable when C2 is given the usual inner
product?

Prove or provide a counterexample.
Note: If we take R instead of C the answer is “yes” for both (a) and (b) because
A∗ = At when K = R. Recall that (LA)

∗
= LA∗ for the standard inner product on C2 –

see Exercise VI-3.9. Self-adjoint matrices are diagonalizable over both R and C, but we
are not assuming A = A∗ here, only A = At.

6.9 Exercise. Let T : C2 → C2 be the operator T = LA for

A =

(

2 3
3 4

)
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Explain why T is self-adjoint with respect to the standard inner product (z, w) = z1w1 +
z2w2 on C2. Then determine

(a) The spectrum spC(T ) = {λ1, λ2};

(b) The eigenspaces Eλ(T ) and find an orthonormal basis {f1, f2} in C2 that diagonal-
ize T . Then

(c) Find a unitary matrix U∗U = I such that

UAU∗ =

(

λ1 0
0 λ2

)

where sp(T ) = {λ1, λ2}.

6.10 Exercise (Uniquess of Spectral Decompositions). Suppose T : V → V is
diagonalizable on an arbitrary vector space (not necesarily an inner product space), so
T =

∑r
i=1 λiPλi

where sp(T ) = {λ1, . . . , λr} and Pλi
is the projection onto the λi-

eigenspace. Now suppose T =
∑s

j=1 µjQj is some other decomposition such that

Q2
j = Qj ̸= 0 QjQk = QkQj = 0 if j ̸= k

s
∑

j=1

Qj = I

and {µ1, . . . , µr} are distinct. Prove that

(a) r = s and if the µj are suitably relabeled we have µi = λi for 1 ≤ i ≤ r.

(b) Qi = Pλi
for 1 ≤ i ≤ r.

Hint: First show {µ1, . . . , µs} ⊆ {λ1, . . . , λr} = sp(T ); then relabel.

Here is another useful observation about spectra of diagonalizable operators.

6.11 Lemma (Spectral Mapping Theorem). If T : V → V is a diagonalizable
operator on a finite dimensional vector space, and f(x) is any function f : sp(T ) → C,
then f(T ) is diagonalizable and

sp(f(T )) = f(sp(T )) = {f(λ) : λ ∈ sp(T )} .

Proof: We have shown that T =
∑

λ∈sp(T ) λPλ where the Pλ are the spectral projections
determined by the direct sum decomposition V =

⊕

λ Eλ(T ). Then f(T ) =
∑

λ f(λ)Pλ,
from which it is obvious that f(T )v = f(λ)v for v ∈ Eλ(T ); hence f(T ) is diagonalizable.
The eigenvalues are the values f(λ) for λ ∈ sp(T ), but notice that we might have f(λ) =
f(µ) for different eigenvalues of T . To get the eigenspace Eα(f(T )) we must add together
all these spaces

Eα(f(T )) =
⊕

{λ:f(λ)=α} Eλ(T ) for every α ∈ f(sp(T )) .

The identity is now clear. !

As an extreme illustration, if f(z) ≡ 1 then f(T ) = I and sp(T ) = {1}.

VI.7. Positive Operators and the Polar Decomposi-
tion.
If T : V → W but V ̸= W one cannot speak of “diagonalizing T .” (What would
“eigenvector” and “eigenvalue” mean in that context?) But we can still seek other de-
compositions of T as a product of particularly simple, easily understood operators. Even
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when V = W one might profitably explore such options if T fails to be diagonalizable –
diagonalization is not the only useful decomposition of a linear operator.

When V = W and V is an inner product space over R or C, all self-adjoint (or normal)
operators are orthogonally diagonalizable, and among them the positive operators are
particularly simple.

7.1 Definition. A linear operator T : V → V on an inner product space is positive if

(i) T ∗ = T and (ii) (Tv, v) ≥ 0 for all v ∈ V .

It is positive definite if (Tv, v) = 0 only when v = 0. We write T ≥ 0 or T > 0,
respectively, to indicate these possibilities. A matrix A ∈ M(n, C) is said to be positive
(or positive definite) if the multiplication operator LA : Cn → Cn is positive (positive
definite) with respect to the usual inner product, so that (Av, v) ≥ 0 for all v.

Note that self-adjoint projections P 2 = P ∗ = P are examples of positive operators, and
sums of positive operators are again positive (but not linear combinations unless the
coefficients are posiive).

If T is diagonalizable, sp(T ) = {λ1, . . . , λr}, and if T =
∑

i λiPλi
is the spectral

decomposition, a self-adjoint operator is positive⇔ λi ≥ 0 for all i, so sp(T ) ⊆ [0, +∞)+
i0. [ In fact if T ≥ 0 and vi ∈ Eλi

, we have (Tvi, vi) = λi∥vi∥2 ≥ 0. Conversely if all
λi ≥ 0 and v =

∑r
i=1 vi we get (Tv, v) =

∑

i,j(Tvi, vj), and since Eλi
⊥ Eλj

for i ̸= j

this reduces to
∑

i(Tvi, vi) =
∑

i λi∥vi∥2 ≥ 0.]
If T is positive definite then λi = 0 cannot occur in sp(T ) and T is invertible, with

T−1 =
∑

i

1

λi
Pλi

(also a positive definite operator) .

Positive Square Roots. If T ≥ 0 there is a positive square root (a positive
operator S ≥ 0 such that S2 = T ), namely

(63)
√

T =
∑

i

√

λi Pλi
(
√

λi = the nonnegative square root of λi ≥ 0 ) ,

which is also denoted by T 1/2. This is a square root because

S2 =
∑

i,j

√

λi

√

λj Pλi
Pλj

=
∑

i

λiPλi
= T

where Pλi
Pλj

= δij ·Pλi
. Notice that the spectral decompositions of T and

√
T involve

the same spectral projections Pλi
; obviously the eigenspaces match up too, because

Eλi
(T ) = E√

λi
(
√

T ) for all i.
Subject to the requirement that S ≥ 0, this square root is unique, as a consequence

of uniqueness of the spectral decomposition on any vector space (see Exercise VI-6.10)

7.2 Exercise. Use uniqueness of spectral decompositions to show that the positive
square root operator

√
T =

∑

i

√
λiPλi

defined above is unique – i.e. if A ≥ 0 and B ≥ 0
and A2 = B2 = T for some T ≥ 0, then A = B.

Positivity of T : V → V has an interesting connection with the exponential map on
matrices Exp : M(n, C)→ M(n, C),

Exp(A) = eA =
∞
∑

n=0

1

n!
An

We indicated in Section V.3 that commuting matrices A, B satisfy the Exponent Law
eA+B = eA ·eB, with e0 = I. In particular all matrices in the range of Exp are invertible,
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with (eA)
−1

= e−A.

7.3 Exercise. Let P be the set of positive definite matrices A in M(n, C), which are
all self-adjoint by definition of A > 0. Let H be the set of all self-adjoint matrices in
M(n, C), which is a vector subspace over R but not over C since iA is skew-adjoint if A
is self-adjoint. Prove that

(a) The exponential matrix eH is positive and invertible for self-adjoint matrices H .

(b) The exponential map Exp : H→ P is a bijection.

Hint: Explain why (eA)
∗

= eA∗

and then use the Exponent Law applied to matrices
etA, t ∈ R ( you could also invoke the spectral theorem).

It follows that every positive definite matrix A > 0 has a unique self-adjoint logarithm
Log(A) such that

Exp(Log(A)) = A for A ∈ P
Log(eH) = H for H ∈ H ,

namely the inverse of the bijection Exp : H→ P . In terms of spectral decompositions,

Log(T ) of a positive definite T is Log(T ) =
∑

i

Log(λi)Pλi
if T =

∑

i

λiPλi

Exp(H) of a self-adjoint matrix H is eH =
∑

i

eµiQλi
if H =

∑

i

µiQµi

When V = W the unitary operators U : V → V are another well-understood family of
(diagonalizable) operators on an inner product space. They are particularly interesting
and easy to understand because they correspond to the possible choices of orthonormal
bases in V . Every unitary U is obtained by specifying a pair of orthonormal bases
X = {ei} and Y = {fj} and defining U to be the unique linear map such that

U(
n

∑

i=1

ciei ) =
n

∑

j=1

cjfj (arbitrary ci ∈ C)

Polar Decompositions. The positive operators P ≥ 0 and unitary operators U
on an inner product space provide a natural polar decomposition T = U ·P of any linear
operator T : V → V . In its simplest form (when T is invertible) it asserts that any
invertible map T has a unique factorization

T = U · P

{

U : V → V unitary (a bijective isometry of V )

P : V → V positive definite, invertible = eH with H self-adjoint

Both factors are orthogonally diagonalizable (U because it is normal and P because it
is self-adjoint), but the original operator T need not itself be diagonalizable over C, let
alone orthogonally diagonalizable.

We will develop the polar decomposition first for an invertible operator T : V → V
since that proof is particularly transparent. We then address the general result (often
referred to as the singular value decomposition when it is stated for matrices). This
involves operators that are not necessarily invertible, and may be maps T : V → W
between quite different inner product spaces. The positive component P : V → V is still
unique but the unitary component U may be nonunique (in a harmless sort of way). The
“singular values” of T are the eigenvalues λi ≥ 0 of the positive component P .
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7.4 Theorem (Polar Decomposition I). Let V be a finite dimensional inner product
space over C. Every invertible operator T : V → V has a unique decomposition T = U ·P
where

U ∈ U(n) = (the group of unitary operators U∗ = U−1)

P ∈ P = (invertible positive definite operators P > 0)

By Exercise 7.3 we can also write T = U · eH for a unique self-adjoint operator H ∈ H.

This is the linear operator (or matrix) analog of the polar decomposition

z = |z|eiθ = r · eiθ with r > 0 and θ real (so |eiθ| = 1)

for nonzero complex numbers. If we think of “positive definite” = “positive,” “self-
adjoint” as “real,” and “unitary” = “absolute value 1,” the analogy with the polar
decomposition z = reiθ of a nonzero complex number z is clear.

Some Preliminary Remarks. If T : V → W is a linear map between two inner
product spaces, its absolute value |T | is the linear map from V → V determined in the
following way.

The product T ∗T maps V → V and is a positive operator because

(T ∗T )∗ = T ∗T ∗∗ = T ∗T (T ∗ : W → V and T ∗∗ = T on V )

(T ∗Tv, v) = (Tv, T v) = ∥Tv∥2 ≥ 0 for v ∈ V

Thus T ∗T is self-adjoint and has a spectral decomposition T ∗T =
∑

i λiPλi
, with eigen-

values λi ≥ 0 and self-adjoint projections Pλi
: V → Eλi

(T ∗T ) onto orthogonal sub-
spaces. The absolute value |T | : V → V is then defined as the unique positive square
root

|T | = (T ∗T )
1/2

=
∑

i

√

λi Pλi
,

whose spectral decomposition involves the same projections that appeared in T ∗T . For
any linear operator T : V →W we have T ∗T = |T |2 and hence

(64) ∥Tv∥2W = (T ∗Tv, v)V = (|T |2v, v)V = ∥ |T |(v)∥2V for all v ∈ V .

Thus |T |(v) ∈ V and Tv ∈ W have the same norm for every v ∈ V . It follows from (64)
that T , T ∗T , and |T | have the same kernel because

Tv = 0 ⇒ T ∗T (v) = 0 ⇒ (T ∗Tv, v) = (|T |2(v), v)) = ∥ |T |(v)∥2 = 0

⇒ |T |(v) = 0 ⇒ Tv = 0 (by (64)) ,

Thus the kernels coincide

(65) K(T ) = K(T ∗T ) = K(|T |)

even if the ranges differ, and one of these operators is invertible if and only if they all
are. In particular |T | is positive definite on V (|T | > 0) if and only if T : V → W is
invertible. (Comparisons between T and |T | do not follow from spectral theory because
T itself need not be diagonalizable, even if V = W .)

Proof of VI-7.4: The proof in the invertible case is simple. For any linear operator
T : V → V we have T ∗T = |T |2 and have seen in (64) that |T |(v) and Tv always have
the same norm. When T is invertible, so is |T | and we have R(T ) = R(|T |) = V . The
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identities (64) determine a bijective isometry U : V → V that sends T (v) )→ |T |(v)
for all v, as indicated in Figure 6.10. This map is also linear because U = T ◦ |T |−1

is a composite of linear operators on V . Thus when T is invertible the desired polar
decomposition is

U ◦ |T | = (T ◦ |T |−1) ◦ |T | = T

Figure 6.10. The maps involved in defining |T | : V → V for an invertible map T : V → W
between two inner product spaces. In the discussion we show that the positive operator

|T | = (T ∗T )1/2 is invertible and R(T ∗T ) = R(|T |) = R(T ) = V when T is invertible.
The induced bijection U = T ◦ |T |−1 : V → V is a bijective linear isometry (a unitary map
of V → V ) and the polar decomposition of T is U ·|T |.

As for uniqueness (valid only in the invertible case), suppose T = UP = U0P0 with
U, U0 unitary and P, P0 positive definite. Then P ∗ = P, P ∗

0 = P0, and T ∗ = P ∗U∗ =
PU∗ = P ∗

0 U∗
0 = P0U∗

0 since the positive components are self-adjoint; hence

P 2 = PU∗UP = PU∗(PU∗)
∗

= P0U
∗
0 U0P0 = P 2

0

Now P 2 = P ∗P is a positive operator which has a unique positive square root, namely
P ; likewise for P 2

0 . By uniqueness we get P0 = P , from which U0 = U folllows. !

Computing U for Invertible T : V → V . Determining the positive part
P = |T | is straightforward: P 2 = T ∗T is self-adjoint and its spectral decomposition can
be computed in the usual way. If {ei} is an orthonormal basis of eigenvectors for T ∗T ,
which are also eigenvectors for P = |T |, we have

(66) T ∗T (ei) = λiei and |T |(ei) =
√

λi ei

(with all λi > 0 because |T | is invertible ⇔ T is invertible ⇔ all λi ̸= 0). From this we
get

|T |−1(ei) = |T |−1

(

1√
λi

|T |(ei)

)

=
1√
λi

ei

⇓

U(ei) = T(|T |−1ei) =
1√
λi

T (ei)

By its construction U is unitary on V so the vectors

fi =
1√
λi

T (ei)

are a new orthonormal basis in V . This completely determines U . !

Note that

∥U(ei)∥ =
1√
λi
∥T (ei)∥ =

1√
λi
∥ |T |(ei)∥ =

√
λi√
λi
∥ei∥ = 1
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as expected.

The General Polar Decomposition. When T : V → V is not invertible the
polar decomposition is somewhat more complicated. The positive component in T = U·P
is still the unique positive square root P = |T | = (T ∗T )1/2. But the unitary part is based
on a uniquely determined isometry U0 : R(|T |)→ R(T ) between proper subspaces in V
that can have various extensions to a unitary map U : V → V . This ambiguity has
no effect on the factorization T = U ·P ; the behavior of U off of R(|T |) is completely
irrelevant.

7.5 Theorem (Polar Decomposition II). Any linear operator T : V → V on a finite
dimensional complex inner product space has a factorization T = U |T | where

1. |T | is the positive square root of T

2. U is a unitary operator on V .

The unitary factor is uniquely determined only on the range R(|T |), which is all that
matters in the decomposition R = U |T |, but it can be extended in various ways to a
unitary map V → V when T is not invertible.

Proof: First note that

R(|T |) = K(|T |)⊥ = K(T )⊥ = K(T ∗T )⊥ = R(T ∗T )

R(|T |)⊥ = K(|T |) = K(T ) = K(T ∗T ) = R(T ∗T )⊥

The subspaces in the first row are just the orthocomplements of those in the second. The
first and last identities in Row 2 hold because |T | and T ∗T are self-adjoint (Proposition
VI-4.2); the rest have been proved in (65). We now observe that equation (64)

∥Tv∥2 = (T ∗Tv, v) = (|T |2v, v) = ∥ |T |(v)∥2 for all v ∈ V ,

implies that there is a norm-preserving bijection U0 from R(|T |) → R(T ), defined by
letting

(67) U0(|T |(v)) = T (v) .

This makes sense despite its seeming ambiguity: If an element y ∈ R(|T |) has realizations
y = |T |(v′) = |T |(v) we get |T |(v′ − v) = 0, and then

T (v′ − v) = T (v′)− T (v) = 0

because |T |(v′−v) and T (v′−v) have equal norms. Thus T (v′) = T (v) and the operator
(67) is in fact a well-defined bijective map from R(|T |) into R(T ). It is linear because

U0(|T |v1 + |T |v2) = U0(|T |(v1 + v2)) = T (v1 + v2)

= Tv1 + Tv2 = U0(|T |v1) + U0(|T |v2)

It is then immediate that ∥U0(y)∥ = ∥y∥ for all y ∈ R(|T |), and R(U0) ⊆ R(T ),
so dim R(U0) ≤ dim R(T ). But dim R(U0) = dim R(|T |) by definition of U0, and
K(T ) = K(|T |)⇒ dim R(T ) = dim R(|T |). Putting these facts together we get

dim R(|T |) = dim R(U0) ≤ dim R(T ) = dim R(|T |)

We conclude that R(U0) = R(T ) and U0 : R(|T |)→ R(T ) is a bijective isometry between
subspaces of equal dimension. By definition we get

T (v) = (U0 · |T |)(v) for all v ∈ V .

155



We can extend U to a globally defined unitary map U : V → V because K(T ) =
K(|T |)⇒ dim R(T ) = dim R(|T |) and dim R(T )⊥ = dim R(|T |)⊥; therefore there exist
various isometries

U1 : R(|T |)⊥ → R(T )⊥ .

corresponding to orthonormal bases in these subspaces. Using the orthogonal decompo-
sitions

V = R(|T |) ⊕̇R(|T |)⊥ = R(T ) ⊕̇R(T )⊥

we obtain a bijective map
U(v, v′) = (U0(v), U1(v

′))

such that U |T | = U0|T | = T on all of V . !

There is a similar decomposition for operators T : V → W between different in-
ner products spaces; we merely sketch the proof. Once again we define the positive
component |T | = (T ∗T )1/2 as in (63). The identity

∥ |T |(v)∥2V = ∥T (v) ∥2W for all v ∈ V

holds exactly as in (64), and this induces a linear isometry U0 from M = R(|T |) ⊆ V to
N = R(T ) ⊆W such that

T = U0 · |T | = [T · (|T |M)
−1

] · |T |

where |T |M = (restriction of |T | to M).
The fact that U0 is only defined on R(|T |) is irrelevant, as it was in Theorem 7.5,

but now U0 cannot be extended unitary map (bijective isometry) from V to W unless
dim(V ) = dim(W ). On the other hand since |T | is self-adjoint we have

R(|T |) = K(|T |)⊥ = K(T )⊥

and can define U ≡ 0 on K(T ) to get a globally defined “partial isometry” U : V → W

Figure 6.11. The maps involved in defining a polar decomposition T = U0 · |T | for
an arbitrary linear map T : V → W between different inner product spaces. Here we
abbreviate M = K(T )⊥ ⊆ V and N = R(T ) ⊆ W ; U0 : M → N is an induced isometry
such that T = U0 · |T |.

such that K(U) = K(T ), R(U) = R(U0) = R(T ), and

U |K(T ) = 0 U |K(T )⊥ = U |R(|T |) = U0
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The players involved are shown in the commutative diagram Figure 6.11.

The singular value decomposition is a useful variant of Theorem 7.5.

7.6 Theorem (Singular Value Decomposition). Let T : V →W be a linear operator
between complex inner product spaces. There exist nonnegative scalars

λ1 ≥ . . . ≥ λr ≥ 0 (r = rank(T ))

and orthonormal bases {e1, . . . , er} for K(T )⊥ ⊆ V and {f1, . . . , fr} for R(T ) ⊆W such
that

T (ei) = λifi for 1 ≤ i ≤ r and T ≡ 0 on K(T ) = K(T )⊥⊥

The λi are the eigenvalues of |T | = (T ∗T )1/2 counted according to their multiplicities.
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Class Notes c⃝F.P. Greenleaf, 2014 LAI-f14-diag.tex version 8/1/2014

Chapter V. The Diagonalization Problem.

V.1 The Characteristic Polynomial.

The characteristic polynomial pA(x) of an n × n matrix is defined to be

pA(x) = det(A − xI) (x an indeterminate)

This is a polynomial in K[x]. In fact det(A − xI) is a polynomial combination of the
entries in (A − xI), so it follows that pA(x) does determine a polynomial in the single
unknown x; furthermore deg(pA) = n. Given a linear operator T : V → V on a finite
dimensional space V and a basis X we have

[T − xI]XX = [T ]XX − x In×n (n = dim(V ))

so we may define a characteristic polynomial for T in the obvious way.

pT (x) = det(T − xI) = det ([T ]XX − xIn×n) (x an indeterminate)

The discussions for operators and matrices are so similar that nothing is lost if we focus
on matrices for the time being.

Next observe what happens if we write out the characteristic polynomial pA,

(37) pA(x) = det(A − xI) = c0(A) + c1(A)x + . . . + cn(A)xn

In this formula the coefficients ci(A) are scalar-valued functions from M(n, K) → K.

1.1. Lemma. Each coefficient ck(A) in (37) is a similarity invariant on matrix space

ck(SAS−1) = ck(A) for all A ∈ M(n, K), S ∈ GL(n, K)

Furthermore, if we identify M(n, K) with n2-dimensional coordinate space Kn2

via the
correspondence A %→ (a11, . . . , a1n; . . . ; an1

, . . . , ann), each coefficient ci(A) is a polyno-
mial function of the matrix entries: there is a polynomial Fi ∈ K[x] = K[x1, . . . , xn2 ]
such that ci(A) = Fi(a11, a12, . . . , ann).
Proof: We have

det (S(A − xI)S−1) = det(SAS−1 − xSS−1) = det(SAS−1 − x I)

= c0(SAS−1) + c1(SAS−1)x + . . . + cn(SAS−1)xn ,

while at the same time

det (S(A − xI)S−1) = det(S)·det(A − xI)·det(S−1)

= det(A − xI) = c0(A) + c1(A)x + . . . + cn(A)xn

for all x ∈ K. Since these are the same polynomial in K[x] the coefficients must agree,
hence ci(SAS−1) = ci(A).

The polynomial nature of the coefficients as functions of A ∈ Kn2

follows because
det(A− xI) is a polynomial combination of entries (A− xI)ij ; the coefficients ck(A) are
then polynomial functions of the aij when like powers of the unknown “x” are gathered
together. !
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It is interesting to examine how the coefficients ck(A) are obtained from entries in A.
Starting from the original definition of the determinant in Chapter IV,

det(B) =
∑

σ∈Sn

sgn(σ) · (
n
∏

i=1

bi,σ(i)) ,

if we take B = A − xI we have

B = A − xI =

⎛

⎜

⎜

⎜

⎝

(a11 − x) a12 . a1n

a12 (a22 − x) . a2n
...

. . .
...

an1 . . (ann − x)

⎞

⎟

⎟

⎟

⎠

It is clear that the only template yielding a product b1,σ(1)...bnσ(n) involving xn is the
diagonal template corresponding to the trivial permutation σ = e; furthermore, in ex-
panding the product

∏

i(aii−x) we must take the “−x” instead of “aii” from each factor
to get the power xn. Thus cn(A) ≡ (−1)n is constant on matrix space (and certainly a
similarity invariant).

We claim that

det(A − xI) = (−1)nxn + (terms of lower degree)

= (−1)nxn + (−1)n−1Tr(A)xn−1 + . . . + det(A) · 1-(38)

To get the coefficient of xn−1 observe that a product
∏

i bi,σ(i) involving xn−1 must come
from a template having (n− 1) marked spots on the diagonal, but then all marked spots
must lie on the diagonal and we are again dealing with the diagonal template (for σ = e).
In expanding the product

∏

i(aii − x) we must now select the “−x” from n − 1 factors
and the “aii” from just one. Thus

cn−1(A) = (−1)n−1 ·
n
∑

i=1

aii = (−1)n−1Tr(A)

as in (38). Determining the other coefficients is tricky business, except for the constant
term which is

a0(A) = det(A)

This follows because every template yields a product that contributes to this constant
term. However if a template marks a spot on the diagonal we must select the “aii” term
rather than the “x” from that diagonal entry (aii − x). It follows that the constant term
in (38) is:

∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

ai,σ(i) = det(A)

as claimed. We leave discussion of other terms in the expansion (38) for more advanced
courses.

Factoring Polynomials. It is well known that if a nonconstant polynomial f(x) in
K[x] has a root α ∈ K, so f(α) =

∑n
i=0 ciαi = 0, then we can factor f(x) = (x−α)·g(x)

by long division of polynomials, with deg(g) = deg(f)−1. In fact, applying the Euclidean
algorithm for division with remainder in K[x]: if P, Q ∈ K[x] and deg(Q) ≥ 1 we can
always write

P (x) = A(x)Q(x) + R(x) (with remainder R ≡ 0 or deg(R) < deg(Q))
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Taking P to be any nonconstant polynomial in K[x] and Q = (x − α), we get f(x) =
A(x) · (x − α) + R(x) where R(x) is either the zero polynomial, or R(x) is nonzero with
deg(R) < deg(x − α) = 1 – i.e. R(x) is then a nonzero constant polynomial R = c1-. If
α ∈ K is a root of f , replacing x by α everywhere yields the identity

0 = f(α) = A(α)·(α − α) + R(α) = 0 + R(α) = R(α)

Since R = c1-, this forces R(x) ≡ 0 and f(x) = A(x)(x − α) with no remainder – i.e.
(x − α) divides f(x) exactly.

If α1 is a root of f we may split f(x) = (x − α1) · g1(x). If we can find a root α2

of g1(x) in K we can continue this process, obtaining f(x) = (x − α1)(x − α2) · g2(x).
Pushing this as far as possible we arrive at a factorization

f(x) =
s
∏

i=1

(x − αi) · g(x)

in which g(x) has no roots in K. We say that f splits completely over K if g reduces
to a constant polynomial, so that f(x) = c

∏n
i=1(x−αi). There may be repeated factors,

and if we gather together all factors of the same type this becomes

f(x) = c
r
∏

j=1

(x − αi)
mj (αi ∈ K)

The roots {α1, . . . , αr} are now distinct and the exponents mi ≥ 1 are their multiplici-
ties as roots of f(x); the constant c out front is the coefficient of the leading term cnxn

in f(x).

1.2. Corollary. A nonconstant polynomial f(x) ∈ K[x] can have at most n = deg(f)
roots in any field of coefficients K. More generally the sum of the multiplicities of the
roots in K is at most n.

Proof: If f, g ̸= 0 in K[x] (so they have well defined degrees) we know that

deg(f(x) + g(x)) = deg(f(x)) + deg(g(x))

But, deg (
∏r

i=1(x − αi)mi) =
∑r

i=1 mi, so

r = #(distinct roots) ≤ (m1 + . . . + mr) + deg(g) = deg(f) !

1.3. Exercise. If f(x), h(x) are nonzero polynomials over any field, explain why the
“degree formula”

deg(f(x)h(x)) = deg(f(x)) + deg(h(x))

is valid.

1.4. Exercise. Verify that if f(x) =
∏r

i=1(x − αi) · g(x) and g(x) has no roots in K,
then the roots of f in K are {α1, ..., αr}.
Note: Repetitions are allowed; f(x) might even have the form (x − α)r · g(x).)

1.5. Definition. The distinct roots {α1, . . . , αr} in K of a nonconstant polynomial and
their multiplicities are uniquely determined, and the set of roots is called the spectrum
of the polynomial f and is denoted by spK(f).

Over the field K = C of complex numbers we have:

1.6. Theorem (Fundamental Theorem of Algebra). If f is a nonconstant polyno-
mial in C[x] then f has a root α ∈ C, so that f(α) = 0.
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1.7. Corollary. Every non constant f ∈ C[x] splits completely over C, with

f(x) = c ·
r
∏

i=1

(x − αi)
mi where m1 + ... + mr = n

Proof: Since f has a root we may factor f = (x−α1) · g1(x). Unless g1(x) is a constant
it also has a root, allowing us to write f = (x − α1)(x − α2)g2(x). Continue recursively.
!

Over K = R or Q, things get more complicated and f(x) might not have any roots
at all in K. For example if f(x) = x2 + 1 over R, or f(x) = x2 − 2 over Q since Q

does not contain any element α such that α2 = 2 (there is no “square root of 2” in Q).
Nevertheless since R ⊆ C we may regard any f ∈ R[x] as a complex polynomial that
happens to have all real coefficients. All real roots α remain roots α + i0 in C (lying on
the real axis), but enough new roots appear in the larger field to split f completely as

f(x) = c ·
∏

(x − αi) with αi ∈ C

It is important to realize that the new non-real roots enter in “conjugate pairs.”

1.8. Lemma. If f(x) is nonconstant in R[x] and z = x + iy is a complex root when we
identify R ⊆ C and R[x] ⊆ C[x], then the complex conjugate z = x − iy is also a root.

Proof: There is nothing to prove if z is real (y = 0). Otherwise, recall that conjugation

Figure 5.1. Non-real roots of a polynomial with real coefficients come in conjugate pairs
z = x + iy and z = x − iy, mirror images of each other under reflection across the x-axis.

has the following algebraic properties.

z1 + z2 = z1 + z2 and z1z2 = z1z2

Then
zn = zn for all n ∈ Z and z ∈ C

Hence if 0 = f(z) =
∑

j=0 cjzj with cj real we have

(cjzj) = cj (zj) = cj z̄
j

and
0 = 0 = f(z) =

∑

j=0

(cjzj) =
∑

j=0

cj(z)
j

= f(z)

Hence, z is also a root in C. !

The real roots of f ∈ R[x] are not subject to any constraints; in fact, all the roots might
be real. The number of distinct non-real roots is always even.
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1.9. Example. If f ∈ K[x] is quadratic,

f(x) = ax2 + bx + c with a ̸= 0,

the quadratic formula continues to apply for all fields except those of “characteristic 2,”
in which 2 = 1 + 1 is equal to 0 (for insatnce K = Z2). Except for this, the roots are
given by:

Quadratic Formula: z± =
−b ±

√
b2 − 4ac

2a

If the
√

... fails to exist in K the proper conclusion is that f(x) has no roots in K. If
K = Q or R this formula gives the correct roots in C even if there are no roots in K.

Discussion: Complete the square. Adding/subtracting a suitable constant d we may
write

ax2 + bx + c = a(x2 +
b

a
x +

c

a
) = a [(x2 +

b

a
x + d) + ( c

a
− d)]

= a·(x2 +
b

a
x + d) + (c − ad)

To make x2 + (b/a)x + d a “perfect square” of the form (x + k)2 = (x2 + 2kx + k2), we
must take k = b/(2a) and d = k2 = (b2/4a2). Then c − ad = c − (b2/4a2), so that

0 = ax2 + bx + c = a(x +
b

2a
)

2
+ ( c

a
−

b2

4a2
) = a·(x +

b

2a
)

2
+ (4ac − b2

4a
)

This happens if and only if

a(x +
b

2a
)

2
= (b2 − 4ac

4a
)

if and only if

(x +
b

2a
)

2
=

b2 − 4ac

4a2

if and only if

x =
−b ±

√
b2 − 4ac

2a
!

1.10. Example. Here are some examples of factorization of polynomials.

1. x2 − 1 = (x − 1)(x + 1) splits over R, with two roots +1,−1 each of multiplicity
one. On the other hand x2 + 1 has no roots and does not split over R, but it does
split over C, with x2 + 1 = (x − i)(x + i).

2. x2 + 2x + 1 splits over R as (x − 1)2, but there is just one root, of multiplicity 2;

3. x3 − x2 + x − 1 has a root x = 1 in R. Long division yields a quadratic,

x3 − x2 + x − 1 = (x − 1)(x2 + 1)

Over R, there is just one root λ1 = 1 with multiplicity m(λ1) = 1; over C we get
x2 + 1 = (x + i)(x − i) so there are two more roots roots λ2 = i, λ3 = −i in the
larger field C.

4. x4 − 1 = (x2 − 1)(x2 + 1) = (x + 1)(x − 1)(x + i)(x − i).
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5. x3 + x + 1 has just one real root λ1 because it is a strictly increasing function of
x ∈ R, and since it goes to ±∞ as x → ±∞ it must cross the x-axis somewhere.
But λ1 is not so easy to write as an explicit algebraic expression involving sums,
products, quotients, and cube roots. Such formulas exist, but are algorithms with
possible branch points rather than simple expressions like the quadratic formula. A
numerical estimate yields the real root λ1 = −0.6823+i0. There is a conjugate pair
of complex roots λ2 = 0.3412 + 1.615 i and λ3 = 0.3412 − 1.615 i, which could be
found by (numerically) long dividing f(x) by (x − λ1) and applying the quadratic
formula to find the complex roots of the resulting quadratic.

V.2. Finding Eigenvalues.
If V is a finite dimensional vector space we say λ ∈ K is an eigenvalue for a linear
operator T : V → V if there is v ̸= 0 such that T (v) = λv. For any λ ∈ K the λ-
eigenspace is Eλ = {v ∈ V : (T − λI)v = 0}. This vector subspace is nontrivial if and
only if λ is an eigenvalue. The set of distinct eigenvalues is called the spectrum spK(T )
of the operator. When λ = 0 the eigenspace Eλ=0(T ) is just ker(T ) = {v ∈ V : T (v) = 0}
and when λ = 1 we get the subspace of fixed vectors Eλ=1(T ) = {v : T (v) = v}.

The connection with determinants now emerges: λ ∈ K is an eigenvalue if and only if

ker(T − λI) ̸= (0) ⇔ (T − λI) is singular ⇔ det(T − λI) = 0

Thus the eigenvalues are the roots in K of the characteristic polynomial pT ∈ K[x].

2.1. Definition. If T : V → V is a linear operator on a finite dimensional vector space
then spK(T ) is the set of distinct roots in K of the characteristic polynomial pT (x) =
det(T −xI). We define the geometric multiplicity of an eigenvalue to be dim(Eλ); its
algebraic multiplicity is the multiplicity of λ as a root of the characteristic polynomial,
so that pT (x) = (x − λ)m · g(x) and g(x) does not have λ as a root.

2.2. Lemma. Over any field K,

(algebraic multiplicity of λ) ≥ (geometric multiplicity)

Over K = C, the sum of the algebraic multiplicities of the (distinct) eigenvalues in
spC(T ) = {λ1, ..., λr} is m(λ1) + . . . + m(λr) = n = dimC(V ).

Proof: Every eigenspace Eλ is T -invariant because (T − λI)T (v) = T (T − λI)v = 0 for
v ∈ Eλ. This eigenspace has a basis of eigenvectors Xλ = {e1, . . . , ed}, with respect to
which

[T ]Xλ
=

⎛

⎜

⎜

⎜

⎝

λ 0
λ

. . .
0 λ

⎞

⎟

⎟

⎟

⎠

(diagonal). Extending Xλ to a basis X = {e1, ..., ed, ed+1, ...., en} for all of V , we get

[T ]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ 0
. . . ∗

0 λ

0 B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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which implies that

[T − x I]XX =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ − x
. . . ∗

0 λ − x

0 B − λI

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2.3. Lemma. If A is of the form

A =

(

B D

0 C

)

where B and C are two square matrices, then det(A) = det(B) · det(C).

Proof: If B is m×m, a sequence of Type II and III row operations on rows R1, . . . , Rm

puts this block in upper triangular form; similar operations on rows Rm+1, . . . , Rn puts
block C in upper triangular form without affecting any of the earlier rows. The net result
is an echelon form A′ = [B′, ∗; 0, C′] for which detA′ = det(B′) · det(C′). Each of the
determinants det(A′), . . . , det(C′) differs from its counterpart by a ± sign; furthermore,
the same moves that put B and C in upper triangular form also put A in upper triangular
form when applied to the whole n×n matrix. We leave the reader to check that the sign
changes cancel and yield det(A) = det(B) · det(C). !

This can also be seen by noting that if a template contributes to det(A), every column
passing through block B must be marked at a spot in B; otherwise it would marked at a
spot below B, whose entry is = 0. Likewise for the rows that meet block C, so a template
contributes ⇔ it has the form in Figure 5.2.

Figure 5.2. If A is a block upper-triangular square matrix, then det(A) = det(B)·det(C)
and the only templates that contribute to det(A) are those whose marked spots lie entirely
within the blocks B and C.

Applying Lemma 2.3 we can complete the proof of Lemma 2.2. We now see that

pT (x) = det(T − x I) = (λ − x)m · Q(x) where Q(x) = det(B − x I)

Obviously deg(Q(x)) = n − m and pT (x) has λ as a root of multiplicity at least m, so
(algebraic multiplicity of λ) ≥ m = dim(Eλ) as claimed. !

It might still be possible for (x − λ) to divide Q(x), making the algebraic multiplicity

larger than dim (Eλ). A good example is A =

(

λ 1
0 λ

)

. The operator LA : R2 → R2

has dim (Eλ=1) = 1, but pT (λ) = (λ − x)2 so the algebraic multiplicity is 2.
The following example illustrates the complete diagonalization process.
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2.4. Example. Let T = LA : R3 → R3 with

A =

⎛

⎝

4 0 1
2 3 2
1 0 4

⎞

⎠

If X = {e1, e2, e3} is the standard basis in R3 we have [T ]XX = [LA]XX = A as in Exercise
4.13 of Chapter II, so

pA(x) = det(A − x I) = det

⎛

⎝

4 − x 0 1
2 3 − x 2
1 0 4 − x

⎞

⎠

= [(4 − x)(3 − x)(4 − x) + 0 + 0]− [(3 − x) + 0 + 0]
= −x3 + 11x2 − 39x + 45

We are looking for roots of a cubic equation. If you can guess a root α, then long divide
by x−α to get pT (x) = (x−α) · (quadratic); otherwise you will have to use a numerical
root-finding program. Trial and error reveals that x = 3 is a root and long division by
(x − 3) yields

−x2 +8x −15

x − 3) −x3 11x2 −39x +45
−x3 +3x2

8x2 −39x +45
8x2 −24x

−15x +45
−15x +45

0

Then

−x3 + 11x2 − 39x + 45 = (x − 3)(−x2 + 8x − 15)

= −(x − 3)(x − 5)(x − 3) = −(x − 3)2(x − 5) ,

so sp(A) = {3, 5} with algebraic multiplicities mλ=3 = 2, mλ=5 = 1. To determine the
eigenspaces and geometric multiplicities we must solve systems of equations.

Eigenvalue λ1 = 3: We must solve the matrix equation (A−3I)X = 0. Row operations
on [A − 3I | 0] yield

[A − 3I | 0] =

⎛

⎝

1 0 1 0
2 0 2 0
1 0 1 0

⎞

⎠→

⎛

⎝

1 0 1 0
0 0 0 0
0 0 0 0

⎞

⎠

Solutions: x2, x3 are free variables and x1 = −x3, so

X =

⎛

⎝

−x3

x2

x3

⎞

⎠ and Eλ=3 = ker(A − 3I) = R

⎛

⎝

0
1
0

⎞

⎠+ R

⎛

⎝

−1
0
1

⎞

⎠

Thus λ = 3 has geometric multiplicity dim (Eλ=3) = 2.

Eigenvalue λ2 = 5: Solve matrix equation (A−5I)X = 0. Row operations on [A−5I | 0]
yield

[A − 5I | 0] =

⎛

⎝

−1 0 1 0
2 −2 2 0
1 0 −1 0

⎞

⎠→

⎛

⎝

1 0 −1 0
0 1 −2 0
0 0 0 0

⎞

⎠
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Solutions: x3 is a free variable; x2 = 2x3, x1 = x3. So

X =

⎛

⎝

x3

2x3

x3

⎞

⎠ and Eλ=5 = ker(A − 5I) = R

⎛

⎝

1
2
1

⎞

⎠

Thus λ = 5 has geometric multiplicity dim (Eλ=5) = 1.
We showed earlier that the span M =

∑

λ∈sp(T ) Eλ(T ) of the eigenspaces of a linear
operator is actually a direct sum M = Eλ1

⊕ . . . ⊕ Eλr . In the present situation M =
Eλ=3 ⊕ Eλ=5 is all of V since the dimension add up to dim(V ) = 3. Taking a basis
Y = {f1, .., f3} that runs first through Eλ=3 = Rf1 ⊕Rf2, and then through Eλ=5 = Rf3,
we obtain a diagonal matrix

[T ]YY =

⎛

⎜

⎜

⎝

3 0 0

0 3 0

0 0 5

⎞

⎟

⎟

⎠

Once we have found the diagonalizing basis

Y = {f1 = (0, 1, 0) , f2 = (−1, 0, 1) , f3 = (1, 2, 1)}

we determine an invertible matrix Q such that QAQ−1 = [T ]YY = diag(3, 3, 5). To find
Q recall that

[T ]YY = [id]YX · [T ]XX · [id]XY = [id]YX · A · [id]XY = QAQ−1

Here [id]XY = Q−1 and [id]YX = [id]−1
XY, and by definition [id]YX is the transpose of the

coefficient array in the system of vector identities

f1 = [id] f1 = 0 + e2 + 0

f2 = [id] f2 = −e1 + 0 + e3

f3 = [id] f3 = e1 + 2e2 + e3

Thus,

Q−1 = [id]XY =

⎛

⎝

0 −1 1
1 0 2
0 1 1

⎞

⎠

and Q = (Q−1)−1 can be found efficiently via row operations.

⎛

⎝

0 −1 1 1 0 0
1 0 2 0 1 0
0 1 1 0 0 1

⎞

⎠→

⎛

⎝

1 0 2 0 1 0
0 1 1 0 0 1

0 0 1 1
2 0 1

2

⎞

⎠→

⎛

⎜

⎝

1 0 0 −1 1 −1

0 1 0 −1
2 0 1

2

0 0 1 1
2 0 1

2

⎞

⎟

⎠

Thus

Q =

⎛

⎜

⎝

−1 1 −1

−1
2 0 1

2
1
2 0 1

2

⎞

⎟

⎠
= 1

2

⎛

⎝

−2 2 −2
−1 0 1
1 0 1

⎞

⎠

and

QAQ−1 =

⎛

⎝

3 0 0
0 3 0
0 0 5

⎞

⎠
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as expected. That completes the “spectral analysis” of A. !

The same sort of calculations determine the eigenspaces in C2 when A ∈ M(n, R) is
regarded as a matrix in M(n, C).

2.5. Example. Diagonalize the operator LA : K2 → K2 where

A =

(

2 4
−1 −2

)

over C and over R (insofar as this is possible).

Discussion: The characteristic polynomial of A (or LA) is

pA(λ) = det

(

2 − λ 4
−1 −2 − λ

)

= −(2 − λ)(2 + λ) + 4 = −4 + λ2 + 4 = λ2

The only root (real or complex) is λ = 0 so spR(A) = spC(A) = {0}. Its algebraic
multiplicity is 2, but the geometric multiplicity dimK (Eλ=0) is equal to 1. The outcome
is the same over C and R.

Eigenvalue λ = 0. Here Eλ=0 = ker(A). Row operations on [A | 0] yield
(

2 − λ 4 0
−1 −2 − λ 0

)

→
(

2 4 0
−1 −2 0

)

→
(

2 4 0
0 0 0

)

Solutions: In solving (A − λI)X = AX = 0, x2 is a free variable and x1 = −2x2 so

X =

(

−2x2

x2

)

and Eλ=0 = K ·
(

−2
1

)

.

Since there are no other eigenvalues, the best we can do in trying to find a simple matrix
description [T ]YY is to take a basis Y = {f1, f2} that passes first through Eλ=0: let
f1 = (−2, 1) and then include one more vector f2 /∈ Kf1 to make a basis. We have

[T ]XX =

(

2 4
−1 −2

)

with respect to the standard basis X = {e1, e2} in K2 (recall Exercise 4.13 of Chapter
II). With respect to the basis Y = {f1, f2} the matrix has block upper-triangular form,

[T ]YY =

(

0 ∗
0 ∗

)

But this operator cannot be diagonalized by any choice of basis. !

2.6. Exercise. We have shown that there is a basis Y = {f1, f2} such that

A = [T ]YY =

(

0 a
0 b

)

(a) Prove that b must be 0, so

A =

(

0 a
0 0

)

(b) Explain how to modify the basis Y to get a new basis Z such that

[T ]ZZ =

(

0 1
0 0

)
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2.7. Example. The matrix

A =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

(θ real)

yields an operator LA : R2 → R2 that you will recognize as a rotation counter clockwise
about the origin by θ radians. Describe its eigenspaces over R and over C.

Solution: Over either field we have

pA(λ) = det(A − λI) = det

(

cos(θ) − λ − sin(θ)
sin(θ) cos(θ) − λ

)

= ( cos(θ) − λ)
2

+ sin2(θ) = cos2(θ) + sin2(θ) − 2λ cos(θ) + λ2

= λ2 − 2λ cos(θ) + 1

This is zero only when

λ =
2 cos(θ) ±

√

4 cos2(θ) − 4

2
= cos(θ) ±

√

cos2(θ) − 1

= cos(θ) ± i
√

1 − cos2(θ) = cos(θ) ± i sin(θ) = e±iθ

The roots are non-real (hence a conjugate pair as shown earlier in Figure 5.1), and they
lie on the unit circle in C because |e±iθ| = sin2(θ) + cos2(θ) = 1 for all θ. When θ = 0 or
π we have λ = ±1 + i0 (real), and in this case A = I or −I. In all other cases A has no
real eigenvalues at all, but it can be diagonalized as

[LA]YY =

(

eiθ 0
0 e−iθ

)

for a suitably chosen complex basis Y = {f1, f2} in C2. To find it we need to determine
the eigenspaces of LA in C2.

Eigenvalue: λ1 = eiθ = cos(θ) + i sin(θ).

[A − λI] =

(

cos(θ) − eiθ − sin(θ)
sin(θ) cos(θ) − eiθ

)

=

(

−i sin(θ) − sin(θ)
sin(θ) −i sin(θ)

)

= sin(θ) ·
(

−i −1
1 −i

)

Now, (A − λI)X = 0 ⇔ BX = 0 where B =

(

−i −1
1 −i

)

. Row operations yield:

(

−i −1 0
1 −i 0

)

→
(

1 −i 0
1 −i 0

)

→
(

1 −i 0
0 0 0

)

Solutions: Here x2 is a free variable and x1 = ix2. So,

X =

(

ix2

x2

)

and Eλ1=eit = C ·
(

i
1

)

.

For λ1, (algebraic multiplicity) = (geometric multiplicity) = 1.

The discussion for the conjugate eigenvalue λ2 = e−iθ = cos(θ)− i sin(θ) is almost the
same, with the final result that Eλ=e−iθ = C · col(−i, 1) Combining these observations
we get

C2 = Eλ=eiθ ⊕ Eλ=e−iθ = C ·
(

i
1

)

⊕ C ·
(

−i
1

)

= Cf1 ⊕ Cf2

95



Thus, with respect to the basis

Y = { f1 = col(i, 1), f2 = col(−i, 1) }

we have

[LA]YY =

(

eiθ 0
0 e−iθ

)

!

As mentioned, the span M =
∑

λ∈spK(A) Eλ is a direct sum Eλ1
⊕ . . . ⊕ Eλr and a

suitable chosen basis partially diagonalizes A, with matrix

[T ]YY =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1 ·Id1×d1
0

. . . ∗
λr ·Idr×dr

0 0 B

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

To proceed further and determine the structure of the lower right-hand block B we
would have to develop the theory of nilpotent operators, generalized eigenspaces, and
the Jordan decomposition of a linear operator over C. We must leave all that for a
subsequent course. However the following observation can be useful.

2.8. Proposition. If dimK(V ) = n and T : V → V has n distinct eigenvalues in K,
then T is diagonalizable and V is the direct sum

⊕n
i=1 Eλi . of 1-dimensional eigenspaces.

Proof: Since
∑

λ∈sp(T ) Eλi is a direct sum and each λi has dim (Eλi) ≥ 1, the dimension
of this linear span must equal n, so V =

⊕

λi∈sp(T ) Eλi . !

In some sense (at least for complex matrices), the “n distinct eigenvalues condition”is
generic: If entries aij ∈ C are chosen at random, then with “probability 1” the matrix
A = [aij ] would have distinct eigenvalues in C, so the characteristic polynomial would
split completely into distinct linear factors

pA(x) = c ·
n
∏

i=1

(x − λi) .

Unfortunately, in many important applications the matrices of interest do not have n
distinct eigenvalues, which is why we need the more subtle theory of “generalized eigen-
values” developed in Linear Algebra II, as a backup when diagonalization fails.

2.9. Exercise. What happens to sp(T ) when you replace

(a) T → cT (b) T → cT + I (c) T → I + cT

with c ̸= 0?

V.3 Diagonalization and Limits of Operators.
We begin by defining limits lim

n→∞
An = A of square matrices over K = R or C; limits

Tn → T could similarly be defined for linear operators on a finite dimensional vector
space V over these fields.

3.1. Definition. For K = R or C we may define pointwise convergence, or “sup
norm convergence” of matrices in M(N, K)

lim
n→∞

An = A or An → A as n → ∞
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to mean that each entry in An converges in C to the corresponding entry in the limit
matrix A:

(39) |a(n)
ij − aij|→ 0 in C as n → ∞

for each 1 ≤ i, j ≤ N , where An = [a(n)
ij ].

Later we will examine other notions of matrix (or operator) convergence. In making the
present definition we are, in effect, measurng the “size” of an N ×N matrix by its “sup-
norm,” the size of its largest entry:

∥A∥∞ = max{ |aij | : 1 ≤ i, j ≤ N}

This allows us to define the distance between two matrices in M(N, K) to be d(A, B) =
∥A−B∥∞, and it should be evident that the limit An → A defined in (39) can be recast
in terms of the sup-norm:

(40) An → A as n → ∞ ⇔ ∥An − A∥∞ → 0 as n → ∞ .

The sup norm on matrix space has several important properties (easily verified):

3.2. Exercise. If A, B ∈ M(N, K) prove that:

(a) ∥λA∥∞ = |λ| · ∥A∥∞, for all λ ∈ K,

(b) Triangle Inequality: ∥A + B∥∞ ≤ ∥A∥∞ + ∥B∥∞;

(c) Multiplicative Property: ∥AB∥∞ ≤ n · ∥A∥∞ · ∥B∥∞.

Hint: Use the Triangle Inequality in C, which says |z ± w| ≤ |z| + |w| for z, w ∈ C.

A number of theorems regarding sup-norm limits follow from these basic inequalities.

3.3. Exercise. If An → A and Bn → B in the sup-norm, and λn → λ in C, prove that:

(a) An + Bn → A + B

(b) AnB → AB and ABn → AB;

(c) AnBn → AB. Thus matrix multiplication is a “jointly continuous” operation on
its two inputs.

(d) If Q is an invertible matrix then QAnQ−1 → QAQ−1. Hence every similarity
transformation A %→ QAQ−1 is a continuous operation on matrix space.

(e) λnAn → λA.

Hint: In (c) add and subtract AnB, then apply the triangle inequality.

The triangle inequality has a “converse” that is sometimes indispensable.

3.4. Proposition (Reverse Triangle Inequality). For A, B ∈ M(N, K) we have

| ∥A∥∞ − ∥B∥∞ | ≤ ∥A − B∥∞

Proof: By the Triangle Inequality

∥A + B∥∞ ≤ ∥A∥∞ + ∥B∥∞

Thus
∥A∥∞ = ∥A − B + B∥∞ ≤ ∥A − B∥∞ , +∥B∥∞
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so that ∥A∥∞−∥B∥∞ ≤ ∥A−B∥∞. Reversing roles of A, B we also get ∥B∥∞−∥A∥∞ ≤
∥A−B∥∞. Since the absolute value of a real number is either |c| = c or −c, we conclude
that

| ∥A∥∞ − ∥B∥∞ | ≤ ∥A − B∥∞ !

As an immediate consequence we have

3.5. Corollary. If An → A in M(n, C) then ∥An∥∞ → ∥A∥∞ in R. !

3.6. Exercise. If A in M(n, C) is an invertible matrix and An → A in the sup-norm,
prove that

(a) det(An) → det(A);

(b) A−1
n → A−1 in the sup norm.

Hint: Recall Cramer’s Rule for computing A−1 for a nonsingular matrix A.

Application #1: Computing the Exponential e
A of a Matrix. We

will show that the exponential series

eA =
∞
∑

k=0

1

k!
Ak (A ∈ M(N, C) )

converges in the sup-norm, which means that the finite partial sums of the series

Sn = I + A +
A2

2!
+ ... +

An

n!
n ∈ N

converge to a definite limit eA in matrix space:

∥Sn − eA∥∞ → 0 as n → ∞

This is not so easy to prove, but if D = diag(λ1, . . . , λN ) is a diagonal matrix

D =

⎛

⎜

⎜

⎜

⎝

λ1 0
λ2

. . .
0 λN

⎞

⎟

⎟

⎟

⎠

it is quite obvious that the partial sums Sn converge in the sup-norm,

Sn = I + D + . . . +
D

n

n!
=

0

B

B

B

B

B

B

B

@

1 + λ1 + . . . +
λ

n
1

n!
0

1 + λ2 + . . . +
λ

n
2

n!
. . .

0 1 + λN + . . . +
λ

n
N

n!

1

C

C

C

C

C

C

C

A

−→

0

B

B

B

@

e
λ1 0

e
λ2

. . .

0 e
λN

1

C

C

C

A

as n → ∞

because ez =
∑∞

k=0 zk/k! is absolutely convergent for every complex number z ∈ C.

Therefore Sn → eD in the sup-norm and

eD =
∞
∑

k=0

Dk

k!
= lim

n→∞
Sn =

⎛

⎜

⎜

⎜

⎝

eλ1 0
eλ2

. . .
0 eλN

⎞

⎟

⎟

⎟

⎠
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A Digression: The Cauchy Convergence Criterion in Matrix Space. For ma-

trices that are not diagonal we must prove there actually is a matrix eA to which the
matrix-exponential series converges in sup-norm,

∥Sn − eA∥∞ → 0 as n → ∞ .

This follows because M(N, K) equipped with the sup-norm ∥ · ∥∞ has the following
completeness property, similar to completeness of Rn and Cn in the Euclidean norm

∥z∥2 = (
N
∑

k=1

|zk|2)
1/2

for z = (z1, . . . , zN) in CN ,

or completeness of the number fields K = R and C.

(41)

Theorem (Cauchy Convergence Criterion). A sequence {An} in
M(N, K) converges to some limit A0 = limn→∞An in the ∥ · ∥∞-norm if
and only if the sequence has the Cauchy property

∥Am − An∥∞ → 0 eventually as m, n → ∞

To be precise, this property means: Given any r > 0 we can find a cutoff
M > 0 such that

∥Am − An∥∞ < r for all m, n ≥ M

Statement (41) is much stronger than saying successive terms in the sequence get close,
with ∥An+1 −An∥ → 0 as n → ∞; to verify the Cauchy criterion you must show that all
the terms far along in {An} are eventually close together as n → ∞.

When you try to prove An → A0 by examining the distances ∥An − A0∥∞ you must
actually have the prospective limit A0 in hand, and that limit might be very hard to
guess. The Cauchy criterion gets around this problem. You don’t need to identify the
value of the limit whose existence is assured in (41), because the Cauchy criterion can be
verified by inspecting the terms of the given sequence {An}. Similarly in R, the Integral
Test of Calculus shows that the the partial sums

Sn = 1 +
1

22
+ . . . +

1

n2
of the Harmonic Series

∞
∑

n=1

1/n2

have the Cauchy property, and hence by the completeness property (41)

∞
∑

n=1

1

n2
= lim

n→∞
{Sn}

exists. It is a lot harder to identify this limit in “closed form,” and show it is exactly
π2/6. We will see one way to do this in Chapter VI.

As for the matrix exponential series
∑∞

n=0 Ak/k! we now show that its partial sums
Sn =

∑n
k=0 Ak/k! have the Cauchy property in || · ||∞-norm. Then by completeness of

M(N, C) the partial sums actually have a limit, which we name “eA”

eA =
∞
∑

k=1

Ak

k!
= lim

n→∞
Sn
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Proof: To verify the Cauchy property for {Sn} we may assume m > n. By the Triangle
Inequality and the multiplicative property (c) of Exercise 3.2 we have

∥Sm − Sn∥∞ = ∥
m
∑

k=n+1

Ak

k!
∥∞ ≤

m
∑

n+1

Nk∥A∥k
∞

k!

By the Ratio Test the Taylor series for f(x) = ex converges (to ex) for all x ∈ R:

ex =
∞
∑

n=0

Dnf(0)

n!
xn =

∞
∑

n=0

xn

n!

because Dn{ex} = ex for all x. Taking x = N · ∥A∥∞, we get

n
∑

k=0

Nk∥A∥k
∞

k!
→

∞
∑

k=0

Nk∥A∥k
∞

k!
= eN∥A∥∞ < ∞ as n → ∞ ,

hence for m ≥ n:

0 ≤ ∥Sm − Sn∥∞ ≤
m
∑

n+1

(N · ∥A∥∞)k

k!
=

∞
∑

k=n+1

(N · ∥A∥∞)
k

k!
→ 0

as n → ∞. Thus, {Sn} is Cauchy sequence for the ∥ · ∥∞-norm and the matrix-valued
series

∑∞
k=0 Ak/k! converges in ∥ · ∥∞-norm for every matrix A. !

In general, it is a difficult task to directly compute the sum of a convergent series
such as eA =

∑∞
n=0 An/n! For instance, consider how one might try to evaluate eA when

A =

(

1 −1
−6 2

)

Computing higher and higher powers Ak is computationally prohibitive, and how many
terms would be needed to compute each entry of eA with an error of at most 1 × 10−6

(6-place accuracy)?
As mentioned earlier, computing eA is easy if A = D = diag(λ1, . . . , λN ) is diagonal.

Then,

Sn = I + D + . . . +
Dn

n!
→

⎛

⎜

⎜

⎜

⎝

eλ1 0
0 eλ2

. . .
0 eλN

⎞

⎟

⎟

⎟

⎠

= eD

We now show that etA can be computed in closed form for all t ∈ R , for any A that
is diagonalizable over R or C.

3.7. Example. Compute etA (t ∈ R) for the matrix

A =

(

1 −1
−6 2

)

Solution: First observe that A is diagonalizable, with QAQ−1 =

(

4 0
0 −1

)

= D for

suitably chosen Q. The eigenvalues are the roots of the characteristic polynomial

pA(x) = det

(

1 − λ −1
−6 2 − λ

)

= (λ − 2)(λ − 1) − 6

= λ2 − 3λ + 2 − 6 = λ2 − 3λ − 4 = (λ − 4)(λ + 1) ,

so sp(A) = {4,−1}. The eigenspaces are computed by row reduction:
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• Eigenvalue λ = 4:

(A − λI) =

(

−3 −1
−6 −2

)

→

(

1 1
3

0 0

)

.

Solutions of (A − λI)X = 0 are

X ∈ K·
(

−1
3

1

)

= K·
(

1
−3

)

= Eλ=4 .

• Eigenvalue λ = −1:

(A − λI) =

(

2 −1
−6 3

)

→

(

1 −1
2

0 0

)

Solutions of (A − λI)X = 0 are X ∈ K ·
( 1

2
1

)

= K·
(

1
2

)

= Eλ=−1.

Thus K2 = Eλ=4⊕Eλ=−1 and Y = { f1 = (1,−3) , f2 = (1, 2) } is a diagonalizing basis in
K2. On the other hand, from our discussion of “change of basis” in Chapter II we have

D =

(

4 0
0 −1

)

= [LA]YY = [id]YX · [LA]XX · [id]XY

= [id]YX · A · [id]XY

Since
{

f1 = e1 − 3e2

f2 = e1 + 2e2
(where X = {e1, e2} = standard basis in K2)

we see that [id]XY =

(

1 1
−3 2

)

. Then QAQ−1 = D taking Q−1 = [id]XY =

(

1 1
−3 2

)

,

and since det(Q−1) = 5 we get Q = (Q−1)−1 = 1
5 ·
(

2 −1
3 1

)

. Now

{

D = QAQ−1

A = Q−1DQ
⇒ Ak = (Q−1DQ)·(Q−1DQ) · . . . · (Q−1DQ) = Q−1DkQ

for k = 0, 1, 2 . . ., hence by (d) of Exercise 3.3 we get

eA =
∞
∑

k=0

Ak

k!
=

∞
∑

k=0

(Q−1DQ)k

k!
=

∞
∑

k=0

Q−1DkQ

k!

= Q−1(
∞
∑

k=0

Dk

k!
) · Q = Q−1eDQ ,

We conclude that

eA = Q−1

(

e4 0
0 e−1

)

Q

which exhibits eA as a product of just three explicit matrices.
Similarly, for t ∈ R we compute etA

etA = Q−1

(

e4t 0
0 e−t

)

Q =

(

1 1
−3 2

)

·
(

e4t 0
0 e−t

)

·
1

5

(

2 −1
3 1

)

=
1

5

(

2e4t + 3e−t −e4t + e−t

−6e4t + 6e−t 3e4t + 2e−t

)

=
1

5
e4t ·

(

2 −1
−6 3

)

+
1

5
e−t ·

(

3 1
6 2

)
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Setting t = 0, we get e0 = I; setting t = 1, we get the answer to our original question

eA =
1

5
e4 ·
(

2 −1
−6 3

)

+
1

5
e−1 ·

(

3 1
6 2

)

!

Application #2: Solving Linear Systems of Differential Equations.

In the next application we see why one might want to compute the matrix-valued function
φ(t) = etA, φ : R → M(N, C). First we must sketch some additional properties of the
exponential map on matrices (mostly without proofs).

1. If A and B commute then

Exponent Law: eA+B = eA · eB

In particular, eA is always invertible, with (eA)−1 = e−A. Futhermore,

One-Parameter Group Law: e(s+t)A = esA · etA for all s, t ∈ R

and e−tA is the inverse of etA for t ∈ R.

Proof (sketch): We give an informal proof involving rearrangement of a matrix-valued
double series. But beware: rearrangement and regrouping of series are delicate matters
even for scalar-valued series, and a proof that would pass muster with analysts would
require considerably more detail – see any text on Mathematical Analysis.

The series eA =
∑∞

k=0 Ak/k! and eB =
∑∞

ℓ=0 Bℓ/ℓ! are sup-norm convergent. Ex-
panding the product of the two series term-by-term (which in itself requires some justi-
fication!) we get

eA · eB = (
∞
∑

k=0

Ak/k!) · (
∞
∑

ℓ=0

Bℓ/ℓ!) =
∑

k,ℓ≥0

1

k!

1

ℓ!
AkBℓ

=
∑

k,ℓ≥0

1

(k + ℓ)!
·
(k + ℓ)!

k!ℓ!
AkBℓ

=
∞
∑

n=0

1

n!
·(

n
∑

k=0

(
n

k)AkBℓ) where (
n

k) = (binomial coefficient)

=
∞
∑

n=0

1

n!
(A + B)n (Binomial Formula)

= eA+B
!

2. Differentiation Law. The derivative of φ(t) = etA exists and is continuous,
with

d

dt
(etA) = A·etA for all t ∈ R

Proof: Using the Exponent Law we get

d

dt
(etA) = lim

∆t→0

e(t+∆t)A − etA

∆t

= lim
∆t→0

(e(∆t)A − I

∆t
)·etA (since e(t+∆t)A = etA ·e(∆t)A)

= ( lim
∆t→0

e(∆t)A − I

∆t
) · etA
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Using the norm properties listed in Exercises 3.2 -3.3 it is not hard to show that

e(∆t)A − I = (I + (∆t)A +
(∆t)2

2!
A2 + ....) − I

= ∆t · (A +
(∆t)2

2!
A2 + ...) = ∆t(A + O(∆t))

where the matrix-valued remainder O(∆t) becomes very small compared to ∆t

∥O(∆t)∥∞
|∆t|

→ 0 as ∆t → 0 .

Thus,
e(∆t)A − I

∆t
=

∆t

∆t
(A + O(∆t)) → A

in the ∥ · ∥∞-norm as ∆t → 0, proving the formula. !

Any system of n first order constant coefficient linear ordinary differential equations
in n unknowns can be written in matrix form as

(42)
dy

dt
= A · y(y) with initial condition y(0) = c

where y(t) = (y1(t), . . . , yn(t)) is a vector-valued function of t, and the n × n matrix A
provides the coefficients of the system. It is well known that once the initial value c is
specified there is a unique infinitely differentiable vector-valued solution y(t) if we regard
y(t) as an n × 1 column vector. The solution can be computed explicitly as

(43) y(y) = etA · y(0) = etA ·c for t ∈ R

In fact,
dy

dt
=

d

dt
(etA · c) =

d

dt
(etA) · c = AetA · c = A · y(t) ,

and when t = 0 we get y(0) = c because e0·A = In×n. We must of course compute etA

to arrive at y(t) but in the previous example we have seen how that might be done, at
least when the coefficient matrix can be diagonalized.

3.8. Example. If A =

„

1 −1

−6 2

«

determine the unique solution of the first order

vector-valued differential equation

dy

dt
= A · y(t) such that y0 = y(0) =

(

1
0

)

.

Likewise for the initial value y0 =

(

0
1

)

. Then find all solutions of

dy

dt
= A · y(t) for an arbitrary initial value y0 =

(

c1

c2

)

Solution: Earlier we found that

QAQ−1 =

(

4 0
0 −1

)

for Q =
1

5

(

2 −1
3 1

)
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and showed that

eA = eQDQ−1

= Q−1 ·eD ·Q =
1

5
e4 ·

(

2 −1
−6 3

)

+ e−1 ·
(

3 1
6 2

)

Taking etA in place of eA, we got (with little additional effort):

etA =
1

5
e4t ·

(

2 −1
−6 3

)

+
1

5
e−t ·

(

3 1
6 2

)

for all t ∈ R

Taking y0 = e1 = (1, 0) we get a solution:

y1(t) = etA(e1) =
1

5
e4t ·

(

2
−6

)

+
1

5
e−t ·

(

3
6

)

If y0 = e2 = (0, 1) we get another solution:

y2(t) = etA(e2) =
1

5
e4t

(

−1
3

)

+
1

5
e−t ·

(

1
2

)

For an arbitrary initial condition y(0) = c = c1e1 + c2e2, it is obvious that the
solution of dy/dt = A · y(t) with this initial condition is the same linear combination of
the “basic solutions” y1(t) and y2(t) namely:

y(t) = c1y1(t) + c2y2(t)

=
1

5
e4t · [c1

(

2
−6

)

+ c2

(

−1
3

)

] +
1

5
e−t[c1

(

3
6

)

+ c2

(

1
2

)

]

(Check for yourself that y(0) = c1e1 + c2e2 = c.)
The full set of differentiable maps f : R → C2 such that df/dt = A · f(t) is a 2-

dimensional subspace M in the ∞-dimensional space C∞(R, C2) of infinitely differentiable
vector valued maps:

M = C-span{y1(t),y2(t)} = {c1y1 + c2y2 : c1, c2 ∈ C}

and the “basic solutions” y1,y2 are a vector basis for M . One should check that y1, y2

are linearly independent vectors in C∞(R, C2). But if there were coefficients α1, α2 such
that α1y1(t) + α2y2(t) ≡ 0 in C2, and we take any convenient base point (say t = 0), we
would then have the following vector identity in C2:

(

0
0

)

=
α1

5
[
(

2
−6

)

+

(

3
6

)

] +
α2

5
[
(

−1
3

)

+

(

1
2

)

]

⇒
α1

5

(

5
0

)

+
α2

5

(

0
5

)

=

(

0
0

)

⇒ αe1 + α2e2 = 0

⇒ α1 = α2 = 0

as required. !

A similar discussion holds for equations dy/dt = A · y(t) when A is n × n (and
diagonalizable). If {y1(t), . . . ,yn(t)} ⊆ C∞(R, Cn) are the “basic solutions,” whose initial
values are yk(0) = ek (the standard basis vectors in Cn), then a solution with arbitrary
initial value y(0) =

∑n
k=1 ckek ∈ Cn is obtained by taking the same linear combination

y(t) = c1y1(t) + . . . + cnyn(t) .
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of basic solution yk(t). As above, the yk are linearly independent vectors in C∞(R, Cn):
if 0 =

∑

ckyk(t) in C∞(R, Cn) for all t, then (taking t = 0)
∑

ckek = 0 in Cn; thus,
c1 = c2 = . . . = cn = 0 because yk(0) = ek, by definition. We conclude that the {yk(t)}
are a basis for the full set of solutions (with arbitrary initial value) of the equation
dy/dt = A · y(t).

M =

{

f ∈ C∞ :
df

dt
= A · f(t) for all t ∈ R

}

(f : R → Cn )

= C-span{y1(t), . . . ,yn(t)}

which has dimension dimC(M) = n. !
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Notes c⃝ F.P. Greenleaf and S. Marques 2006-2017 LAII-s16-nondiag.tex version 1/3/2017

Chapter VII. Nondiagonalizable Operators.

VII-1. Basic Definitions and Examples.

We continue the convention of previous chapters. writing dim(V ) = |V | where appropri-
ate Nilpotent operators present the first serious obstruction to attempts to diagonalize a
given linear operator.

1.1. Definition. A linear operator T : V → V is nilpotent if T k = 0 for some k ∈ N;
it is unipotent if T = I +N with N nilpotent.

Obviously T is unipotent ⇔ T − I is nilpotent.
Nilpotent operators cannot be diagonalized unless T is the zero operator (or T = I,

if unipotent). Any analysis of normal forms must examine these operators in detail.
Nilpotent and unipotent matrices A ∈ M(n,F) are defined the same way. As examples,
all strictly upper triangular matrices (with zeros on the diagonal) as well as those that
are strictly lower triangular, are nilpotent in view of the following observations.

1.2. Exercise. If A has upper triangular form with zeros on and below the diagonal,
prove that

A2 =

⎛

⎜

⎜

⎝

0 0 ∗
· ·

· 0
0 0

⎞

⎟

⎟

⎠

A3 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 ∗
· · ·

· · 0
· 0

0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

etc, so that An = 0. !

Matrices of the same form, but with 1’s on the diagonal all correspond to unipotent
operators.

We will see that if N : V → V is nilpotent there is a basis X such that

[N ]X =

⎛

⎜

⎜

⎝

0 ∗
·

·
0 0

⎞

⎟

⎟

⎠

,

but this is not true for all bases. Furthermore, a lot more can be said about the terms
(∗) for suitably chosen bases.

1.3. Exercise. In M(n,F), show that the sets of upper triangular matrices:

(a) The strictly upper triangular group N =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

1 ∗
·

·
0 1

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

with entries

in F.

(b) The full upper triangular group in M(n,F), P =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎝

a1,1 ∗
·

·
0 an,n

⎞

⎟

⎟

⎠

⎫

⎪

⎪

⎬

⎪

⎪

⎭

with entries in F such that
∏n

i=1 ai,i ̸= 0.
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are both subgroups in GL(n,F), with det(A) =
∏n

i=1 ai,i ̸= 0 for elements of either group.
Verify that N and P are closed under taking products and inverses. !

1.4. Exercise. Let A =

(

0 1
0 0

)

in M(2,F). This is a nilpotent matrix and in any

ground field the only root of its characteristic polynomial

pA(λ) = det(A− λI) = λ2

is λ = 0. There is a nontrivial eigenvector e1 = (1, 0), corresponding to eigenvalue λ = 0,
because ker(A) = F · e1 is nontrivial (as it must be for any nilpotent operator). But you
can easily verify that scalar multiples of e1 are the only eigenvectors, so there is no basis
of eigenvectors. A cannot be diagonalized by any similarity transformation, Regardless
of the ground field F. !

“Stable Range” and “Stable Kernel” of a Linear Map. If T : V → V is a linear
operator on a finite dimensional vector space (arbitrary ground field), let Ki = K(T i) =
ker(T i) and Ri = R(T i) = range(T i) for i = 0, 1, 2, · · · . Obviously these spaces are
nested

(0) ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ Ki+1 ⊆ · · ·
V ⊇ R1 ⊇ R2 ⊇ · · · ⊇ Ri ⊇ Ri+1 ⊇ · · · ,

and if dim(V ) < ∞ they must each stabilize at some point, say with Kr = Kr+1 = · · ·
and Rs = Rs+1 = · · · for some integers r and s. In fact if r is the first (smallest)
index such that Kr = Kr+1 = · · · the sequence of ranges must also stabilize at the same
point because |V | = |Ki| + |Ri| at each step. With this in mind, we define (for finite
dimensional V )

R∞ =
∞
⋂

i=1

Ri = Rr = Rr+1 = · · · (Stable range of T )

K∞ =
∞
⋃

i=1

Ki = Kr = Kr+1 = · · · (Stable kernel of T )

1.5. Proposition. V = R∞ ⊕K∞ and the spaces R∞,K∞ are T -invariant. Further-
more Ri+1 ̸= Ri and Ki+1 ̸= Ki for i < r.

Note: This splitting is sometimes referred to as the “Fitting decomposition” (after a
guy named Fitting).

Proof: To see there is a non-trivial jump Ri+1
⊂
̸= Ri at every step until i = r if suffices to

show that Ri+1 = Ri at some step implies Ri = Rj for all j ≥ i (a similar result for kernels
then follows automatically). It suffices to show that Ri = Ri+1 ⇒ Ri+1 = Ri+2. Obvi-
ously, Ri+2 ⊆ Ri+1 for all i; to prove the reverse inclusion Ri+1 ⊆ Ri+2 , let v ∈ Ri+1.
Then there is some w1 ∈ V such that v = T i+1(w1) = T (T i(w1)). By hypothesis
Ri+1 = T i+1(V ) = Ri = T i(V ) so there is some w2 ∈ V such that T i(w1) = T i+1(w2).
Thus

v = T i+1(w2) = T (T i(w1)) = T (T i+1(w2)) = T i+2(w2) ∈ Ri+2

So, Ri+1 ⊆ Ri+2, Ri = Ri+1 = Ri+2, and by induction Ri = Ri+1 = · · · = R∞.
For T -invariance of R∞ = Rr and K∞ = Kr, T maps Ri → Ri+1 ⊆ Ri for all i;

taking i = r, we get T (R∞) = R∞. As for the kernels, if v ∈ Ki+1 then 0 = T i+1(v) =
T i(T (v)). As a consequence, T (v) ∈ Ki and T (Ki+1) ⊆ Ki for all i. For i ≥ r, we have
Ki = Ki+1 = K∞, so T (K∞) = K∞ as claimed.

To see V = K∞ ⊕ R∞ we show (i) R∞ +K∞ = V and (ii) R∞ ∩K∞ = {0}. For
(ii), if v ∈ R∞ = Rr there is some w ∈ V such that T r(w) = v ; but if v ∈ K∞ = Kr,
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then T r(v) = 0 and hence T r(v) = 0. Consequently T 2r(w) = T r(v) = 0. We now
observe that T : Ri → Ri+1 is a bijection for i ≥ r so ker(T |Rr) = ker(T |R∞) = {0}.
In fact, if i ≥ r then Ri = Ri+1 and T : Ri → Ri+1 is a surjective linear map, and if
T : Ri → Ri+1 = Ri is surjective it is automatically a bijection. Now in the preceding
discussion v = T r(w) ∈ Rr and T r : Rr → R2r = Rr is a bijection, so

0 = T 2r(w) = T r(T r(w)) = T r(v)

Then v = 0, hence R∞ ∩K∞ = {0}
For (ii)⇒ (i), we know

|R∞ +K∞| = |Rr +Kr| = |Rr|+ |Kr|− |Kr ∩Rr|
= |K∞|+ |R∞| = |Kr|+ |Rr| = |V |

(by the Dimension Theorem). We conclude that R∞ +K∞ = V , proving (i). !

1.6. Lemma. T |K∞ is a nilpotent operator on K∞ and T |R∞ is a bijective linear map
of R∞ → R∞. Hence, every linear operator T on a finite dimensional space V , over any
field, has a direct sum decomposition.

T = (T |R∞)⊕ (T |K∞)

such that T |K∞ is nilpotent and T |R∞ bijective on R∞.

Proof: T r(K∞) = T r(ker(T r)) = {0} so (T |K∞)r = 0 and T |K∞ is nilpotent of degree
≤ r, the index at which the ranges stabilize at R∞.

VII-2. Some Observations about Nilpotent Operators.
2.1. Lemma. If N : V → V is nilpotent, the unipotent operator I +N is invertible.

Proof: If Nk = 0 the geometric series I + N + N2 + . . . + Nk−1 + . . . =
∑∞

k=0 N
k is

finite and a simple calculation shows that

(I −N)(I +N + · · ·+Nk−1) = I −Nk = I .

Hence

(1) (I −N)−1 = I +N + · · ·+Nk−1
!

if Nk = 0. !

2.2. Lemma. If T : V → V is nilpotent then pT (λ) = det(T − λI) is equal to (−1)nλn

(n = dim(V )), and λ = 0 is the only eigenvalue (over any field F). [ It is an eigenvalue
since ker(T ) ̸= {0} and the full subspace of λ = 0 eigenvectors is precisely Eλ=0(T ) =
ker(T ) ].

Proof: Take a basis X = {e1, · · · , en} that runs first through K(T ) = K1 = ker(T ), then
augments to a basis in K2 = ker(T 2), etc. With respect to this basis [T ]XX is an upper
triangular matrix with zero matrices blocks on the diagonal (see Exercise 2.4 below).
Obviously, T − λI has diagonal values −λ, so det(T − λI) = (−1)nλn as claimed. !

Similarly a unipotent operator T has λ = 1 as its only eigenvalue (over any field) and its
characteristic polynomial is pT (x) = 1- (constant polynomial ≡ 1). The sole eigenspace
Eλ=1(T ) is the set of fixed points Fix(T ) = {v : T (v) = v}.
2.3. Exercise. Prove that

(a) A nilpotent operator T is diagonalizable (for some basis) if and only if T = 0.

(b) T is unipotent if and only if T is the identity operator I = idV !
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2.4. Exercise. If T : V → V is a nilpotent linear operator on a finite dimensional
space let X = {e1, . . . , en} is a basis that passes through successive kernels Ki = ker(T i),
1 ≤ i ≤ d = deg(T ). Prove that [T ]X is upper triangular with mi ×mi zero-blocks on
the diagonal, mi = dim(Ki/Ki−1).
Hints: The problem is to devise efficient notation to handle this question. Partition the
indices 1, 2, . . . , n into consecutive intervals J1, . . . , Jd (d = deg(T )) such that {ej : j ∈
J1} is a basis for K1, {ei : i ∈ J1 ∪ J2} is a basis for K2, etc. Matrix coefficients Tij are
determined by the system of vector equations

T (ei) =
n
∑

j=1

Tjiej (1 ≤ i ≤ n = dim(V ))

What do the inclusions T (Ki) ⊆ Ki−1 tell you about the coefficients Tij? !

Let T : V → V be nilpotent. The powers T k eventually “kill” every vector v ̸= 0, so
there is an m ∈ N such that {v, T (v), · · · , Tm−1(v)} are nonzero and Tm(v) = 0 . The
nilpotence degree deg(T ) is the smallest exponent d = 0, 1, 2, · · · such that T d = 0.

2.5. Proposition. Let T : V → V be nilpotent and v0 ̸= 0. If v0, T (v0), · · · , Tm−1(v0)
are all nonzero and Tm(v0) = 0 define W (v0) = F−span{v0, T (v0), · · · , Tm−1(v0)}. This
subspace is T -invariant and the vectors {v0, T (v0), · · · , Tm−1(v0)} are independent, hence
a basis for this “cyclic subspace” determined by v0 and the action of T .

Proof: The {T k(v0) : 0 ≤ k ≤ n − 1} span W (v0) by definition. They are independent
because if 0 = c0 + c1T (v0) + · · ·+ cm−1Tm−1(v0) for some choice of ck ∈ F, then

0 = Tm−1(0) = Tm−1(c0v0 + c1T (v0) + · · ·+ cm−1T
m−1(v0))

= c0T
m−1(v0) + c1 · 0 + · · ·+ cm−1 · 0 ,

which implies c0 = 0 since Tm−1(v0) ̸= 0 by minimality of the exponent m. Next, apply
Tm−2 to the original sum, which has now the form c1T (v0) + · · · + cm−1Tm−1(v0); we
get

Tm−2(0) = Tm−2(c1T (v0) + · · ·+ cm−1T
m−1(v0)) = c1T

m−1(v0) + 0 + · · ·+ 0

and then c1 = 0. We can apply the same process repeatedly to get c0 = c1 = c2 = · · · =
cm−1 = 0. !

Obviously W (v0) is T -invariant and T0 = T |W (v0) is nilpotent (with degree m =
deg(T0) ≤ deg(T )) because for each basis vector T k(v0) we have Tm

0 (T k(v0)) = T k(Tm(v0)) =
0; but in fact deg(T0) = m because Tm−1

0 (v0) ̸= {0}. Now consider the ordered basis

X = {e1 = Tm−1(v0), e2 = Tm−2(v0), · · · , em = v0} in W (v0) .

Since T (ek+1) = ek for each k ≥ 1 and T (e1) = 0, the matrix [T ]X,X has the form

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The action on these ordered basis vectors is :

0
T←− e1

T←− e2
T←− · · · T←− em−1

T←− em = v0
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The “top vector” em = v0 is referred to as a cyclic vector for the invariant subspace
W (v0). Any matrix having the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 · · 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

is called an elementary nilpotent matrix.

Cyclic Vectors and Cyclic Subspaces for General Linear Operators. To put
this in its proper context we leave the world of nilpotent operators for a moment.

2.6. Definition. If dim(V ) < ∞, T : V → V is a linear operator, and W ⊆ V a
nonzero T -invariant subspace, we say W is a cyclic subspace if it contains a “cyclic
vector” v0 ∈ W such that W = F-span{v0, T (v0), T 2(v0), · · · }.
Only finitely many iterates T i(v0) under the action of T can be linearly independent, so
there will be a first (smallest) exponent k = k(v0) such that {v0, T (v0), · · · , T k−1(v0)}
are linearly independent and T k(v0) is a linear combination of the previous vectors.

2.7. Proposition. Let T : V → V be an arbitrary linear operator on a finite dimensional
vector space. If v0 ∈ V is non-zero there is a unique exponent k = k(v0) ≥ 1 such that
{v0, T (v0), · · · , T k−1(v0)} are linearly independent and T k(v0) is a linear combination of
these vectors. Obviously,

W = F−span{T j(v0) : j = 0, 1, 2, · · · } = F−span{v0, T (v0), · · · , T k−1(v0)}

and dim(W ) = k. Furthermore, T (W ) ⊆W and W is a cyclic subspace in V .

Proof: By definition of k = k(v0), T k(v0) is a linear combination T k(v0) =
∑k−1

j=0 cjT
j(v0).

Arguing recursively,

T k+1(v0) = T (T k(v0)) =
k−1
∑

j=0

cjT
j+1(v0)

= (ck−1T
k(v0)) + (linear combinations of v0, T (v0), · · · , T k−1(v0) )

Since we already know T k(v0) lies in F-span{v0, T (v0), · · · , T k−1(v0)}, so does T k+1(v0).
Continuing this process, we find that all iterates T i(v0) (i ≥ k) lie in W . By definition
v0, T (v0), · · · , T k−1(v0) are linearly independent and span W , so dim(W ) = k. !

When T is nilpotent there is a simpler alternative description of the cyclic subspaceW
generated by the action of T on v0 ̸= 0. Since T d = 0 on all of V when d = deg(T ), there
is a smallest exponent l such that {v0, T (v0), · · · , T ℓ−1(v0)} are nonzero and T ℓ(v0) =
T ℓ+i(v0) = 0 for all i ≥ 0. These vectors are independent and the next vector T ℓ(v0) = 0
lies in F-span{v0, T (v0), · · · , T ℓ−1(v0)}, so ℓ is precisely the exponent of the previous
lemma and C = F-span{v0, T (v0), · · · , T ℓ−1(v0)} is the cyclic subspace generated by v0.

XII-3. Structure of Nilpotent Operators.
Resuming the discussion of nilpotent operators, we first observe that if T : V → V is

nilpotent and nonzero the chain of kernels Ki = ker(T i),

{0} = K0
⊂
̸= K1 = ker(T )

⊂
̸= K2

⊂
̸= · · · ⊄= Kd = V (d = deg(T ))
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terminates at V in finitely many steps. The difference sets partition V ∼ (0) into disjoint
“layers”

V ∼ (0) = (Kd ∼ Kd−1) ∪ · · · ∪ (Ki ∼ Ki−1) ∪ · · · ∪ (K1 ∼ K0)

where K0 = (0). The layers Ki ∼ Ki−1 correspond to the quotient spaces Ki/Ki−1,
and by examining the action of T on these quotients we will be able to determine the
structure of the operator T .

3.1. Exercise. If v0 is in the “top layer” V ∼ Kd−1, prove that F-span{T j(v0) : j ≥ 0}
has dimension d and every such v0 is a cyclic vector under the iterated action of T on
W . !

Since dim(Kd−1) < dim(Kd) = dim(V ), Kd−1 is a very thin subset of V and has “measure
zero” in V when F = R or C. If you could pick a vector v0 ∈ V “at random,” you would
have v0 ∈ V ∼ Kd−1 “with probability 1,” and every such choice of v0 would generate
a cyclic subspace of dimension d. “Unsuccessful” choices, which occur with “probability
zero,” yield cyclic subspaces W (v0) of dimension < d.

We now state the main structure theorem for nilpotent operators .

3.2. Theorem (Cyclic Subspace Decomposition). Given a nilpotent linear operator
T : V → V on a finite dimensional vector space V , there is a decomposition V =
V1 ⊕ · · ·⊕ Vr into cyclic T -invariant subspaces. Obviously the restrictions Ti = T |Vi are
nilpotent, with degrees

mi = dim(Vi) = (smallest exponent m such that Tm kills the cyclic generator vi ∈ Vi)

These degrees are unique when listed in descending order m1 ≥ m2 ≥ · · · ≥ mr > 0
(repeats allowed), and

∑r
i=1 mi = dim(V ).

While it is nice to know such structure exists, it is equally important to develop a con-
structive procedure for finding suitable cyclic subspaces V1, · · · , Vr . This is complicated
by the fact that the cyclic subspaces are not necessarily unique, unlike the eigenspaces
Eλ(T ) associated with a diagonalizable operator. Any algorithm for constructing suitable
Vi will necessarily involve some arbitrary choices.

The rest of this section provides a proof of Theorem 3.2 that yields on an explicit
construction of the desired subspaces. There are some very elegant proofs of Theorem
3.2, but they are existential rather than constructive and so are less informative.

3.3. Corollary. If T : V → V is nilpotent, there is a decomposition into cyclic spaces
V = V1 ⊕ . . . ⊕ Vr, so there is a basis X such that [T ]X consists of elementary nilpotent
diagonal blocks.

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

B1 0 0 · 0
0 B2 0 ·
0 0 0 · ·
· · · ·
· · ·
0 · · · 0 Br

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with

Bi =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0
0 0 1 ·
0 0 0 · ·
· · · ·
· · · 1
0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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We start with the special case in which T has the largest possible degree of nilpotence.

3.4. Lemma. If T is nilpotent and deg(T ) = dim(V ), there is a cyclic vector in V and
a basis such that [T ]X has the form Bi of an elementary nilpotent matrix.

Proof: If deg(T ) = d is equal to dim(V ), the spaces Ki = ker(T i) increase with

|Ki+1| ≥ 1+ |Ki| at each step in the chain {0} ⊂
̸= K1 ⊆ · · · ⊆ Kd−1 ⊆ Kd = V . There are

d = dim(V ) steps so we must have |Ki+1| = 1 + |Ki|. Take any vector v0 ∈ V ∼ Kd−1.
Then T d(v0) = 0 but by definition of Kd−1, v0, T (v0), · · · , T d−1(v0) are all nonzero, so
v0 is a cyclic vector for the iterated action of T . !

If T : V → V is nilpotent of degree d, the idea behind proof of Theorem 3.1 is to look
at the kernels Ki = ker(T i).

V = Kd
⊃
̸= Kd−1

⊃
̸= · · · ⊅= K2

⊃
̸= K1 = ker(T )

⊃
̸= {0}

As the kernels get smaller, more of V is “uncovered” (the difference set V ∼ Ks and the
quotient V/Ks get bigger) and the action in V/Ks reveals more details about the full
action of T on V .

It will be important to note that T (Ki) ⊆ Ki−1 (since 0 = T i(x) = T i−1(T (x))
and T (x) ∈ Ki−1). Furthermore, x /∈ Ki implies that 0 ̸= T i(x) = T i−1(T (x)) so that
T (x) /∈ Ki−1. Thus

(2) T maps Ki+1 ∼ Ki into Ki ∼ Ki−1 for all i.

But it is not generally true that T (Kj) = Kj−1.

3.5. Definition. Let T : V → V be an arbitrary linear map and W a T -invariant
subspace. We say that vectors e1, · · · , em in V are:

1. Independent (mod W ) if their images e1, · · · , em in V/W are linearly indepen-
dent. Since

∑

i ciei = 0 in V/W if and only if
∑

i ciei ∈ W in V , that means:

m
∑

i=1

ciei ∈ W ⇒ c1 = · · · = cm = 0 (ci ∈ F)

2. Span V (mod W ) if F-span{ei} = V/W , which means: given v ∈ V , there are
ci ∈ F such that (v −

∑

i ciei) ∈ W , or v =
∑

i=0 ciei in V/W .

3. A basis for V (mod W ) if the images {ei} are a basis in V/W , which happens if
and only if 1. and 2. hold.

3.6. Exercise. Let W ⊆ R5 be the solution set of system

{

x1 + x3 = 0
x1 − x4 = 0

and let {ei} be the standard basis in V = R5.

1. Find vectors v1, v2 that are a basis for V (mod W ).

2. Is X = {e1, e2, e3, v1, v2} a basis for V where v1, v2 are the vectors in (1.)?

3. Find a basis {f1, f2, f3} for the subspace W . !

7



Figure 7.1. Steps in the construction of a basis that decomposes vector space V into cyclic
subspaces under the action of a nilpotent linear operator T : V → V . The subspaces Ki are
the kernels of the powers T i for 1 ≤ i ≤ d = deg(T ), with Kd = V and K0 = (0).

3.7. Exercise. Let T : V → V be an arbitrary linear map and W a T -invariant
subspace. Independence of vectors f1, · · · , fr mod a T -invariant subspace W ⊆ V im-
plies the independence (mod W ′) for any smaller T -invariant subspace W ′ ⊆W ⊆ V . !

Proof of Theorem 3.2. Below we will construct two related sets of vectorsF1,F2,F3, · · ·
and E1 = F1 ⊆ E2 ⊆ E3 ⊆ · · · ⊆ Er such that Er is a basis for V aligned with the kernels
Kd = V ⊇ Kd−1 ⊇ · · · ⊇ K1 = ker(T ) ⊇ {0}. When the construction terminates, the
vectors in Er will be a basis for all of V that provides the desired decomposition into
cyclic subspaces.

(Initial) Step1: Let F1 = E1 = {ei : i ∈ index set I1} be any set of vectors in
V ∼ Kd−1 that are a basis for V (mod Kd−1), so their images {ei} are a basis in
V/Kd−1. Obviously the index set I1 has cardinality |I1| = |V/Kd−1| = |V |− |Kd−1|, the
dimension of the quotient space.

You might feel more comfortable indicating the index sets I1, I2, · · · being constructed
here as consecutive blocks of integers, say I1 = {1, 2, · · · , s1}, I2 = {s1 + 1, · · · , s2} etc,
but this notation becomes really cumbersome after the first two steps. And in fact there
is no need to explicitly name the indices in each block. From here on you should refer
to the chart shown in Figure 7.1, which lists all the players that will emerge in our
discussion.

Step 2: The T -images T (F1) lie in the layer T (V ∼ Kd−1) ⊆ Kd−1 ∼ Kd−2, as noted
in (2). In this step we shall verify two assertions.

Claim (i): The vectors in T (F1) = {T (ei) : i ∈ I1} ⊆ Kd−1 ∼ Kd−2 are
independent (mod Kd−2).

If these vectors are not already representatives of a basis for Kd−1/Kd−2 we can adjoin
additional vectors F2 = {ei : i ∈ I2} ⊆ Kd−1 ∼ Kd−2 chosen so that T (F1) ∪ F2

corresponds to a basis for Kd−1/Kd−2; otherwise we take F2 = ∅.

Claim (ii): The vectors E2 = F2 ∪ [E1 ∪ T (F1)] = E1 ∪ [T (F1) ∪ F2 ] are a
basis for all of V (mod Kd−2).
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Remarks: In Linear Algebra I we saw that if W ⊆ V and {e1, · · · , er} is a basis for W ,
we can adjoin successive “outside vectors” er+1, · · · , es to get a basis for V . (These can
even be found by deleting some of the vectors in a pre-ordained basis in V .) Then the
images {er+1, · · · , es} are a basis for the quotient space V/W . That is how we proved
the dimension formula |V | = |W |+ |V/W | for finite dimensional V .] !

Proof: Claim (i). If
∑

i∈I1
aiT (ei) = T (

∑

i∈I1
aiei) ≡ 0 (mod Kd−2) then

∑

i∈I1
aiei

is in Kd−2 and also lies in the larger space Kd−1 ⊇ Kd−2. But by definition vectors in
F1 = {ei : i ∈ I1} are independent (mod Kd−1), so we must have ai = 0 for i ∈ I1,
proving independence (mod Kd−1) of the vectors in T (F1).

Proof: Claim (ii). Suppose there exist coefficients a(1)i , a(2)i , bi ∈ F such that

(3)
∑

i∈I1

a(1)i ei +
∑

i∈I2

a(2)i ei +
∑

i∈I1

biT (ei) ≡ 0 (mod Kd−2),

This sum lies in Kd−2, hence also in the larger subspace Kd−1, and the last two terms
are already in Kd−1 because F2 ∪ T (F1) ⊆ Kd−1 ∼ Kd−2. Thus

∑

i∈I1

a(1)i ei ≡ 0 (mod Kd−1) ,

and since the ei, i ∈ I1, are independent (mod Kd−1) we must have a(1)i = 0 for all
i ∈ I1. Now the sum (3) reduces to its last two terms, which all lie in Kd−1. But by

construction, F2 ∪ T (F1) is a basis for Kd−1 (mod Kd−2), which implies a(2)i = 0 for
i ∈ I2 and bi = 0 for i ∈ I1. Thus E2 = F1∪ [T (F1)∪F2] is an independent set of vectors
(mod Kd−2).

It remains to show E2 spans V (mod Kd−2). If v ∈ V is not contained in Kd−1 there
is some v1 ∈ F-span{F1} such that v− v1 ≡ 0 (mod Kd−1), so v− v1 ∈ Kd−1. If this dif-
ference is lies outside of Kd−2 we can find some v2 ∈ T (F1)∪F2 such that v = (v1+v2) ∈
Kd−2. Thus v = v1 + v2 (mod Kd−2), and since v1 + v2 ∈ F-span{F1 ∪ T (F1) ∪ F2},
statement (ii) is proved. !

That completes Step 2. Further inductive steps fill in successive rows in Figure 7.1.
They involve no new ideas, but things can get out of hand unless the notation is carefully
managed. Below we include a complete discussion of the general inductive step in this
process, which could be skipped on first reading. It is followed by a final paragraph
proving uniqueness of the multiplicities mi (which you should read).

The General Inductive Step in Proving Theorem 3.2. This should probably be
read with the chart from Figure 7.1 in hand to keep track of the players.

Continuing the recursive construction of basis vectors: at step r we have defined sets
of vectors Fi ⊆ Kd−i+1 ∼ Kd−i for 1 ≤ i ≤ r with the properties E1 = F1 and

Er = Er−1 ∪ [T r−1(F1) ∪ · · · ∪ T (Fr−1) ∪ Fr]

is a basis for V/Kd−r. At the next step we take the new vectors

T r−1(F1) ∪ T r−2(F2) ∪ · · · ∪ Fr ⊆ Kd−r+1 ∼ Kd−r

created in the previous step and form their T -images

T r(F1) ∪ · · · ∪ T (Fr) ⊆ Kd−r ∼ Kd−r−1

To complete the inductive step we show:

9



1. These vectors are independent (mod Kd−r−1)

2. We then adjoin additional vectors Fr+1 ⊆ Kd−r ∼ Kd−r−1 as needed to produce
a basis for Kd−r/Kd−r−1, taking Fr+1 = ∅ if the vectors T r(F1) ∪ · · · ∪ T (Fr) are
already representatives for a basis in Kd−r/Kd−r−1. The vectors

Er+1 = Er ∪ [T r(F1) ∪ . . . ∪ T (Fr) ∪ Fr+1]

will then be a basis for V (mod Kd−r−1).

Proof details:

1. If the vectors T r(F1) ∪ · · · ∪ T (Fr) are not representatives for an independent set

of vectors in Kd−r/Kd−r−1 there are coefficients {c(1)i : i ∈ I1}, · · · , {c(r)i : i ∈ Ir}
such that

∑

i∈I1

c(1)i T r(ei) + . . .+
∑

i∈Ir

c(r)i T (ei) ≡ 0 (mod Kd−r−1)

So, this sum is in Kd−r−1 and in Kd−r. But T r−1{ei : i ∈ I1}∪· · ·∪{ei : i ∈ Ir} are
independent vectors (mod Kd−r) by hypothesis, and are a basis for Kd−r+1/Kd−r.
We may rewrite the last congruence as

T [
∑

i∈I1

c(1)i T r−1(ei) + . . .+
∑

i∈Ir

c(r)i ei ] ≡ 0 (mod Kd−r−1)

So, T [· · · ] ∈ Kd−r−1, hence [· · · ] ∈ Kd−r too. By independence of the ei (mod

Kd−r), we must have c(j)i = 0 in F for all i, j. Thus the vectors T r(F1)∪ · · ·∪T (Fr)
are independent (mod Kd−r−1) as claimed.

2. To verify independence of the updated set of vectors

Er+1 = Er ∪ [T r(F1) ∪ · · · ∪ T (Fr) ∪ Fr+1]

in V/Kd−r−1, suppose some linear combination S = S′ +S′′ is zero (mod Kd−r−1)
where S′ is a sum over vectors in Er and S′′ a sum over vectors in T r(F1)∪· · ·∪Fr+1.
Then S ≡ 0 (modKd−r−1) implies S ≡ 0 (modKd−r), and then by independence of
vectors in Er (mod Kd−r), all coefficients in S′ are zero. The remaining term S′′ in
the reduced sum lies inKd−r ∼ Kd−r−1, and by independence of T r(F1)∪· · ·∪Fr+1

in Kd−r/Kd−r−1 all coefficients in S′′ are also zero. Thus Er+1 ⊆ V corresponds
to an independent set in Kd−r/Kd−r−1.

Dimension counting reveals that

|V/Kd−1| = |F1|
|Kd−1/Kd−2| = |T (F1)|+ |F2| = |F1|+ |F2|

...(4)

|Kd−r/Kd−r−1| = |F1|+ . . .+ |Fr+1|

Thus |V/Kd−r−1| = |V/Kd−1| + · · · + |Kd−r/Kd−r−1| is precisely the number |Er+1| of
basis vectors appearing in the first r + 1 rows from the top of the chart in Figure 7.1).
But this is also equal to dim(V/Vd−r−1), so Er+1 is a basis for V/Vd−r−1 and Step(r+1)
of the induction is complete.

The Cyclic Subspace Decomposition. A direct sum decomposition of V into cyclic
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subspaces can now be read out of Figure 7.1, in which basis vectors have been constructed
row-by-row. Consider what happens when we partition into columns. For each ei ∈ F1,
(i ∈ I1), we have ei, T (ei), T 2(ei), · · · , T d−1(ei) ̸= 0 and T d(ei) = 0, so these vectors
span a cyclic subspace E(ei) such that T |E(ei) has nilpotent degree d with ei as its cyclic
vector. Since the vectors that span E(ei) are part of a basis Ed for all of V , we obtain a
direct sum of cyclic T -invariant subspaces

⊕

i∈I1
E(ei) ⊆ V (|I1| = |F1| subspaces).

Vectors ei ∈ F2 (i ∈ I2) generate cyclic subspaces E(ei) such that dim (E(ei)) =
deg(T |E(ei)) = d− 1; these become part of

⊕

i∈I1

E(ei)⊕
⊕

i2∈I2

E(e2) ,

etc. At the last step, the vectors ei ∈ Fd (i ∈ Id) determine T -invariant one-dimensional
cyclic spaces such that T (Fei) = (0), with nilpotence degree = 1 – i.e. the spaces
E(ei) = Fei all lie within ker(T ). The end result is a cyclic subspace decomposition

(5) (
⊕

i1∈I1

E(ei1)) ⊕ (
⊕

i2∈I2

E(ei2)) ⊕ . . . ⊕ (
⊕

id∈Id

E(eid))

of the entire space V , since all basis vectors in Er are accounted for. (Various summands
in (5) may of course be trivial.)

Uniqueness: A direct sum decomposition V =
⊕s

j=1 Ej into T -invariant cyclic sub-
spaces can be refined by gathering together those Ei of the same dimension, writing

V =
d
⊕

k=1

Hk where Hk =
⊕

{Ei : dim(Ei) = deg(T |Ei) = k}

for 1 ≤ k ≤ d = deg(T ).

3.8. Proposition. In any direct sum decomposition V =
⊕s

j=1 Ej into cyclic T -
invariant subspaces, the number of spaces of dimension dim(Ei) = k, 1 ≤ k ≤ d = deg(T )
can be computed in terms of the dimensions of the quotients Ki/Ki−1. These numbers
are the same for all cyclic decompositions.

Proof: Let us regard Figure 7.1 as a d × d array of “cells” with Cij the cell in Row(i)
(from the top) and Col(j) (from the left) in the array; the “size” |Cij | of a cell is the
number of basis vectors it contains. Note that

(i) |Cij | = 0 if the cell lies above the diagonal, with j > i, because those cells are
empty (others may be empty too).

(ii) |Cij | = |Fj | for all cells on and below the diagonal in Col(j) of the array. In
particular |Cj1| = |F1| for all nonempty cells in Col(1), |Cj2| = |F2| for those in
Col(2), etc.

By our construction, it is evident that vectors in the nonempty cells in Row(r) of Figure
7.1 correspond to a basis for the quotient space Kd−r/Kd−r−1. Counting the total
number of basis vectors in Row(r) we find that

dim(Kd−r/Kd−r−1) = |Cr1|+ . . .+ |Cr+1,r+1| = |F1|+ . . .+ |Fr+1| ,

We may now recursively compute the values of |Crj | and |Fj | from the dimensions of the
quotent spaces Ki/Ki−1. But as noted above, each ei ∈ Fk lies in the diagonal cell Ckk

and generates a distinct cyclic space in the decomposition. !

That completes the proof of Theorem 3.2.

Remarks. To summarize,
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1. We define Ki = ker(T i) for 1 ≤ d = i nilpotence degree of T .

2. The following relations hold.

E1 = F1 ⊆ V ∼ Kd−1 determines a basis for V/Kd−1,

E2 = E1 ∪ [T (F1) ∪ F2 ] ⊆ V ∼ Kd−2 determines a basis for V/Kd−2,

...

Er+1 = Er ∪ [T r(F1) ∪ T r−1(F2) ∪ · · · ∪ Fr+1 ] ⊆ V ∼ Kd−r determines a basis for V/Kd−r−1

...

Ed = Ed−1 ∪ [T d−1(F1) ∪ · · · ∪ T (Fd−1) ∪Fd ] is a basis for all of V. !

In working examples it usually helps to start by determining a basis B(0) = B(1)∪. . .∪B(d)

for V aligned with the kernels so that B(1) is a basis for K1, B(2) determines a basis for
K2/K1, etc. This yields a convenient basis in V to start the construction.

3.9. Example. Let V = F5 and T : V → V the operator T = LA,

T (x1, · · · , x5) = (0, x3 + x4, 0, x3, x1 + x4)

whose matrix with respect to the standard basis X = {e1, · · · , e5} in F5 is

A = [T ]X =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 1 0 0
1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

Show that T is nilpotent, then determine deg(T ) and the kernels

V = Kd ⊇ Kd−1 ⊇ · · · ⊇ K1 ⊇ {0}

Find a basis Y such that [T ]Y has block diagonal form, with each block Bi an elementary
nilpotent matrix. This is the Jordan canonical form for a nilpotent linear operator.

Discussion: First find bases for the kernels Ki = ker(T i). We have

K1 = ker(T ) = {x : x3 + x4 = 0, x3 = 0, x1 + x4 = 0}
= {x : x4 = x3 = 0, x1 + x4 = 0} = {x : x1 = x3 = x4 = 0}
= {(0, x2, 0, 0, x5) : x2, x5 ∈ F} = F-span{e2, e5}

Iteration of T yields

T (x) = (0, x3 + x4, 0, x3, x1 + x4)

T 2(x) = T (T (x)) = (0, x3, 0, 0, x3)

T 3(x) = (0, · · · , 0)

for x ∈ F5. Clearly T is nilpotent with deg(T ) = 3, and

|K1| = 2 : K1 = F-span{e2, e5} = {x : x1 = x3 = x4 = 0}
|K2| = 4 : K2 = ker(T 2) = {x : x3 = 0} = F-span{e1, e2, e4, e5}
|K3| = 5 : K3 = F5

In this example, X = {e2, e5; e1, e4; e2} = B(1) ∪ B(2) ∪ B(3) is an ordered basis for V
aligned with the Ki running through (0) ⊆ K1 ⊆ K2 ⊆ K3 = V . From this we can
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determine the families F1,F2,F3 of Theorem 3.2.

Step 1: Since |K3/K2| = 1 any nonzero vector in the layer K3 ∼ K2 = {x : x3 ̸= 0}
yields a basis vector for K3/K2. We shall take F1 = {e3} chosen from the standard basis
X, and then E1 = {e3} too. (Any x with x3 ̸= 0 would also work.)

Step 2: The image set T (F1) = T (e3) = e2 + e4 lies in the next layer

K2 ∼ K1 = {x : x3 = 0} ∼ F-span{e2, e5}
= {x : x3 = 0 and x1, x4 are not both = 0}

Since |T (F1)| = 1 and dim(K2/K1) = |K2| − |K1| = 4 − 2 = 2, we must adjoin one
suitably chosen new vector x from layer K2 ∼ K1 to T (F1) to get the desired basis for
K2/K1. Then F2 = {x} and

E2 = (F1 ∪ T (F1)) ∪ F2 = {e3, e2 + e4,x}

E2 is a basis for V/K2 as in first inductive step of Theorem 3.2.
A suitable vector x = (x1, . . . , x5) in K2 ∼ K1, x = (x1, x2, x3, x4, x5) must have

x3 = 0 (so x ∈ K2) and x1, x3, x4 not all zero (so x /∈ K1). This holds if and only if
(x3 = 0) and (x1, x4 are not both 0). But we must also insure that our choice of x makes
{e3, e2 + e4,x} independent (mod K1). The following lemma is helpful.

3.10. Lemma. Let V = Fn, W a subspace, X = {v1, · · · , vr} vectors in V , and let
M = F-span{v1, · · · , vr} (so r = |V/W | ). Let Y = {w1, · · · , wn−r} be a basis for W .
Then the following assertion are equivalent.

1. X determines a basis for V/W .

2. Y ∪ X = {v1, · · · , vr, w1, · · · , wn−r} is a basis for V .

3. V = W ⊕M (direct sum of subspaces).

Proof: In Linear Algebra I we showed that the images v1, · · · , vr are a basis for V/W
if and only if {v1, · · · .vr} ∪Y are a basis for V . It is obvious that (ii)⇔ (iii). !

3.11. Corollary. In the setting of the lemma the “outside vectors” v1, · · · , vr ∈ V ∼W
are a basis for V ((mod W ), so the images {v1, · · · , vr} are a basis for V/W , if and only
if the n× n matrix A whose rows are R1 = v1, · · · , Rr = vr, Rr+1 = w1, · · · , Rn = wn−r

has rank equal to n.

Armed of this observation (and the known basis {e2, e5} for K1), we seek a vector x =
(x1, . . . , x5) with x1, x4 not all equal to 0, such that

A =

⎛

⎜

⎜

⎜

⎜

⎝

e3
e2 + e4

(x1, x2, 0, x4, x5)
e2
e5

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 1 0 1 0
x1 x2 0 x4 x5

0 1 0 0 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

has Rowrank(A) = 5. Symbolic row operations put this into the form
⎛

⎜

⎜

⎜

⎜

⎝

x1 x2 0 x4 x5

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

,

which has rank = 5 if and only if x1 ̸= 0.
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Thus we may take e1 as the additional vector we seek, and then

F1 = {e3} T (F1) = {e2 + e4} F3 = {e1} ,

and E2 = [F1∪T (F1)]∪F2. That completes Step 2. (Actually any x with x1 ̸= 0, x3 = 0
would work.)

Step 3: In the next layer K1 ∼ K0 we have the vectors

T 2(F1) = {T 2(e3) = T (e2 + e4) = e2 + e5} and T (F2) = {T (e1)} = {e5}

Since, |K1/K0| = |K1| = 2 there is no need to adjoin additional vectors from this layer,
so F3 = ∅. The desired basis in V is

E3 = F1 ∪ [T (F1) ∪ F2 ] ∪ [T 2(F1) ∪ T (F2) ] = {e3; e2 + e4, e1; e2 + e5, e5}

The iterated action of T sends

e3 → T (e3) = e2 + e4 → T 2(e3) = e2 + e5 and e1 → T (e1) = e5

The cyclic subspaces are

E1 = F -span{e3, T (e3), T 2(e3)} = {e3, e2 + e4, e2 + e5}
E2 = F-span{e1, T (e1) = e5}

and V = E1 ⊕ E2. With respect to this basis [T ]X has the block diagonal form

[TX] =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

0 0 0 0 1
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

each diagonal block being an elementary nilpotent matrix. The number and size of such
blocks are uniquely determined but the bases are not unique, nor are the cyclic subspaces
in the splitting V = E1 ⊕ E2. !

3.12. Exercise. Let W be the 3-dimensional subspace in V = F5 determined by the
equations

{

x1 − 2x2 + x3 = 0
3x1 + 5x3 = 0

which is equivalent to the matrix equation Ax = 0 with

A =

(

1 −2 1 0
3 0 5 −1

)

(a) Find vectors {v1, v2, v3} that are a basis for W .

(b) Find 2 vectors {v4, v5} that form a basis for V (mod W ).

(c) Find two of the standard basis vectors {e1, e2, e3, e4, e5} in F5 that are a basis for
V (mod W ).

3.13. Exercise. Do either of the vectors in

f1 = 2e1 − 3e2 + e3 + e4 f2 = −e1 + 2e2 + 5e3 − 2e4
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in F5 lie in the subspace W determined by the system of the previous exercises? Do these
vectors form a basis for F5 (mod W )? !

3.14. Exercise. Which of the following matrices A are nilpotent?

(a)

⎛

⎝

0 0 0
1 0 0
0 1 0

⎞

⎠ (b)

⎛

⎝

0 1 2
0 0 3
0 0 0

⎞

⎠ (c)

⎛

⎝

1 2 −1
−1 −2 1
−1 −2 1

⎞

⎠ (d)

⎛

⎝

5 −6 −6
−1 4 2
3 −6 4

⎞

⎠

If A is nilpotent, find a basis for F3 that puts A into block diagonal form with elementary
nilpotent blocks. What is the resulting block diagonal form if the blocks are listed in
order of decreasing size? !

3.15. Exercise. If N1, N2 are nilpotent is N1N2 nilpotent? What if N1 and N2

commute? !

3.16. Corollary. If N1, N2 are nilpotent operators Nk : V → V and their commutator
[N1, N2] = N1N2 −N2N1 is = 0.

(a) Prove that linear combination c1N1 + c2N2 are also nilpotent.

(b) If N1, · · · , Nr are nilpotent and commute pairwise, so [Ni, Nj ] = 0 for i ̸= j, prove
that all operators in F-span{N1, · · · , Nr} are nilpotent. !

3.17. Exercise. Let V = Pn(F) be the space of polynomials f =
∑n

i=0 cix
i ∈ F[x] of

degree ≤ n.

(a) Show that the differentiation operator

D : V → V,Df = df/dx = c1 + 2c2 x+ · · ·+ n · cnxn−1

is nilpotent with deg(D) = n+ 1 (Note: dim(V ) = n+ 1).

(b) Prove that any constant coefficient differential operator L : V → V of the form
a1D + a2D2 + · · ·+ anDn (no constant term a0I) is nilpotent on V .

(c) Does this remain true if a nonzero constant term c01- is allowed? !

3.18. Exercise. In the space of polynomials Pn(R) consider the subspaces

V1 = {f : f(x) = f(−x), the even polynomials}
V2 = {f : f(−x) = −f(x), the odd polynomials }

Prove that these subspaces are invariant under differentiation, and that Pn is their direct
sum V1 ⊕ V2. !

3.19. Exercise. Show Tr(A) = 0, for any nilpotent linear operator A : V → V of a
finite dimensional space. Is the converse true? !

VII.4 A Review of the Diagonalization Problem.

We will give a general structure theorem for linear operators T over a field F large
enough that the characteristic polynomials pT = det(T − xI) splits into linear factors
f(x) = c ·

∏s
i=1(x − ai)mi in F[x]. This is always true if F = C, but pT need not split

over other fields; and even if pT (x) does split, that alone is not enough to guarantee T is
diagonalizable. In this section we briefly review diagonalizability of linear operators over
a general field F, which means that there is a basis of eigenvectors in V (or equivalently
that the eigenspaces Eλ(T ) span V so V =

∑

λ Eλ(T )). If you already have a good
understanding of these matters you may want to skip to Section VII.5 where we discuss
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the generalized eigenspaces that lead to the Jordan Decomposition. However, you should
at least read the next theorem and its proof since the techniques used are the basis for
the more complicated proof that generalized eigenspaces are independent, part of a direct
sum decomposition of V .

Diagonalization.

4.1. Definition. Let T : V → V be a linear operator on vector space over F. If
λ ∈ F, the λ-eigenspace is Eλ = {v ∈ V : (T − λI)v = 0}. Then λ is an eigenvalue
if Eλ(T ) ̸= {0} and dimF (Eλ(T )) is its geometric multiplicity. We often refer to
spF(T ) = {λ ∈ F : Eλ ̸= {0}} as the spectrum of T over F.

4.2. Exercise. Show that every eigenspace Eλ is a vector subspace in V that is T -
invariant. If X = {e1, · · · , er, · · · , en} is a basis for V that first passes through Eλ, show
that the matrix of T takes the form

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ 0 0 ∗ ∗
· · · ∗ ∗
0 0 λ ∗ ∗

0 0 0 ∗ ∗
0 0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

The geometric multiplicity of λ is dim(Eλ(T )). We have already seen that when F = R

the operator T = (90◦ rotation acting on R2) has no eigenvalues in R, so spR(T ) = ∅.
An operator T is diagonalizable if there is a basis X = {e1, · · · , en} consisting of

eigenvectors ei, so T (ei) = λiei with respect to this basis. Then [T ]X has the diagonal
form

[T ]X =

⎛

⎜

⎜

⎝

λ1 0
·

·
0 λn

⎞

⎟

⎟

⎠

in which there may be repeats among the λi. Conversely, any basis such that [T ]X takes
this form consist entirely of eigenvectors for T . A more sophisticated choice of basis
vectors puts [T ]X into block diagonal form. First a simple observation:

4.3. Exercise. If T : V → V is a linear operator on a finite dimensional space, show
that the following statements are equivalent.

(a) There is a basis in V consisting of eigenvectors.

(b) The eigenspaces for T span V , so that

V =
∑

λ∈sp(T )

Eλ(T ) .

Note: There actually is something to be proved here: (b) requires more care selecting
basis vectors than (a). !

So, if T is diagonalizable and {λ1, . . . ,λr} are its distinct eigenvalues in F, may choose a
basis of eigenvectors ei that first runs through Eλ1

, then through Eλ2
, etc. It is obvious

that this choice yields a “block disagonal” matrix

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 Im1×m1
0

0 λ2 I
2×m2

. . .

0 λr Imr×mr

⎞

⎟

⎟

⎟

⎟

⎟

⎠
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in which mi = dim (Eλi(T )). !

These observations do not quite yield the definitive characterization of diagonalizability.

(6)
Diagonalizability Criterion. A linear operator T on a finite dimen-
sional space is diagonalizable over F⇔ V is the direct sum of its distinct
eigenspaces: V =

⊕r
i=1 Eλi(T ).

The implication (⇐) is trivial, but in the reverse direction we have so far only shown
that (diagonalizable)⇒ V is spanned by its eigenspaces, so V =

∑r
i=1 Eλi(T ) and every

v has at least one decomposition v =
∑

i vi : wq with vi ∈ Eλi(T ). In a direct sum
⊕

i Eλi(T ) the decomposition is unique, and in particular 0 =
∑

i vi with vi ∈ Eλi(T )⇒
each term vi = 0.

4.4. Exercise. Finish the proof of the Diagonalizability Criterion (6). If V =
∑

iEλi(T )
prove that every v ∈ V has a unique decomposition v =

∑

i vi such that vi ∈ Eλi(T ).
!

4.5. Proposition. If {λ1, · · · ,λr} are the distinct eigenvalues in F for a linear operator
T : V → V on a finite dimensional vector space, and if the eigenspaces Eλi span V , then
V is a direct sum Eλ1

⊕

· · ·
⊕

Eλr . Furthermore,

1. dim(V ) =
∑r

i=1 dim(Eλi) =
∑r

i=1 (geometric multiplicity of λi)

2. T is diagonalizable over F.

Proof: Since V =
∑

iEλi every vector in V has a decomposition v =
∑r

i=1 vi with
Vi ∈ Eλi(T ), so we need only prove uniqueness of this decomposition, which in turn
reduces to proving that the vi are “independent” in the sense that

0 = v1 + ·+ vr with vi ∈ Eλi ⇒ v1 = · · · = vr = 0

Note that for µ,λ ∈ F, the linear operators (T −λI), (T −µI) commute with each other,
since I commutes with everybody. Now suppose

∑r
i=1 vi = 0 with T (vi) = λivi.

Fix an index i and apply the operator S =
∏

j ̸=i(T − λjI) to the sum. We get

(7) 0 = S(0) = S(
r
∑

k=1

vk) =
r
∑

k=1

S(vk)

But if k ̸= i, we can write

S(vk) =
∏

ℓ ̸=i

(T − λℓI)vk = [
∏

ℓ ̸=k,i

(T − λkI) ] · (T − λk)vk = 0

Hence the sum (7) reduces to

0 =
∑

k

S(vk) = S(vi) + 0 + · · ·+ 0 =
∏

ℓ ̸=i

(T − λℓI)vi

Observe that we may write (T −λℓ) = i) = (T −λi)+(λi−λℓ)I, for all ℓ, so this becomes

(8) 0 = [
∏

ℓ ̸=i

(T − λi) + (λi − λℓ)I] vi = 0 + [
∏

ℓ ̸=i

(λi − λℓ)] vi

(because (T − λi)vi = 0). The constant c =
∏

ℓ ̸=i(λi − λℓ) must be nonzero because
λℓ ̸= λi. Therefore (7) ⇒ vi = 0. This works for every 1 ≤ i ≤ r so the vi are
independent, as required. !

4.6. Exercise. Let V be finite dimensional, {λ1, · · · ,λr} the distinct eigenvalues in F

for an F-linear operator T : V → V . Let E =
∑r

i=1 Eλi be the span of the eigenspaces.
(E ⊆ V ). Show that
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(a) E is T -invariant .

(b) T |E is diagonalizable. !

4.7. Exercise. Let T : V → V be an linear operator on a finite dimensional vector
space over F, with n = dimF(V ). If T has n distinct eigenvalues, prove that

(a) V =
⊕n

i=1 Eλi ,

(b) The eigenspace are all one-dimensional, and

(c) T is diagonalizable. !

4.8. Exercise. If a basis X for V passes through the successive eigenspacesEλ1
(T ), · · · , Eλr (T ),

and we then adjoin vectors outside of the subspace E =
∑

λi∈sp(T ) Eλi(T ) to get a basis
for V , explain why the matrix of T has the form

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1Im1×m1
0 0 ∗ ∗

· · · ∗ ∗
0 0 λrImr×mr ∗ ∗

0 0 0 ∗ ∗
0 0 0 ∗ ∗

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where mi = dim(Eλi(T )). !

4.9. Definition. If T : V → V is linear operator on a finite dimensional vector space,
every root α ∈ F of the characteristic polynomial pT (x) = det(T − x I) is an eigenvalue
for T , so pT (x) is divisible (without remainder) by (x − α).Repeated division by (x − α)
may be possible, and yields a factorization pT (x) = (x− α)mαQ(x) where Q ∈ F[x] does
not have α as a root, and thus is not divisible by (x− α). The exponent mα is the alge-
braic multiplicity of the eigenvalue α.

Now suppose F is an algebraically closed field (every nonconstant polynomial f ∈ F[x]
has a root α ∈ F), for example F = C. It follows that every f over such a field splits
completely into linear factors f = c ·

∏

i=1(x−αi) where α1, · · · ,αn are the roots of f(x)
in F (repeats allowed). If T : V → V is a linear operator on a finite dimensional vector
space over such a field, and λ1, . . . ,λr are its distinct eigenvalues in F, the characteristic
polynomial splits completely

pT (x) = det(T − xI) = c ·
r
∏

j=1

(x− λj)
mj

where mj = the algebraic multiplicity of λj and
∑

j mj = dim(V ).

4.10. Corollary. Let T : V → V be a linear operator on a finite dimensional space V
over F = C. If the characteristic polynomial

pT (x) = det(T − x I) = c ·
r
∏

j=1

(x− λj)
mj

has distinct roots (so mj = 1 for all j), then r = n = dimC(V ) and T is diagonalizable.

Algebraic vs Geometric Multiplicity.

4.11. Proposition. If λ ∈ F is an eigenvalue for linear operator T : V → V , its alge-
braic multiplicity as a root of pT (x) = det(T − x I) is ≥ (geometric multiplicity of λ) =
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dimEλ.

Proof: Fix an eigenvalue λ. Then E = Eλ(T ) is T -invariant and T |E = λ · idE . So, if
we take a basis {e1, · · · , em} in Eλ and then add vectors em+1, · · · , en to get a basis X
for V , we have

[T ]X =

(

λIm×m ∗

0 ∗

)

(m = dim(Eλ(T ))

Here m is the geometric multplicity of λ and the characteristic polynomial is

pT (x) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(λ− x) 0
· ∗

0 (λ− x)

(am+1,m+1 − x) ∗

0 ·
∗ (an,n − x)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

This determinant can be written as

(9) det(T − xI) =
∑

π∈Sn

sgn(π) · (T − xI)1,π(1) · . . . · (T − xI)n,π(n)

Each term in this sum involves a product of matrix entries, one selected from each row.
If the spots occupied by the selected entries in (9) are marked with a “!,” the marked
spots provide a “template” for making the selection, and there is one template for each
permutation π ∈ Sn: in Row(i), mark the entry in Col(j) with j = π(i).

The only n× n templates that can contribute to the determinant of our block-upper
triangular matrix (T−xI) are those in which the firstm diagonal spots have been marked
(otherwise the corresponding product of terms will include a zero selected from the lower
left block). The remaining marked spots must then be selected from the lower right block
(∗) – i.e. from Row(i) and Col(j) with m + 1 ≤ i, j ≤ n, as indicated in the following
diagram.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

! 0
· ∗

0 !

· · ! ·
0 ! · · ·

· ! · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Thus pT (x) = det(T −xI) has the general form (x−λ)m ·G(x), in which the factor G(x)
might involve additional copies of λ. We conclude that

(algebraic multiplicity of λ) ≥ m = ( geometric multiplicity of λ) ,

as claimed. !

4.12. Example. Let T = LA : R3 → R3, with A =

⎛

⎝

4 0 1

2 3 2

1 0 4

⎞

⎠ If X = {e1, e2, e3} is
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the standard Euclidean basis then [T ]X = A and the characteristic polynomial is

pT (x) = det(A− x I) = det

⎛

⎝

4− x 0 1
2 3− x 2
1 0 4− x

⎞

⎠

= [(4− x)(3− x)(4− x) + 0 + 0 ]− [(3− x) + 0 + 0 ]

= (12− 7x+ x2)(4 − x)− 3 + x

= 48− 28x+ 4x2 − 12x+ 7x2 − x3 − 3 + x

= −x3 + 11x2 − 39x+ 45

To determine sp(T ) we need to find roots of a cubic; however we can in this case guess a
root λ and then long divide by (x−λ). After a little trial and error it turns out that λ = 3
is a root, with pT (3) = −27 + 99− 117 + 45 = 0 and pT (x) = −(x− 3)(x2 − 8x+ 15) =
−(x− 3)2(x− 5).

Eigenvalues in F = R (or F = Q) are λ1 = 3,λ2 = 5 with algebraic multiplicities
m1 = 2,m2 = 1. For the geometric multiplicities we must compute the eigenspaces
Eλk

(T ).

Case 1: λ = 3. We solve the system (A− 3I)x = 0 by row reduction.

[A− 3I ] =

⎛

⎝

1 0 1 0
2 0 2 0
1 0 1 0

⎞

⎠ →

⎛

⎝

1 0 1 0
0 0 0 0
0 0 0 0

⎞

⎠

Columns in the row reduced system that do not meet a “step corner” ∗ correspond to
free variables in the solution; thus x2, x3 can take any value in F while x1 = −x3. Thus

Eλ=3 = ker(A− 3I) = {(−v3, v2, v3) : v2, v3 ∈ F, v1 = −v3}
= F · (−1, 0, 1)⊕ F · (0, 1, 0) = F(−e1 + e3)⊕ Fe2

These vectors are a basis and 2 = dim(Eλ=3) = (geometric multiplicity) = (algebraic
multplicity).

Case 2: λ = 5. Solving (A− 5I)v = 0 by row reduction yields

[A−5I ] =

⎛

⎝

−1 0 1 0
2 −2 2 0
1 0 −1 0

⎞

⎠ →

⎛

⎝

−1 0 1 0
0 −2 4 0
0 0 0 0

⎞

⎠ →

⎛

⎝

1 0 −1 0

0 1 −2 0
0 0 0 0

⎞

⎠

Now there is only one free variable x3, with x2 = 2x3 and x1 = x3. Thus

Eλ=5 = {(x3, 2x3, x3) : x3 ∈ F} = F · (1, 2, 1)

and

1 = dim(Eλ=5) = (geometric multiplicity of λ = 5) = (algebraic multiplicity).

Diagonalization: A basis Y consisting of eigenvectors is given by

f1 = −e1 + e3 f2 = e2 f3 = e1 + 2e2 + e3 .

and for this basis we have

[T ]Y =

⎛

⎜

⎜

⎝

3 0 0

0 3 0

0 0 5

⎞

⎟

⎟

⎠
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while [T ]X = A with respect to the standard Euclidean basis {ei}.

It is sometimes important to know the similarity transform SAS−1 = [T ]Y that effects
the transition between bases. The matrix S can be found by writing

[T ]YY = [id ◦ T ◦ id ]YY = [id ]YX · [T ]XX · [id]XY

= [id]YX ·A · [id]XY

Then S = [id]YX, with SXY = S−1 because

[id]XY · [id]YX = [id]XX = I3×3 (3× 3 identity matrix)

(All this is discussed in Chapter II.4 of the Linear Algebra I Notes.)
The easiest matrix to determine is usually S−1 = [id ]XY which can be written down

immediately if we know how to write basis vectors in Y in terms of those in the standard
basis X in F3). In the present example we have

⎧

⎨

⎩

id(f1) = −e1 + 0 · e2 + e3
id(f2) = 0 + e2 + 0
id(f3) = e1 + 2e2 + e3

⇒ S−1 = [id]XY =

⎛

⎝

−1 0 1
0 1 2
1 0 1

⎞

⎠

It is useful to note that the matrix [id]XY is just the transpose of the coefficient array in
the system of vector identities that express the fi in terms of the ej .

We can now find the desired inverse S = (S−1)−1 by row operations (or by Cramer’s
rule) to get

S =

⎛

⎜

⎝

−1
2 0 1

2
−1 1 −1
1
2 0 1

2

⎞

⎟

⎠

and then

SAS−1 =

⎛

⎝

3 0 0
0 3 0
0 0 5

⎞

⎠

as expected. That concludes our analysis of this example. !

4.13. Exercise. Fill in the details needed to compute S.

4.14. Example. Let A =

(

2 4
−1 −2

)

with F = R or C. Then

A2 =

(

−2 0
0 0

)

and A3 = 0 ,

so with respect to the standard basis in F2 the matrix of the map T = LA : F2 → F2 is
[T ]X = A and the characteristic polynomial is:

det(A− x I) = det

(

2− x 4
−1 −2− x

)

= −4 + x2 + 4 = x2

Thus, λ = 0 is a root (over R or C) with (algbraic multiplicity) = 2, but the geometric
multiplicity is dim (Eλ=0) = 1. When we solve the system (A − λI)x = Ax = 0 taking
λ = 0 to determine Eλ=0 = ker(LA), row reduction yields

(

2− λ 4 0
−1 −2− λ 0

)

=

(

2 4 0
−1 −2 0

)

→
(

1 2 0
0 0 0

)

21



For this system x2 is a free variable and x1 = −2x2, so

Eλ=0 = F · (−2, 1) = F · (2e1 − e2) ,

and dim (Eλ=0) = 1 < (algebraic multiplicity) = 2. There are no other eigenvalues so
the best we can do in trying to reduce T is to find a basis such that [T ]Y has form

(

0 ∗
0 ∗

)

by takingY = {f1, f2} where f1 = (2, 1) = 2e1+e2 and f2 is any other vector independent
of f1.

However, T is a nilpotent operator (verify this), so we can do better with a slightly
different basis Z that puts A into the Jordan canonical form for nilpotent operators (as
in Theorem 3.2). In the present example this is

[T ]Z =

(

0 1

0 0

)

(an elementary nilpotent matrix)

with two 1 × 1 blocks of zeros on the diagonal. In fact, in the notation of Theorem 3.2
we have kernels (0) ⊆ K1 = ker(T ) ⊆ K2 = ker(T 2) = V with

K1 = Eλ=0 = F · f1 and K2 = F2

So, if f2 is any vector transverse to ker(T ), we have T (f2) ∈ ker(T ) = F · f1. But
T (f2) ̸= 0 since f2 /∈ K1, and by scaling f2 appropriately we can make T (f2) = f1. Then
Z = {f1, f2} is a basis that puts [T ]Z into the form shown above. !

4.15. Exercise. Repeat the analysis of the previous exercise for the matrix A =
(

4 4
−1 0

)

. !

That concludes our review of Diagonalization.

VII-5. Generalized Eigenspace Decomposition I.

The Fitting Decomposition (Proposition 1.5) is a first step in trying to decompose a
linear operator T : V → V over an arbitrary field.

5.1. Proposition (Fitting Decomposition). Given linear T : V → V on a finite
dimensional vector space over any field, then V = N ⊕ S for T -invariant subspaces N,S
such that T |S : S → S is a bijection (invertible linear operator on S), and T |N : N → N
is nilpotent.

The relevant subspaces are the “stable kernel” and “stable range” of T ,

K∞ =
∞
⋃

i=1

Ki, (Ki = ker(T i) with {0} ⊂
̸= K1

⊂
̸= · · · ⊄= Kr = Kr+1 = · · · = K∞)

R∞ =
∞
⋂

i=1

Ri, (Ri = range(T i) with {0} ⊃
̸= R1

⊃
̸= · · · ⊅= Rr = Rr+1 = · · · = R∞)

(see Section VII-1). Obviously, T = (T |R∞) ⊕ (T |K∞) which splits T into canonically
defined nilpotent and invertible parts.

5.2. Exercise. Prove that the Fitting decomposition is unique: If V = N ⊕ S, both T -
invariant, such that T |N is nilpotent and T |S : S → S invertible show that N = K∞(T )
and S = R∞(T ). !
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Given a linear operator T : V → V we may apply these remarks to the operators
(T − λI) associated with eigenvalues λ in spF(T ). The eigenspace Eλ(T ) = ker(T − λI)
is the first in an ascending chain of subspaces, shown below.

{0} ⊂
̸= ker(T − λ) = Eλ(T )

⊂
̸= ker(T − λ)2

⊂
̸= · · · ⊄= ker(T − λ)r = · · · = K∞(T − λ)

5.3. Definition. If λ ∈ F the “stable kernel” of (T − λI)

K∞(λ) =
∞
⋃

m=1

ker(T − λI)m

is called the generalized λ-eigenspace, which we shall hereafter denote by Mλ(T ).
Thus,

Mλ(T ) = {v ∈ V : (T − λI)kv = 0 for some k ∈ N}
⊇ Eλ(T ) = {v : (T − λI)v = 0}(10)

We refer to any λ ∈ F such that Mλ(T ) ̸= (0) as a generalized eigenvalue for T . But
note that Mλ(T ) ̸= {0}⇔ Eλ(T ) ̸= {0} ⇔ det(T − λI) = 0, so these are just the usual
eigenvalues of T in F.

Generalized eigenspaces have the following properties.

5.4. Lemma. The spaces Mλ(T ) are T -invariant.

Proof: T commutes with all the operators (T − λ)m, which commute with each other.
Thus, v ∈Mλ(T )⇒ (T − λI)kv = 0 for some k ∈ N⇒

(T − λI)kT (v) = T (T − λI)kv = T (0) = 0

Hence T (v) ∈Mλ(T ). !

We now show that T |Mλ
has a nice upper triangular form with respect to a suitably

chosen basis in Mλ.

5.5. Proposition. Every generalized eigenspace Mλ(T ), λ ∈ sp(T ), has a basis X such
that the matrix of T |Mλ(T ) has upper triangular form

[T |Mλ
]X =

⎛

⎜

⎜

⎝

λ ∗
·

·
0 λ

⎞

⎟

⎟

⎠

Proof: We already know that any nilpotent operator N on a finite dimensional vector
space can be put into strictly upper triangular form by a suitable choice of basis.

[N ]X =

⎛

⎜

⎜

⎝

0 ∗
·

·
0 0

⎞

⎟

⎟

⎠

Now write
T |Mλ

= (T − λI)|Mλ
+ λI|Mλ

in which V = Mλ, N = (T − λI)|Mλ
and I|Mλ

is the identity operator on Mλ. Since
[ I|Mλ

]X = Im×m for any basis, a basis that puts (T −λI)|Mλ
into strict upper triangular

form automatically yields

[T |Mλ
]X = [ (T − λI)|Mλ

]X + λI =

⎛

⎝

λ ∗
·

0 λ

⎞

⎠ !
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The most precise result of this sort is obtained using the cyclic subspace decomposition
for nilpotent operators (Theorem 3.2) to guide our choice of basis. As a preliminary step
we might pick a basis X aligned with the kernels

(0)
⊂
̸= K1 = ker(T )

⊂
̸= K2 = ker(T 2)

⊂
̸= . . .

⊂
̸= Kd = V

where d = deg(T ). As we indicated earlier in Exercise 2.4, [T ]X is then upper triangular
with zero blocks Zi, 1 ≤ i ≤ d = deg(T ), on the diagonal. Applying this to a generalized
eigenspace Mλ(T ), the matrix of the nilpotent operator T −λI becomes upper triangular
with zero blocks on the diagonal. Writing T = (T − λI) + λI as above we see that
the matrix of T with respect to any basis X running through successive kernels Ki =
ker(T − λI)i must have the form

[T |Mλ
]
X

= λ · In×n + [T − λI ]X

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ · Im1×m1
∗

λ · Im2×m2

. . .

0 λ · Imr×mr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(11)

with mi = dim(Ki/Ki−1) = dim(Ki)−dim(Ki−1) and n = dim(V ) =
∑

imi. The shape
of the “block upper triangular form” (11) is completely determined by the dimensions of
the kernels Ki = Ki(T − λI).

Note that (11) can be viewed as saying T |Mλ
= λIλ +Nλ where Iλ = idMλ

, λIλ is a
scalar operator on Mλ, and Nλ = (T −λI)|Mλ

is a nilpotent operator whose matrix with
respect to the basis X is similar to the matrix in (11), but with mi ×mi zero-blocks on
the diagonal. The restriction T |Mλ

has an “additive decomposition” T |Mλ
= (diagonal)

+ (nilpotent) into commuting scalar and nilpotent parts,

T |Mλ
= λ · I +Nλ =

⎛

⎜

⎜

⎝

λ ∗
·

·
0 λ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

λ 0
·

·
0 λ

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

0 ∗
·

·
0 0

⎞

⎟

⎟

⎠

Furthermore, the nilpotent part Nλ turns out to be a polynomial function of (T |Mλ
),

so both components of this decomposition also commute with T |Mλ. There is also a
“multiplicative decomposition” T |Mλ

= (diagonal) · (unipotent) = (λI) · Uλ where Uλ is
the unipotent operator (I +Nλ); for the corresponding matrices we have

⎛

⎜

⎜

⎝

λ ∗
·

·
0 λ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

λ 0
·

·
0 λ

⎞

⎟

⎟

⎠

·

⎛

⎜

⎜

⎝

1 ∗
·

·
0 1

⎞

⎟

⎟

⎠

Note: The off-diagonal entries (∗) in Nλ and Uλ need not be the same in these two
decompositions.

As we show below, this description of the way T acts on Mλ can be refined to provide
much more information about the off-diagonal terms (∗), but we will also see that for
many purposes the less explicit block upper triangular form (11) will suffice, and is easy
to compute since we only need to determine the kernels Ki.

Now consider what happens if we take a basis Y in Mλ corresponding to a cyclic
subspace decomposition of the nilpotent operator

Nλ = (T − λI)|Mλ
= (T |Mλ

)− λIλ (Iλ = I|Mλ
)
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Then [λIλ]Y is λ times the identity matrix (as it is for any basis in Mλ) while [Nλ]Y
consists of diagonal blocks, each an elementary nilpotent matrix Ni.

[Nλ]Y = [ (T − λI)|Mλ
]Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N1 0

·
·

·
0 Nr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

Ni =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0
· ·

· ·
· 1

0 0

⎞

⎟

⎟

⎟

⎟

⎠

of size di× di, with Ni a 1× 1 zero matrix when di = 1. This yields the “Jordan block
decomposition” of T |Mλ

(12) [T |Mλ
]Y = λ[I|Mλ

]Y + [Nλ]Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T1 0

·
·

Tm

0 λ · Ir×r

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with Ti = λ · Idi×di + (elementary nilpotent) when di > 1,

Ti =

⎛

⎜

⎜

⎜

⎜

⎝

λ 1 0
· ·

· ·
· 1

0 λ

⎞

⎟

⎟

⎟

⎟

⎠

The last block in (12) is exceptional. The other Ti correspond to the restrictions T |Ci(λ)

to cyclic subspaces of dimension di > 1 in a cyclic subspace decomposition

Mλ(T ) = C1(λ)⊕ . . . ⊕ Cm(λ)

of the generalized eigenspace. However, some of the cyclic subspaces might be one-
dimensional, and any such Ci(λ) is contained in the ordinary eigenspace Eλ(T ). If there
are r such degenerate cyclic subspaces we may lump them together into a single subspace

E =
⊕

{Ci(λ) : dim(Ci(λ)) = 1} ⊆ Eλ(T ) ⊆Mλ(T )

such that dim(E) = s and T |E = λ · IE . It should also be evident that

s+ d1 + . . .+ dm = dim (Mλ(T ))

This is the Jordan Canonical Form for the restriction (T |Mλ
) of T to a single gen-

eralized eigenspace. If Mλ(T ) ̸= 0 the description (12) is valid for any ground field F,
since it is really a result about the nilpotent operator (T − λ)Mλ

. Keep in mind that
the T -invariant subspaces in a cyclic subspace decomposition of Mλ (or of any nilpotent
operator) are not unique, but the number of cyclic subspaces in any decomposition and
their dimensions are unique, and we get the same matrix form (12) for a suitably chosen
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basis.

VII-6. Generalized Eigenspace Decomposition of T .

So far we have only determined the structure of T restricted to a single generalized
eigenspace Mλ(T ). Several obstacles must be surmounted to arrive at a similar structure
for T on all of V .

• If the generalized eigenspaces Mλi(T ) fail to span V , knowing the behavior of T
only on their span

M =
∑

λ∈sp(T )

Mλ(T )

leaves the gobal behavior of T beyond reach.

• It is equally important to prove (as we did in Proposition 4.5 for ordinary eigenspaces)
that the span of the generalized eigenspaces is in fact a direct sum,

M =
⊕

λ∈sp(T )

Mλ(T )

That means the actions of T on different Mλ are independent and can be examined
separately, yielding a decomposition T |M =

⊕

λ∈sp(T ) (T |Mλ
) .

Both issues will be resolved in our favor for operators T : V → V provided that the
characteristic polynomial pT (x) splits into linear factors in F[x]. This is always true if
F = C; we are not so lucky for linear operators over F = R or over a finite field such as
F = Zp. When this program succeeds the result is the Jordan Canonical Decomposition.

6.1. Theorem (Jordan Canonical Form). If T : V → V is a linear operator on a
finite dimensional space whose characteristic polynomial pT (x) = det(T −x I) splits over
F, then V is a direct sum of its generalized eigenspaces

V =
⊕

λ∈sp(T )

Mλ(T ) ,

and since the Mλ(T ) are T -invariant we obtain a decomposition of T itself

(13) T =
⊕

λ∈sp(T )

T |Mλ(T )

into operators, each of which can be put into Jordan upper triangular form (12) by choos-
ing bases compatible with a decomposition of Mλ into T -invariant cyclic subspaces.

Proof that the generalized eigenspaces are independent components in a direct sum
follows the same lines as a similar result for ordinary eigenspaces (Proposition VII-4.5),
but with more technical complications. Proof that they span V will require some new
ideas based on the Fitting decomposition.

6.2. Proposition (Independence of the Mλ). The span M =
∑

λ∈sp(T ) Mλ(T ) of
the generalized eigenspaces (which may be a proper subspace in V ) is always a direct sum,
M =

⊕

λ∈sp(T ) Mλ(T ).

Proof: Let λ1, . . . ,λr be the distinct eigenvalues in F. By definition of “direct sum” we
must show the components Mλ are independent, so that

(14) 0 = v1 + · · ·+ vr, with vi ∈Mλi ⇒ each term vi is zero.
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Fix an index k. For for each 1 ≤ i ≤ r, let mj = deg(T −λjI)|Mλj
. If vk = 0 we’re done;

and if vk ̸= 0 let m ≤ mk be the smallest exponent such that (T − λkI)mvk = 0 and
(T − λkI)m−1vk ̸= 0. Then w = (T − λkI)m−1vk is a nonzero eigenvector in Eλk

.
Define

A =
∏

i̸=k

(T − λiI)
mi · (T − λk)

m−1

which is keyed to the particular index λk as above. We then have

0 = A(0) = 0 +Avk (since Avi = 0 for i ̸= k)

=
∏

i̸=k

(T − λi)
mi((T − λk)

m−1vk) =
∏

i̸=k

(T − λi)
miw

=
∏

i̸=k

[(T − λk) + (λk − λi)]
mi

w (a familiar algebraic trick)

=
∏

i̸=k

mi
∑

s=0

(
mi

s ) (T − λk)
mi−s(λk − λi)

sw (binomial expansion of [· · · ]mi)

All terms in the binomial sum are zero except when s = mi, so we get

0 = [
∏

i̸=k

(λk − λi)
mi ] · w

The factor [· · · ] is nonzero because the λi are the distinct eigenvalues of T in F, so w
must be zero. This is a contradiction because w ̸= 0 by definition. We conclude that
every term vk in (14) is zero, so the span M is a direct sum of the Mλ. !

Further Properties of Characteristic Polynomials. Before takling up the proof
of Theorem 6.1 we digress to develop a few more facts about characteristic polynomi-
als, in order to work out the relationship between sp(T ) and sp(T |R∞) where R∞ =
R∞(T − λ1I).

6.3. Lemma. If A ∈ M(n,F) has form A =

(

B ∗

0 C

)

where B is r × r and C is

(n− r)× (n− r), then det(A) = det(B) · det(C).

6.4. Corollary. If A ∈ M(n,F) is upper triangular with values c1, . . . , cn on the diago-

nal, then det(A) =
n
∏

i=1

ci.

Proof (Lemma 6.3): Consider an n × n template corresponding to some σ ∈ Sn. If
any of the marked spots in columns C1, · · · , Cr occur in a row Ri with r + 1 ≤ i ≤ n,
then aij = ai,σ(i) = 0 and so is the corresponding term in

∑

σ∈Sn
(· · · ). Thus all columns

Cj , 1 ≤ j ≤ r, must be marked in rows R1, . . . , Rr if the template is to yield a nonzero
term in det(A). It follows immediately that all columns Cj with r + 1 ≤ j ≤ n must be
marked in rows Ri with r + 1 ≤ i ≤ n if σ is to contribute to

det(A) =
∑

σ∈Sn

sgn(σ) ·
n
∏

i=1

ai,σ(i)

Therefore only permutations σ that leave invariant the blocks of indices [1, r], [r+1, n] can
contribute. These σ are composites of permutations µ = σ|[1,r] ∈ Sr and τ = σ|[r+1,n] ∈
Sn−r, with

σ(k) = µ× τ(l) =

{

µ(k) if 1 ≤ k ≤ r
τ(k − r) if r + 1 ≤ k ≤ n
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Furthermore, we have sgn(σ) = sgn(µ×τ) = sgn(µ)·sgn(τ) by definition of sgn, because
µ, τ operate on disjoint subsets of indices in [ 1, n ].

In the matrix A we have

Bk,ℓ = Ak,ℓ for 1 ≤ k, ℓ ≤ r

Ck,ℓ = Ak+r,ℓ+r for r + 1 ≤ k, ℓ ≤ n

so we get

det(A) =
∑

(µ,τ)∈Sr×Sn−r

sgn(µ× τ) · (
r
∏

i=1

Bi,µ(i)) · (
n−r
∏

j=1

Cj,τ(j))

= (
∑

µ∈Sr

sgn(µ) ·
r
∏

i=1

Bi,µ(i)) · (
∑

τ∈Sn−r

sgn(τ) ·
n−r
∏

j=1

Cj,τ(j))

= det(B) · det(C) !

6.5. Corollary. If T : V → V is a linear operator on a finite dimensional vector space
and M ⊆ V is a T -invariant subspace, the characteristic polynomial pT |M (x) divides
pT (x) = det(T − x I) in F[x].

Proof: If M ⊆ V is T -invariant and we take a basis X = {ei} that first spans M and
then picks up additional vectors to get a basis for V , the matrix [T ]X has block upper

triangular form

(

A ∗

0 B

)

, and then

[T − xI ]X =

(

A− xI ∗

0 B − xI

)

But it is trivial to check that A − xI = [T − xI)|M ]X′ where X′ = {e1, · · · , er} are the

initial vectors that span M . Thus det (A − xI)] = det ((T − xI)|M) = pT |M (x) divides
pT (x) = det(A− xI) · det(B − xI). !

6.6. Exercise. Let (V,M, T ) be as in the previous corollary. Then T induces a linear
map T̃ from V/M → V/M such that T̃ (v +M) = T (v) +M , for v ∈ V . Prove that the
characteristic polynomial pT̃ (x) = detV/M (T̃ − xI), also divides pT (x) = det(A − xI) ·
det(B − xI). !

6.7. Lemma. If f and P are nonconstant polynomials in F[x] and P divides f , so
f(x) = P (x)Q(x) for some other Q ∈ F[x], then P (x) must split over F if f(x) does.

Proof: If Q is constant there is nothing to prove. Nonconstant polynomials f ̸= 0 in F[x]
have unique factorization into irreducible polynomials f =

∏r
i=1 Fi, where Fi cannot be

written as a product of nonconstant polynomials of lower degree. Each polynomial f, P,Q
has such a factorization P =

∏m
k=1 Pk, Q =

∏m
j=1 Qj so f = PQ =

∏

k Pk ·
∏

j Qj. Since

f splits over F it can also be written as a product of linear factors f(x) =
∏n

i=1(x− αi)
where {αi} are the roots of f(x) in F, counted according to their multiplicities. Linear
factors (x − α) are obviously irreducible and the two irreducible decomposition of f(x)
must agree. Thus P (and Q) are products of linear factors and P (x) splits over F. !

This lemma has a useful Corollary.

6.8. Corollary. If the characteristic polynomial pT (x) of a linear operator T : V → V
splits over F, so does pT |W for any T -invariant subspace W ⊆ V .
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Over F = C, all non-constant polynomials split.

Proof of Theorem 6.1. T has eigenvalues because pT splits and its distinct eigenvalues
{λ1, · · · ,λr} are the distinct roots of pT in F. Recall that Eλ ̸= {0}⇔Mλ ̸= {0}.

Pick an eigenvalue λ1 and consider the Fitting decomposition V = K∞ ⊕ R∞ with
respect to the operator (T − λ1I), so K∞ is the generalized eigenspace Mλ1

(T ) while
R∞ is the stable range of (T − λ1I). Both spaces are invariant under T − λ1I, and also
under T since λ1I commutes with T . It will be important to note that

λ1 cannot be an eigenvalue of T |R∞ ,

for if v ∈ R∞ is nonzero then (T −λ1I)v = 0⇒ v ∈ K∞∩R∞ = {0}. Hence sp(T |R∞) ⊆
{λ2, · · · ,λr}.

We now argue by induction on n = dim(V ). There is little to prove if n = 1. [There
is an eigenvalue, so Eλ = V and T = λI on V .] So, assume n > 1 and the theorem has
been proved for all spaces V ′ of dimension < n and all operators T ′ : V ′ → V ′ such that
det(T ′ − λI) splits over F. The natural move is to apply this inductive hypothesis to
T ′ = T |R∞(T−λ1I) since dim(R∞) = dim(V ) − dim(Mλ1

) < dim(V ) = n. But to do so
we must show pT ′ splits over F. [ If F = C, every polynomial in C[x] splits and this issue
does not arise.]

By Corollary 6.8 the characteristic polynomial of T ′ = T |R∞ splits over F, and by in-
duction on dimension R∞(T ′) is a direct sum of generalized eigenspaces for the restricted
operator T ′.

R∞(T ′) =
⊕

µ∈sp(T ′)

Mµ(T
′) ,

where sp(T ′) = the distinct roots of p|T ′ in F. To compare the roots of pT and pT ′ , we
invoke the earlier observation that pT ′ divides pT . Thus the roots sp(T ′) = sp(T |R∞)
are a subset of the roots sp(T ) of pT (x), and in particular every eigenvalue µ for T ′ is
an eigenvalue for T . Let’s label the distinct eigenvalues of T so that

sp(T ′) = {λs,λs+1, · · · ,λr} ⊆ sp(T ) = {λ1, · · · ,λr}

(with s > 1 because λ1 /∈ sp(T |R∞), as we observed earlier).
Furthermore, for each µ ∈ sp(T ′) the generalized eigenspace Mµ(T ′) is a subspace of

R∞ ⊆ V , and must be contained in Mµ(T ) because (T ′ − µI)kv = 0 ⇒ (T − µI)kv = 0
for all v ∈ R∞. Thus,

R∞ =
⊕

µ∈sp(T ′)

Mµ(T
′) ⊆

∑

µ∈sp(T ′)

Mµ(T ) ⊆
∑

λ∈sp(T )

Mλ(T )

(R∞ =
⊕

µ∈sp(T ′) Mµ(T ′) by the induction hypothesis). Therefore the generalized
eigenspaces Mλ, λ ∈ sp(T ), must span V because

V = K∞ ⊕R∞ = Mλ1
(T )⊕R∞ ⊆ Mλ1

(T )⊕ (
⊕

µ∈sp(T ′)

Mµ(T
′))

⊆ Mλ1
(T ) + (

∑

µ∈sp(T ′)

Mµ(T )) (because Mµ(T
′) ⊆Mµ(T ))(15)

⊆ Mλ1
(T ) + (

∑

λ∈sp(T )

Mλ(T )) ⊆ V (because sp(T ′) ⊆ sp(T ))

Conclusion: the Mλ(T ), λ ∈ sp(T ), span V so by Proposition 6.2 V is a direct sum of
its generalized eigenspaces. That finishes the proof of Theorem 6.1. !
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It is worth noting that

sp(T ′) = {λ2, . . . ,λr} and Mλi(T
′) = Mλi(T ) for 2 ≤ i ≤ r .

Since Mµ(T ′) ⊆Mµ(T ) for all µ ∈ sp(T ′), and Mλ1
(T ) ∩ V ′ = (0), λ1 cannot appear in

sp(T ′); on the other hand every µ ∈ sp(T ′) must lie in sp(T ).

Consequences. Some things can be proved using just the block upper-triangular form
for T rather than the more detailed Jordan Canonical form.

6.9. Corollary. If the characteristic polynomial of T : V → V splits over F, and in
particular if F = C, there is a basis X such that [T ]X has block upper triangular form

(16) [T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T1 0
·

·
·

0 Tr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with blocks on the diagonal

Ti =

⎛

⎜

⎜

⎜

⎜

⎝

λi ∗
· ·

· ·
·

0 λi

⎞

⎟

⎟

⎟

⎟

⎠

of size mi ×mi such that

1. λ1, . . . ,λr are the distinct eigenvalues of T .

2. The block sizes are the algebraic multiplicities mi of the λi in the splitting of the
characteristic polynomial pT (t) (see the next corollary for details).

3. pT (x) = (−1)n ·
∏r

j=1(x− λi)mj with n = m1 + · · ·+mr.

The blocks Ti may or may not have off-diagonal terms. !

6.10. Corollary. If the characteristic polynomial of an n × n matrix A splits over F,
there is a similarity transform A 7→ SAS−1, S ∈ GL(n,F), such that SAS−1 has the
block upper-triangular form shown above.

6.11. Corollary. If the characteristic polynomial of T : V → V splits over F, and in
particular if F = C, then for every λ ∈ sp(T ) we have

(algebraic multiplicity of λ) = dim(Mλ) = mi

where mi is the block size in (16)).

Proof: Taking a basis such that [T ]X has the form (16), [T − xI ]X will have the same
form, but with diagonal entries λi replaced by (λi − x). Then

det[T − xI]X =
r
∏

j=1

(λj − x)dim(Mλj
) = pT (x)

since the block Tj correspond to T |Mλj
. Obviously, the exponent on (λj − x) is also the

multiplicity of λj in the splitting of the characteristic polynomial pT . !

6.12. Corollary. If the characteristic polynomial of an n × n matrix A, with distinct
eigenvalues spF(A) = {λ1, . . . ,λr}, splits over F then
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1. det(A) =
∏r

i=1 λ
mi

i , the product of eigenvalues counted according to their algebraic
multiplicities mi.

2. Tr(A) =
∑r

i=1 miλi, the sum of eigenvalues counted according to their algebraic
multiplicities mi.

3. More generally, if F = C there are explicit formulas for all coefficients of the
characteristic polynomial when we write it in the form

pA(x) = det(A− x I) =
n
∑

i=0

(−1)ici(A)xi

If eigenvalues are listed according to their multiplicities mi = m(λi), say as µ1, . . . , µn

with n = dim(V ),

µ1 = . . . = µm1
= λ1 µm1+1 = . . . = µm1+m2

= λ2 etc

then cn = 1 and

cn−1 =
n
∑

j=1

µj = Tr(A),

...

cn−k =
∑

j1<...<jk

µj1 · . . . · µjk ,

...

c0 = µ1 · . . . · µn = det(A)

These formulas fail to be true if F = R and pT (x) has non-real roots in C.

6.13. Corollary. If the characteristic polynomial of an n × n matrix A splits over F,
then T : V → V is diagonalizable if and only if

(algebraic multiplicity) = (geometric multiplicity) for each λ ∈ sp(T ).

Both multiplicities are then equal to dim(Eλ(T )).

Proof: Eλ ⊆Mλ for every eigenvalue, and by the previous corollary we know that

(geometric multiplicity) = dim(Eλ) ≤ dim(Mλ) = (algebraic multiplicity) .

Furthemore, Mλ = ker(T − λI)N for large N ∈ N. Writing V = Mλ1
⊕ . . . ⊕Mλr , the

implication (⇐) follows because

(algebraic multiplicity) = (geometric multiplicity)

⇒ dim(Eλi) = dim(Mλi) for all i

⇒ Mλi = Eλi since Mλi ⊇ Eλi

⇒ V =
r
⊕

i=1

Eλi and T is diagonalizable.

For (⇒): if T is diagonalizable we have V =
⊕r

i=1 Eλi , but Eλi ⊆ Mλi for each i.
Comparing this with the Jordan decomposition V =

⊕r
i=1 Mλi we see that Mλi = Eλi .

!
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6.14. Corollary. If A is an n×n matrix whose characteristic polynomial splits over F,
let X be a basis that puts [T ]X into Jordan form, so that

(17) [T ]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

T1 0
·

·
·

0 Tr

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with Ti =

⎛

⎜

⎜

⎜

⎜

⎝

λi 1 0
· ·

· ·
· 1

0 λi

⎞

⎟

⎟

⎟

⎟

⎠

Then with respect to the same basis the powers I, T, T 2, · · · take form:

(18) [T k]X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

T k
1 0

·
·

·
0 T k

r

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with Ti =

⎛

⎜

⎜

⎜

⎜

⎝

λi 1 0
· ·

· ·
· 1

0 λi

⎞

⎟

⎟

⎟

⎟

⎠

Proof: [T k
i ]X = ([Ti]X)

k
for k = 0, 1, 2, · · · . !

In (18) there may be blocks of various sizes with the same diagonal values λi.
These particular powers [T k] = [T ]k are actually easy to compute. Each block Ti has

the form Ti = λiI +Ni with Ni an elementary nilpotent matrix, so we have

T k
i =

k
∑

j=0

(
k

i )λ
k−jN j

i (binomial expansion) ,

with N j
i = 0 when j ≥ deg(Ni).

6.15. Exercise. If N is an r × r elementary nilpotent matrix

N =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0
· ·

· ·
· 1

0 0

⎞

⎟

⎟

⎟

⎟

⎠

show that N2 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0
· ·

· 1
· 0

0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

Each new multiple of N moves the diagonal file of 1′s one step to the upper right, with
N r = 0 at the last step. !

6.16. Exercise. If the characteristic polynomial of T : V → V splits over F, there is a
basis that puts [T ]X in Jordan form, with diagonal blocks

A = λI +N =

⎛

⎜

⎜

⎜

⎜

⎝

λ 1 0
· ·

· ·
· 1

0 λ

⎞

⎟

⎟

⎟

⎟

⎠

Compute the exponential matrix

Exp(tA) = etA =
∞
∑

n=0

tn

n!
An
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for t ∈ F.
Hint: If A and B commute we have eA+B = eA · eB; apply the previous exercise.
Note: Since N is nilpotent the exponential series is a finite sum. !

The Spectral Mapping Theorem. Suppose A is an n×n matrix whose characteristic
polynomial splits over F, with

pA(x) = det(A− x I) = c ·
r
∏

i=1

(λi − x I)mi if sp(T ) = {λ1, . . . ,λr} .

Examination of the diagonal entries in the Jordan Canonical form (16), or even the upper
triangular form (17), immediately reveals that

sp(T k) = the distinct entries in the list of powers λk
1 , . . . ,λ

k
r

Be aware that there might be repeated entries among the λk
i , even though the λi are

distinct. (Devise an example in which sp(T k) reduces to a single point even though sp(T )
contains several distinct points.)

Therefore the characteristic polynomial of T k is the product of the diagonal entries
(λk

i − x) in the Jordan form of (T k − x I),

pTk(x) = det(T k − x I) =
r
∏

i=1

(λk
i − x)mi , (where mi = dim(Mλi(T )) .

More can be said under the same hypotheses. If f(t) = a0 + a1t+ a2t2 + · · ·+ amtm

is any polynomial in F[t] we can form an operator f(T ) that maps V → V to obtain a
natural corresponding Φ : F[t]→ HomF(V ) such that

Φ(1-) = I, Φ(t) = T, Φ(tk) = T k

and

Φ(f1 + f2) = Φ(f1) + Φ(f2) (sum of linear operators)

Φ(f1 · f2) = Φ(f1) ◦ Φ(f2) (composition of linear operator)

Φ(cf) = c · Φ(f) for all c ∈ F

I.e. Φ is a homomorphism between associative algebras. With this in mind we can prove:

6.17. Theorem. (Spectral Mapping Theorem). If the characteristic polynomial of
a linear operator T : V → V splits over F, and in particular if F = C, every polynomial
f(t) =

∑m
i=0 ait

i in F[t] determines an operator Φ(f) in HomF(V, V ),

Φ(f) =
m
∑

i=0

aiT
i

The correspondence Φ : F[t| → HomF(V ) is a unital homomorphism of associative alge-
bras and has the following spectral mapping property

(19) sp(f(T )) = f(sp(T )) = {f(z) : z ∈ sp(T )}

In particular, this applies if T is diagonalizable over F.

Proof: It suffices to choose a basis X such that [T ]X has block upper-triangular form

[T ]X =

⎛

⎜

⎜

⎜

⎜

⎝

T1 0
·

·
·

0 Tr

⎞

⎟

⎟

⎟

⎟

⎠

with Ti =

⎛

⎜

⎜

⎜

⎜

⎝

λi ∗
· ·

· ·
·

0 λi

⎞

⎟

⎟

⎟

⎟

⎠
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of size mi ×mi since [T k]X = [T ]kX (matrix product) for k = 0, 1, 2, · · · . Hence

[f(T )]X = f([T ]X) = a0I + a1[T ]X + · · ·+ am[T ]mX

because f(A) = a0I + a1A+ · · ·+ amAm for any matrix A.
As in the previous corollary, it follows that [f(T )]X is made up of blocks on the diago-

nal, each of which is upper-triangular with diagonal values f(λi); then the characteristic
polynomial of f(T ) is

pf(T )(x) = det(f(T )− x I) =
r
∏

i=1

(f(λi)− x I)mi , mi = dim(Mλi) .

This is zero if and only if x = f(λi) for some i, so sp(f(T )) = {f(λi) : 1 ≤ i ≤ r} =
f(sp(T )). Obviously the characteristic polynomial of f(T ) splits over F if pT (t) splits.

Here λi ∈ sp(T ) ⇒ f(λi) ∈ sp(f(T )), but the multiplicity of f(λi) as an eigenvalue
of f(T ) might be greater than the multiplicity of λi as an eigenvalues of T because we
might have f(λi) = f(λj), and then µ = f(λi) will have multiplicity at least mi +mj in
sp(f(T )).

Another consequence is the Cayley-Hamilton theorem, which can be proved in other
ways without developing the Jordan Canonical form. However this normal form suggests
the underlying reason why the result is true, and makes its validity almost obvious. On
the other hand, alternative proofs can be made to work for arbitrary F and T , without
any assumptions about the characteristic polynomial pT (x). Since the result is true in
this generality, we give both proofs.

6.18. Theorem. (Cayley-Hamilton). For any linear operator T : V → V on a finite
dimensional vector space, over any F, we have

pT (T ) = [ pT (t)|t=T
] = 0 (the zero operator in HomF(V, V )) ,

Thus, applying the characteristic polynomial pT (x) = det(T − x I) to the linear operator
T itself yields the zero operator.

Proof: If pT (x) splits over F we have pT (x) =
∏r

i=1 (λi − x)mi , where mi = dim(Mλi)
and {λ1, · · · ,λr} are the (distinct) eigenvalues in spF(T ). We want to show that

0 =
r
∏

i=1

(T − λiI)
mi = [ pT (x)|x=T

]

But V =
⊕r

i=1 Mλi and (T − λiI)mi(Mλi) = (0) [Given a Jordan basis in Mλi , A =
[(T − λiI)|Mλi

]X consists of elementary nilpotent blocks Nj on the diagonal; the size

dj × dj of such a block cannot exceed mi = dim(Mλi), so N
dj

j = Nmi

j = 0 for each j.]

Hence
∏r

j=1(T − λiI)mi(Mλi) = (0), so the operator pT (T ) is zero on each Mλi and on
all of V . !

If pT does not split over F, a different argument shows that pT (T )v = 0 for all v ∈ V .

Alternative Proof (6.18): The result is obvious if v = 0. If v ̸= 0 there is a largest
m ≥ 1 such that v, T (v), T 2(v), · · · , Tm−1(v) are linearly independent. Then

W = F-span{T k(v) : k ∈ N} = F-span{T k(v) : 0 ≤ k ≤ m− 1}

and {v, T (v), · · · , Tm−1(v)} is a basis for the cyclic subspace W . This space is clearly
T -invariant, and as we saw before, p(T |W ) divides pT , so that pT (x) = p(T |W )(x) ·Q(x) for
some Q ∈ F[x]. We now compute p(T |W )(x). For the basis X = {v, T (v), · · · , Tm−1(v)}
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we note that Tm(v) = T (Tm−1(v)) is a unique linear combination of the previous vectors
T k(v), say

Tm(v) + am−1T
m−1(v) + · · ·+ a1T (v) + a0v = 0 .

Hence,

[T |W ]X =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 −a0
1 · −a1

· · ·
· · ·

0 1 −am−1

⎞

⎟

⎟

⎟

⎟

⎠

and [ (T−x I)|W ]X =

⎛

⎜

⎜

⎜

⎜

⎝

−x 0 −a0
1 · −a1

· · ·
· · ·

0 1 −x− am−1

⎞

⎟

⎟

⎟

⎟

⎠

6.19. Exercise. Show that

p(T |W )(x) = det(T |W − x I)X = (−1)m(tm + am−1t
m−1 + ·+ a1t+ a0) . !

It follows that p(T |W )(T ) satisfies the equation

p(T |W )(T )v = (−1)m(T n(v) + am−1T
m−1(v) + ·+ a1T (v) + a0v) = 0

by definition of the coefficients {aj}. But then

pT (T )v = Q(T ) · [ p(T |W )(T )v] = Q(T )(0) = 0 .

(Recall that W = F-span{T k(v)} as in Propositions 2.5 and 2.7.) Since this is true for
all v ∈ V , pT (T ) is the zero operator in HomF(V, V ). !

Remarks: If T : V → V is a linear operator on a finite dimensional vector space the
polynomial Q(x) = xm + am−1xm−1 + · · · + a0 in F[x] of minimal degree such that
Q(T ) = 0 is called the minimal polynomial for T . The polynomial function of T defined
above by substituting x = T

Tm + am−1T
m−1 + · · ·+ a1T + a0I = 0

is precisely the minimal polynomial for T . The Jordan form (12) can be used to determine
the minimal polynomial, but the block upper-triangular form (11) is too crude for this
purpose. (The problem is that the nilpotence degree deg(N) of a nilpotent matrix will
be greater than the degree of the minimal polynomial unless there is a cyclic vector in
V .) !

6.20. Example. Let T : V → V be a linear map on V = R4 whose matrix with respect
to the standard basis X = {e1, · · · , e4} has the form

A = [T ]X =

⎛

⎜

⎜

⎝

7 1 2 2
1 4 −1 −1
−2 1 5 −1
1 1 2 8

⎞

⎟

⎟

⎠

so that A− 6I =

⎛

⎜

⎜

⎝

1 1 2 2
1 −2 −1 −1
−2 1 −1 −1
1 1 2 2

⎞

⎟

⎟

⎠

After some computational work which we omit, we find that

pT (t) = det(A− xI) = (x− 6)4 = x4 − 4(6x3) + 6(62x2)− 4(63x) + 64 ,

so spR(T ) = {6} with algebraic multiplicity m = 4. Thus V = Mλ=6(T ) and (T − 6I) is
nilpotent. We find K1 = ker(T−6I) = Eλ=6(T ) by row reduction of [T−6I]X = [A−6I ],

[A− 6I]→

⎛

⎜

⎜

⎝

1 1 2 2
0 −3 −3 −3
0 3 3 3
0 0 0 0

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 1 2 2

0 1 1 1
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠
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Figure 7.2. The version of Figure 7.1 worked out in Example 6.20. Although there are three
columns, Column 2 is empty and has been deleted in the present diagram. All the basis vectors

e
(i)
j are shown

Thus,

K1 = {v = (−s− t,−s− t, s, t) : s, t ∈ R}
= R-span{f (1)

1 = −e1 − e2 + e3 , f
(1)
2 = −e1 − e2 + e4}

= R-span{(−1,−1, 1, 0) , (−1,−1, 0, 1)}

and dim(K1) = 2. Next row reduce ker(A− 6I )2 to get

[A− 6I ]2 →

⎛

⎜

⎜

⎝

0 3 3 3
0 3 3 3
0 −6 −6 −6
0 3 3 3

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

The first column (which meets no “step corner”) corresponds to free variable x1; the
other free variables are x3, x4. Thus K2 = ker(A− 6I)2 is

K2 = {v = (a,−b− c, b, c) : a, b, c ∈ R}
= R-span{f (2)

1 = e1 , f
(2)
2 = e3 − e2 , f

(2)
3 = e4 − e2} = R-span{e1, e3 − e2, e4 − e2}

and dim(K2) = 3. Finally (A− 6I)3 = 0, so deg(T − 6I ) = 3 and K3 = V .
We now apply the procedure for finding cyclic subspaces outlined in Figure 7.1.

Step 1: Find a basis for V mod K2. Since dim(V/K2) = 1 this is achieved by taking

any v ∈ V ∼ K2. One such choice is e(1)1 = e2 = (0, 1, 0, 0), which obviously is not in K2.
Then compute its images under powers of (T − 6I),

e(1)2 = (T − 6I)e(1)1 = (1,−2, 1, 1) = e1 − 2e2 + e3 + e4 ∈ K2 ∼ K1

e(1)3 = (T − 6I)2e(1)1 = (3, 3,−6, 3) = 3(e1 + e2 − 2e3 + e4) ∈ K1 ∼ {0}

Step 2: There is no need to augment the vector

e(1)2 = (T − 6I)e(1)1 = (1,−2, 1, 1) ∈ K2

to get a basis for K2/K1, because dim(K2/K1) = 1.

Step 3: In K1 ∼ {0} we must augment e(1)3 = (T − 6I)2e(1)1 to get a basis for K1/K0
∼=

K1. We need a new vector e(3)1 ∈ K1 ∼ {0} such that e(3)1 and e(1)3 are independent

mod K0 = (0) – i.e. vectors that are actually independent in V . We could try e(3)1 =
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(−1,−1, 0, 1) = −e1 − e2 + e4 which is in K1 ∼ K0. Independence holds if and only if

the matrix M whose rows are e(1)3 and e(3)1 has rank = 2. But row operations yield
(

1 1 −2 1
−1 −1 0 1

)

→
(

1 1 −2 1
0 0 −2 2

)

which has row rank = 2, as desired.

Thus {T 2(e(1)1 ), T (e(1)1 ), e(1)1 ; e(3)1 } is a basis for all of V such that

C1 = R-span{T 2(e(1)1 ), T (e(1)1 ), e(1)1 },

C2 = R-span{e(3)1 }

are independent cyclic subspaces, generated by the vectors e(1)1 and e(3)1 . The ordered

basis Y = {T 2(e(1)1 ), T (e(1)1 ), e(1)1 ; e(3)1 } puts [T ]Y in Jordan canonical form

[T ]Y =

⎛

⎜

⎜

⎜

⎝

6 1 0 0
0 6 1 0
0 0 6 0

0 0 0 6

⎞

⎟

⎟

⎟

⎠

Basis vectors T 2(e(1)1 ) and e(3)1 are eigenvectors for the action of T and Eλ=6(T ) =

F-span{e(3)1 , T 2(e(3)1 )} is 2-dimensional. !

6.21. Exercise. Find the Jordan canonical form for the linear operators T : Rn → Rn

whose matrices with respect to the standard bases X = {e1, · · · , en} are

(a) A =

⎛

⎝

5 −6 −6
−1 4 2
3 −6 −4

⎞

⎠ (b) B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 1 0
0 1 1 1 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 1 −1
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The Minimal Polynomial for T : V → V . The space of linear operators HomF(V, V ) ∼=
M(n,F) is finite dimensional, so there is a largest exponentm such that I, T, T 2, . . . , Tm−1

are linearly independent. Thus there are coefficients cj such that Tm +
∑m−1

j=0 cjT j = 0
(the zero operator). The monic polynomial

xm +
m−1
∑

j=0

cjx
j in F[x]

is the (unique) minimal polynomial mT (x) for this operator. Obviously d = deg(mT )
cannot exceed n2 = dim (M(n,F)), but it could be a lot smaller. The minimal polynomial
for a matrix A ∈M(n,F) is defined the same way, and it is easy to see that the minimal
polynomial mT (x) for a linear operator is the same as the minimal polynomial of the
associated matrix A = [T ]X, and this is so for every basis X in V . Conversely the minimal
polynomial mA(x) of a matrix coincides with that of the linear operator LA : Fn → Fn

such that LA(v) = A · v (matrix product).
Computing mT (x) could be a chore, but it is easy if we know the Jordan form for T ,

and this approach also reveals interesting connections between the minimal polynomial
mT (x) and the characteristic polynomial pT (x) = det(T − x I). We have already seen
that the characteristic polynomial is a “similarity invariant” for matrices (or for linear
operators), so that
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A similarity transformation, A 7→ SAS−1 yields a new matrix with the same
characteristic polynomial, so pSAS−1(x) = pA(x) in F[x] for all invertible
matrices S.

(See Section II.4 of the Linear Algebra I Class Notes for details regarding similarity
transformations, and Section V.1 for invariance of the characteristic polynomial.) The
minimal polynomial is also a similarity invariant, a fact that can easily be proved directly
from the definitions.

6.22. Exercise. Explain why the minimal polynomial is the same for:

1. A matrix A and the linear operator LA : Fn → Fn.

2. A linear operator T : V → V on a finite dimensional vector space and its matrix
A = [T ]X with respect to any basis in V !

6.23. Exercise. Prove that the minimal polynomial mA(x) of a matrix A ∈ M(n,F) is
a similarity invariant: mSAS−1(x) = mA(x) for any invertible n× n matirx S. !

We will use Example 6.22 to illustrate how the minimal polynomial can be found from
the Jordan form, but first let’s compute and compare mA(x) and pA(x) for a diagonal
matrix. If

A =

⎛

⎜

⎜

⎝

λ1Id1
0

. . .

0 λrIdr

⎞

⎟

⎟

⎠

where Ik = k × k identity matrix.

The characteristic polynomial obviously depends only on the diagonal values of A, is
pA(x) =

∏r
j=1(λj − x)dj ; in contrast, we will show that the minimal polynomial is the

product of the distinct factors,

mA(x) =
r
∏

j=1

(λj − x) ,

each taken with multiplicity one – i.e. for diagonal matrices, mA(x) is just pA(x), ignoring
multiplicities.

ADD MORE TEXT RE: MIN POLYN ?

VII-7. The Jordan Form and Differential Equations.

Computing the exponential eA =
∑∞

n=0
1
n!A

n of a matrix turns out to be important in
many applications, one of which will be illustrated below. This is not an easy calculation
if you try to do it by summing the series. In fact, computing a product of n×n matrices
seems to require n3 multiplication operations on matrix entries and computing a high
power such as A200 directly could be a formidable task. The computing effort can be
reduced somewhat through clever programming, but it can be done by hand for diagonal
matrices, and for elementary nilpotent matrices (see Exercises 6.15 - 6.16), and hence for
any matrix that is already in Jordan Canonical form. For a linear operator T : V → V
the Jordan form is obtained by choosing a suitable basis in V ; for a matrix A this amounts
to finding an invertible matrix S such that the similarity transform A 7→ SAS−1 puts
A into Jordan form. Similarity transforms are invertible operations that interact nicely
with the matrix-exponential operation, with

(20) SeAS−1 = eSAS−1

for every A ∈M(n,C) .
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Thus if we can determine the Jordan form B for A, we can compute eA in four simple
steps,

A → Jordan form B = SAS−1

→ eB = eSAS−1

(a calculation that can be done by hand)

→ eA = S−1eBS = eS
−1BS (because B = SAS−1)

Done. Note that eD will have block upper-triangular form if D has Jordan form.
This idea was illustrated for diagonalizable matrices and operators in the Linear

Algebra I Notes, but in the following example you will see that it is easily adapted to
deal with matrices whose Jordan form can be determined. Rather that go through such
a calculation just to compute eA, we will go the extra parsec and show how the ability
to compute matrix exponentials is the key to solving systems of constant coefficient
differential equations.

Solving Linear Systems of Ordinary Differential Equations.
If A ∈ M(n,F) for F = R or C and x(t) = (x1(t), . . . , xn(t)) is a differentiable function

with values in Fn, the vector identity

(21)
dx

dt
= A · x(t) x(0) = c = (c1, . . . , cn)

is a system of constant coefficient differential equations with initial conditions xk(0) = ck
for k = 1, . . . , n. There is a unique solution for all −∞ < t <∞, given by x(t) = etA · c.
This follows because the vector-valued map x(t) is infinitely differentiable, with

d

dt
(etA) = A · etA for all t ∈ R ,

from which we get
dx

dt
=

d

dt
(etA) · c = AetA · c = A · x(t) .

Solving the differential equation (21) therefore reduces to computing etA, but how do
you do that? As noted above, if A has a characteristic polynomial that splits over F (or
if F = C), we can find a basis that puts A in Jordan canonical form. That means we
can, with some effort, find a nonsingular S ∈ M(n,F) such that B = SAS−1 consists of
diagonal blocks

B =

⎛

⎜

⎜

⎜

⎝

B1 0
·

·
0 Br

⎞

⎟

⎟

⎟

⎠

,

each having the form

Bk =

⎛

⎜

⎜

⎜

⎜

⎝

λk 1 0
· ·

· ·
· 1

0 λk

⎞

⎟

⎟

⎟

⎟

⎠

= λkI +Nk

where λk ∈ spF(A), and Nk is either an elementary (cyclic) nilpotent matrix, or a 1× 1
block consisting of the scalar λk, in which the elementary nilpotent part is degenerate.
(Recall the discussion surrounding equation (12)). Obviously,

SetAS−1 = S(
∞
∑

k=0

tk

k!
Ak)S−1 =

∞
∑

k=0

tk

k!
SAkS−1 = et SAS−1

,
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but SAkS−1 = (SAS−1)
k
for k = 0, 1, 2 . . ., so

SetAS−1 =
∞
∑

k=0

tk(SAS−1)k

k!
=

⎛

⎜

⎜

⎝

etB1 0
·

·
0 etBr

⎞

⎟

⎟

⎠

= etB

Here etB = et(λI+N) = etλI · etN because eA+B = eA · eB when A and B commute, and
then we have

etB = eλtI · [
d−1
∑

j=0

tj

j!
N j ] = eλtI ·

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 t t2

2! · · · td−1

(d−1)!

· ·
...

· · t2

2!
1 t

0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

of size d×d. These matrices can be computed explicitly and so can the scalars etλ. Then
we can recover etA by reversing the similarity transform to get

etA = S−1etBS

which requires computing two products of explicit matrices. The solution of the original
differential equation

dx

dt
= Ax(t) with inital condition x(0) = c

is then x(t) = etA · c, as above.
7.1. Exercise. Use the Jordan Canonical form to find a list of solutions A ∈ M(2,C)
to the matrix identity

A2 + I = 0 (the “square roots of −I) ,

such that every solution is similar to one in your list.
Note: SA2S−1 = (SAS−1)2. !
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Chapter VIII. Complexification.

VIII-1. Analysis of Linear Operators over R.
How can one analyze a linear operator T : V → V when the characteristic polynomial
pT (x) does not split over F? One approach is via the “Rational Canonical form,” which
makes no attempt to replace the ground field F with a larger field of scalars K over which
pT might split; we will not pursue this topic in these Notes. A different approach, which
we will illustrate for F = R, is to enlarge F by constructing a field of scalars K ⊇ F; then
we may in an obvious way regard F[x] as a subalgebra within K[x], and since K ⊇ F

there is a better chance that f(x) will split into linear factors in K[x]

(22) f(x) = c ·
d
∏

j=1

(x− µj)
mj with c and µj in K.

It is in fact always possible to embed F in a field K that is algebraically closed, which
means that every polynomial f(x) ∈ K[x] splits into linear factors belonging to K[x], as
in (22).

The Fundamental Theorem of Algebra asserts that the complex number field is alge-
braically closed; but the real number system R is not – for instance x2 + x + 2 ∈ R[x]
cannot split into linear factors in R[x] because it has no roots in R. However, it does
split when regarded as an element of C[x],

x2 + x+ 1 = (x − z+) · (x− z−)− (x− 1
2 (−1 + i

√
3)) · (x+ 1

2 (−1− i
√
3))

where i =
√
−1 . In this simple example one can find the complex roots z± = 1

2 (−1±i
√
3)

using the quadratic formula.
Any real matrix A ∈ M(n,R) can be regarded as a matrix in M(n,C) whose entries

happen to be real. Thus the operator

LA(x) = A · x (matrix multiplication)

acting on n× 1 column vectors can be viewed as a linear operator T : Rn → Rn, but also
as a “complexified” operator TC : Cn → Cn on the complexified space Cn = Rn + iRn.
Writing vectors z = (z1, · · · , zn) with complex entries zj = xj + iyj (xj , yj ∈ R), we may
regard z as a combination z = x + iy with complex coefficients of the real vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) in Rn. The complexified operator TC ∈ HomC(Cn,Cn)
can then be expressed in terms of the original R-linear map T : Rn → Rn,

(23) TC(x+ iy) = T (x) + iT (y), TC ∈ HomC(C
n,Cn) for x, y ∈ V.

The result is a C-linear operator TC whose characteristic polynomial pTC
(t) ∈ C[t] turns

out to be the same as pT (t) when we view pT ∈ R[t] as a polynomial in C[t] that happens
to have real coefficients. Since pTC

(t) always splits over C, all the preceding theory applies
to TC. Our task is then to translate that theory back to the original real linear operator
T : Rn → Rn.

1.1. Exercise. If T is a linear operator from Rn → Rn and TC : Cn → Cn is its
complexification as defined in (23), verify that the characteristic polynomials pT (t) ∈ R[t]
and pTC

(t) ∈ C[t] are “the same” – i.e. that

pTC
(t) = pT (t)
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when we identify R[t] ⊆ C[t].
Hint: Polynomials in F[t] are equal⇔ they have the same coefficients in F. Here, pTC

has
coefficients in C while pT has coefficients in R, but we are identifying R = R + i0 ⊆ C.
!

Relations between R[t] and C[t]. When we view a real coefficient polynomial f(t) =
∑m

j=0 ajt
j ∈ R[t] as an element of C[t] it can have complex roots as well as real roots,

but

When we view f(t) ∈ R[x] as an element of C[x], any non-real roots must
occur in conjugate pairs z± = (u ± iv) with u and v real. Such eigenvalues
can have nontrivial multiplicities, resulting in factors (t− z+)m · (t− z−)m in
the irreducible factorization of f(t) in C[t].

In fact, if z = x + iy with x, y real and if f(z) = 0, the complex conjugate z = x− iy is
also a root of f because

f(z) =
m
∑

j=0

ajz
j =

m
∑

j=0

ajzj =
∑

j

ajzj = f(z) = 0

(Recall that z + w = z + w, zw = z · w, and (z)− = z for z, w ∈ C.)
Thus, #(non-real roots) is even, if any exist, while the number of real roots is unre-

stricted, and might be zero. Thus the splitting of f in C[t] can written as

f(t) = c ·
r
∏

j=1

(t− µj)
mj (t− µj)

mj ·
s
∏

k=r+1

(t− rj)
mk

= c ·
r
∏

j=1

[ (t− µj)(t− µj) ]
mj ·

s
∏

k=r+1

(t− rj)
mk(24)

where the µj are complex and nonreal (µ ̸= µ), and the rj are the distinct real roots
of f . Obviously n = deg(f) =

∑r
j=1 2mj +

∑s
j=r+1 mj . Since f has real coefficients,

all complex numbers must disappear when the previous equation is multiplied out. In
particular, for each nonreal conjugate pair µ, µ we have

(25) Qµ(t) = (t− µ)(t− µ) = t2 − 2Re(µ) + |µ|2 ,

a quadratic with real coefficients. Hence,

f(t) = c ·
s
∏

r+1

(t− rj)
mj ·

r
∏

j=1

(Qµj (t))
mj

is a factorization of f(t) into linear and irreducible quadratic factors in R[t], and every
f ∈ R[t] can be decomposed this way. This is the (unique) decomposition of f(t) into
irreducible factors in R[t]: by definition, the Qµ(t) have no real roots and cannot be a
product of polynomials of lower degree in R[t], while the linear factors are irreducible as
they stand.

1.2. Definition. A nonconstant polynomial f ∈ F[t] is irreducible if it cannot be fac-
tored as f(t) = g(t)h(t) with g, h nonconstant and of lower degree than f . A polynomial
is monic if its leading coefficient is 1. It is well known that every monic f ∈ F[t] factors
uniquely as

∏r
j=1 hj(t)mj where each hj monic and irreducible in F[t]. The exponent

mj ≥ 1 is its multiplicity, and this factorization is unique.

The simplest irreducibles (over any F) are the linear polynomials at+ b (with a ̸= 0 since
“irreducibility” only applies to nonconstant polynomials). This follows from the degree
formula
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Degree Formula: deg(gh) = deg(g)+deg(h) for all nonzero g, h ∈ F[t].

If we could factor at+b = g(t)h(t), either g(t) or h(t) would have degree 0, and the other
would have degree 1 = deg(at+ b). Thus there are no nontrivial factorization of at+ b.
When F = C, all irreducible polynomials have degree = 1, but if F = R they can have
degree = 1 or 2.

1.3. Lemma. The irreducible monic polynomials in R[t] have the form

1. (t− r) with r ∈ R, or

2. t2 + bt+ c with b2− 4c < 0. These are precisely the polynomials (t− µ)(t− µ) with
µ a non-real element in C.

Proof: Linear polynomials at+ b (a ̸= 0) in R[t] are obviously irreducible. If f has the
form of (2.), the quadratic formula applied on be applied to f(t) = t2 + bt+ c in C[x] to
find its roots

µ, µ =
−b±

√
b2 − 4c

2
=
−b± i

√
4c− b2

2
There are three possible outcomes:

1. f(x) has a single real root with multiplicity m = 2 when b2 − 4c = 0 and then we

have f(t) = (t− 1
2 b)

2;

2. There are two distinct real roots r± = 1
2( − b ±

√
b2 − 4c) when b2 − 4c > 0, and

then f(t) = (t− r+)(t− r−);

3. When the discriminant b2− 4c is negative there are two distinct conjugate nonreal
roots in C,

µ =
−b+

√
b2 − 4c

2
and µ =

−b− i
√
4c− b2

2
(i =

√
−1),

in which case f(t) = (t− µ)(t− µ) has the form (25) in R[t].

The quadratic f(t) is irreducible in R[t] when f(t) has two nonreal roots; otherwise it
would have a factorization (t− r1)(t − r2) in R[t] and also in C[t]. That would disagree
with (x− µ)(x − µ), contrary to unique factorization in C[t], and cannot occur. !

Complexification of Arbitrary Linear Operators over R. We now discuss com-
plexification of arbitrary vector spaces over R and complexifications TC of the R-linear
operators T : V → V that act on them.

1.4. Definition. (Complexification). Given an arbitrary vector space V over R

its complexification VC is the set of symbols {z = x + iy : x, y ∈ V } equipped with
operations

z+w = (x+ iy) + (u + iv) = (x + u) + i(y + v)

(a+ ib) · z = (a+ ib)(x+ iy) = (ax− by) + i(bx+ ay), for a+ ib ∈ C

Two symbols z = (x+ iy) and z′ = (x′ + iy′) designate the same element of VC ⇔ x′ = x
and y′ = y.

1. The real points in VC are those of the form V + i0. This set is a vector space
over R (but not over C), because

(c+ i0) · (x+ i0) = (cx) + i0 for c ∈ R, x ∈ V

(x + i0) + (x′ + i0) = (x+ x′) + i0 for x, x′ ∈ V.

Clearly the operations (+) and (scale by real scalar c+i0)match the usual operations
in V when restricted to V + i0.
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2. If T : V → V is an R-linear operator its complexification TC : VC → VC is defined
to be the map

(26) TC(x+ iy) = T (x) + iT (y), x, y ∈ V ,

which turns out to be a C-linear operator on VC.

We indicate this by writing “TC = T + iT .”

1.5. Exercise. If M1, . . . ,Mr are vector spaces over R prove that the complexification
of V = M1 ⊕ . . . ⊕Mr is VC = (M1)C ⊕ . . . ⊕ (Mr)C. !

1.6. Exercise. Prove that VC is actually a vector space over C. (Check each of the
vector space Axioms.)
Hint: In particular, you must check that (z1z2) · w = z1 · (z2 · w), for z1, z2 ∈ C and
w ∈ VC, and that (c + i0)scdot(x + i0) = (c ·x) + i0 for c ∈ R, so V + i0 is a subspace
over R isomorphic to V . !

1.7. Example. We verify that

1. TC is in fact a C-linear operator on the complex vector space VC.

2. When we identify V with the subset V + i0 in VC via the map j : v 7→ v + i0, the
restriction TC|V+i0 gets identified with the original operator T in the sense that

TC(v + i0) = T (v) + i · 0 for all v ∈ V .

Thus the folowing diagram is commutative, with TC ◦ j = j ◦ T

V
j−→ V + i0 ⊆ VC

T ↓ ↓ TC

V
j−→ V + i0 ⊆ VC

with TC ◦ j = j ◦ T .

Discussion: Commutativity of the diagram is immediate from the definitions of VC

and TC. The messy part of proving (1.) is showing that TC(z · w) = z · TC(w) for
z ∈ C,w ∈ VC, so we will only do that. If z = a+ ib ∈ C and w = u+ iv in VC we get

TC((a+ ib)(u+ iv)),= TC((au − bv) + i(bu+ av))
= T (au− bv) + iT (bu+ av) = aT (u)− bT (v) + ibT (u) + iaT (v)

= (a+ ib) · (T (u) + iT (v)) = (a+ ib) · TC(u+ iv) !

1.8. Example. If {ej} is an R-basis in V , then {ẽj = ej + i0} is a C-basis in VC. In
particular, dimR(V ) = dimC(VC).

Discussion: If w = v + iw (v, w ∈ V ) there are real coefficients {cj}, {dj} such that

w = (
∑

j

cjej)+ i (
∑

j

djej) =
∑

j

(cj + idj)(ej + i0) ,

so the {ẽj} span VC. As for independence, if we have

0 + i0 =
∑

zj ẽj =
∑

(cj + idj) · (ej + i0) = (
∑

j

cjej)+ i (
∑

j

djej)

in VC for coefficients zj = cj + idj in C, then
∑

j cjej = 0 =
∑

j djej , which implies
cj = 0 and dj = 0 because {ej} is a basis in V . Thus zj = 0 for all j. !

1.9. Example. If V = Rn then VC = Rn + iRn is, in a obvious sense, the same as Cn.
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If A ∈M(n,R), we get a R-linear operator T = LA that maps v → A · v (matrix product
of n×n times n× 1), whose matrix with respect to the standard basis X = {ej} in Rn is
[T ]X = A. If {ẽj = ej + i0} = Y is the corresponding basis in VC, it is easy to check that
we again have [TC]Y = A – i.e. TC is obtained by letting the matrix A with real entries
act on complex column vectors by matrix multiply (regarding A as a complex matrix
that happens to have real entries). !

1.10. Definition (Conjugation). The conjugation operator J : VC → VC maps
x+ iy → x− iy. It is an R-linear operator on VC, with

J(c · w) = c · J(w) if c = c+ i0 ∈ R ,

but is conjugate linear over C, with

J(z · w) = z · J(w) for z ∈ C, w ∈ VC

J(w1 + w2) = J(w1) + J(w2)

Further properties of conjugation are easily verified from this definition:

1. J2 = J ◦ J = id, so J−1 = J .

2. w ∈ VC is a real point if and only if J(w) = w .(27)

3.
w + J(w)

2
= x+ i0 and

w − J(w)

2i
= y + i0, if w = x+ iy in VC.

The operator J can be used to identity the C-linear maps S : VC → VC, of real type,
those such that S = TC = T + iT for some R-linear T : V → V .

1.11. Exercise. Whether F = R or C, a matrix in M(n,F) determines a linear operator
LA : Fn → Fn. Verify the following relationships between operators on V = Rn and
VC = Cn = Rn + iRn.

1. If F = R, (LA)C = LA+ iLA : Cn → Cn is the same as the operator LA : Cn → Cn

we get by regarding A as a complex matrix all of whose entries are real.

2. Consider A ∈ M(n,C) and regard Cn as the complexification of Rn. Verify that
LA : Cn → Cn is of real type ⇔ all entries in A are real, so A ∈M(n,R).

3. If S and T are R-linear operators on a real vector space V , is the map

(S + iT ) : (x+ iy)→ S(x) + iT (y)

on VC a C-linear operator? If so, when is it of real-type? !

1.12. Exercise. If T : V → V is an R-linear operator on a real vector space, prove
that

1. (TC)
k
= (T k)

C
for all k ∈ N

2. e(TC) = (eT )
C

on VC !

1.13. Lemma. If T : V → V is R-linear and TC is its complexification, then TC

commutes with J ,
JTC = TCJ (or equivalently JTCJ = TC).

Conversely, if S : VC → VC is any C-linear operator the following statements are equiva-
lent

1. S = TC = T + iT for some real-linear T : V → V .
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2. SJ = JS.

3. S leaves invariant the R-subspace of real vectors V + i0 in VC.

Proof: For (1.)⇒ (2.) is trivial:

JTCJ(x+ iy) = JTC(x− iy) = J(T (x) + iT (−y)) = J(T (x)− iT (y))

= T (x) + iT (y) = TC(x+ iy)

For (2.)⇒ (3.), suppose SJ = JS. We have w ∈ V + i0 if and only if w = 1
2(w+ J(w)),

and for these w we have

S(w) = 1
2(S(w) + S(J(w)) = 1

2(J(S(w)) + S(w)) .

By the properties (27), S(w) is a vector in V + i0.

For (3.)⇒ (1.), if S leaves V + i0 invariant then S(x+ i0) = T (x)+ i0 for some uniquely
determined vector T (x) ∈ V . We claim that T : x 7→ T (x) is an R-linear map. In fact, if
c1, c2 ∈ R and v1, v2 ∈ V , we have

S((c1x1 + c2x2) + i0) = T (c1x1 + c2x2) + i0 ,

while S (being C-linear) must also satisfy the identities

S((c1x1 + c2x2) + i0) = S((c1x1 + i0) + (c2x2 + i0)) = S(c1x1 + i0) + S(c2x2 + i0)

= S((c1 + i0) · (x1 + i0) + (c2 + i0) · (x2 + i0))

= (c1 + i0) · (Tx+ i0) + (c2 + i0) · (T (x2) + i0)

= (c1T (x1) + c2T (x2))+ i0

Thus T is R-linear on V . Furthermore, S = TC because

TC(x+ iy) = T (x) + iT (y) = (T (x) + i0) + i(T (y) + i0)

= S(x+ i0) + iS(y + i0) (by C-linearity of S and definition of T )

= S((x+ i0) + i(y + i0)) = S(x+ iy)

Thus S : VC → C is of real type if and only if JS = SJ , and then S = (S|V+i0))C. !

An Application. The complexified operator TC acts on a complex vector space VC and
therefore can be put into Jordan form (or perhaps diagonalized) by methods worked out
previously. We now examine the special case when TC is diagonalizable, before taking
up the general problem: If TC : VC → VC is diagonalizable, what can be said about the
structure of the original R-linear operator T : V → V ?

We start with an observation that holds for any R-linear operator T : V → V , whether
or not TC is diagonalizable.

1.14. Lemma. If pT (t) =
∑m

j=0 ajt
j (aj ∈ R), then pTC

= pT in the sense that

pTC
(t) =

∑m
j=0(aj + i0)tj in C[t] ⊇ R[t].

Proof: Earlier we proved that if X = {ej} is an R-basis in V then Y = {ẽj = ej + i0}
is a C-basis in VC, and that [T ]X = [TC]Y because

TC(ẽj) = TC(ej + i0) = T (ej) + iT (0) = (
∑

k

tkj · ek)+ i0

=
∑

k

(tkj + i0)(ek + i0) =
∑

tkj ẽj

46



Thus [TC]ij = tij = [T ]ij . Subtracting tI and taking the determinant, the outcome is the
same whether F = R or C. !

Hereafter we write pT for pTC
leaving the context to determine whether pT is to be

regarded as an element of R[x] or C[x]. As noted earlier, pT always splits in C[x], but
might not split as an element of R[x]. Furthermore, the nonreal roots in the factorization
(24) come in conjugate pairs, so we may list the eigenvalues of TC as follows, selecting
one representative µ from each conjugate pair µ, µ

(28) µ1, µ1, · · · , µr, µr;λr+1, · · · ,λs, with λi real and µj ̸= µj .

and repeating eigenvalues/pairs according to their multiplicity in pTC
(t).

Now assume TC is diagonalizable, with (complex) eigenspaces Eλi , Eµj , Eµj in VC

that yield a direct sum decomposition of VC. Now observe that if µ ̸= µ then w ∈ VC is
an eigenvector for µ if and only if J(w) is an eigenvector for µ because

(29) TC(J(w)) = J(TC(w)) = J(µw) = µJ(w)

Hence, J(Eµ(TC)) = Eµ(TC) and J is an R-linear bijection between Eµ(TC) and Eµ(TC).
Observe that J(Eµ ⊕Eµ) = Eµ⊕Eµ even though neither summand need be J-invariant
(although we do have J(Eλ) = Eλ when λ is a real eigenvalue for TC). The complex
subspaces Eµ⊕Eµ are of a special “real type ”in VC owing to their conjugation-invariance.

1.15. Definition. If W is a C-subspace of the complexification VC = V + iV , its real
points are those in WR = W ∩ (V + i0). This is a vector space over R that determines
a complex subspace (WR)C ⊆W by taking C-linear combinations.

(WR)C = WR + iWR ⊆W

In general, WR + iWR can be a lot smaller than the original complex subspace W . We
say that a complex subspace W ⊆ VC is of real-type if

W = WR + iWR

where WR = W ∩ (V + i0) is the set of real points in W .

Thus a complex subspace of real type W is the complexification of its subspace of real
points WR.

Subspaces of real type are easily identified by their conjugation-invariance.

1.16. Lemma. A complex subspace W in a complexification VC = V + iV is of real type
if and only if J(W ) = W .

Proof: W = WR + iWR so J(W ) = WR − iWR = WR + iWR since WR = −WR, proving
(⇒). Conversely, for (⇐) : if J(W ) = W and we write w ∈W as w = x+ iy (x, y ∈ V ),
both

1
2 (w + J(w)) = x+ i0, and

1

2i
(w − J(w)) = y − i0

are in V + i0, and both are in WR = W ∩ (V + i0). Since w = (x+ i0)+ i(y+ i0) = x+ iy,
we conclude that w ∈ WR + iWR, so W is of real type. !

The spaces W = Eµ ⊕ Eµ (and W = Eλ for real λ) are obviously of real type since
J(Eµ) = Eµ. We now compare what is happening in a complex subspace W with what
goes on in the real subspace WR. Note that TC(WR) ⊆WR because

TC(WR) = TC(W ∩ (V + i0)) = TC(W ) ∩ TC(V + i0)

⊆ W ∩ (T (V ) + i0) ⊆ W ∩ (V + i0) = WR
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Case 1: λ ∈ sp(TC) is real. Proposition 8.17 below shows that Eλ(TC) = (Eλ(T ))C if
λ ∈ R. We have previously seen that an arbitrary R-basis {fj} for Eλ(T ) corresponds to
a C-basis f̃j = fj + i0 in (Eλ(T ))C = Eλ(TC). But

TC(f̃j) = λ · f̃j = λ · (fj + i0) = λfj + i0 ,

since f̃j ∈ Eλ(TC), while

TC(f̃j) = (T + iT )(fj + i0) = T (fj) + i0 .

Hence T (fj) = λfj and T = TC|(Eλ(T )+i0) is diagonalizable over R.

1.17. Proposition. If T : V → V is a linear operator on a real vector space and λ is a
real eigenvalue for TC : VC → VC, then λ ∈ spR(T ) and

Eλ(TC) = Eλ(T ) + iEλ(T ) = (Eλ(T ))C

In particular, dimC(Eλ(T )) = dimR(Eλ(T )) for real eigenvalues of T .

Proof: λ+ i0 ∈ spC(TC) ∩ (R+ i0) if and only if there is a vector u+ iv ̸= 0 in VC such
that TC(u+ iv) = (λ+ i0)(u+ iv) = λu+ iλv. But because TC(u+ iv) = T (u)+ iT (v) this
happens if and only if T (v) = λv and T (u) = λu, and since at least one of the vectors
u, v ∈ V is nonzero we get λ+ i0 ∈ spC(TC) ∩ (R+ i0) ⊆ spR(T ).

Conversely, suppose x+ iy ∈ Eλ(TC) for real λ. Then

TC(x+ iy) = (λ+ i0)(x+ iy) = λx+ iλy ,

but we also have

TC(x+ iy) = TC(x+ i0) + iTC(y + i0) = T (x) + iT (y)

because TC is C-linear. This holds if and only if T (x) = λx and T (y) = λy, so that

x+ iy ∈ Eλ(T ) + iEλ(T ) = (Eλ(T ))C . !

1.18. Corollary. We have spC(TC) ∩ (R + i0) = spR(T ) for any R-linear operator
T : V → V on a finite dimensional real vector space.

1.19. Exercise. Let VC = V + iV be the complexification of a real vector space V and
let S : VC → VC be a C-linear operator of real type, S = TC = T+iT for some T : V → V .
Let W = WR + iWR ⊆ VC be a complex subspace of real type that is S-invariant. Verify
that

(a) S(WR + i0) ⊆ (WR + i0) and (b) S|(WR+i0) = (T |WR
) + i0 . !

This will be the key to determining structure of an R-linear operator T : V → V from
that of its complexification TC : VC → VC.

Consider now the situation not covered by Case 1 above.

Case 2: Nonreal conjugate pairs µ, µ. The space Eµ,µ = Eµ(TC)⊕Eµ(TC) is of real
type and TC-invariant; TC is an operator of real type on VC by definition. Let us list the
pairs of non-real eigenvalues µ, µ according to their multiplicities as in (28), and let

f (µ)
j = xµ

j + iyµj with (xj , yj ∈ V )

be a C-basis for Eµ(TC), so that

Eµ(TC) =
d
⊕

j=1

Cf (µ)
j and TC|Eµ = µ · IEµ .
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Since J(Eµ) = Eµ, we get a matching C-basis in Eµ =
⊕d

j=1 CJ(f
(µ)
j ) using (29).

J(f (µ)
j ) = xµ

j − ixµ
j

Then for 1 ≤ i ≤ d = dimC(Eµ) define the 2-dimensional complex subspaces in Eµ,µ

V µ
j = Cf (µ)

j ⊕ CJ(f (µ)
j ), j = 1, 2, · · · , d = dimC(Eµ(TC))

These are TC-invariant and are of real type since they are J-invariant by definition.
Clearly Eµ⊕Eµ =

⊕d
j=1 V

µ
j . We claim that for each V µ

j , we can find a C-basis consisting

of two real vectors in (V µ
j )R = (V µ

j ) ∩ (V + i0) (something that cannot be done for the

spaces Cf (µ)
j or Eµ alone).

We proveW = WR+iWR. If f
(µ)
j = xj+iyj, J(f

(µ)
j ) = xj−iyj, then xj = xj+i0 and

yj = yj + i0 are in (V µ
j )R but their C-span includes f (µ)

j and J(f (µ)
j ), and is obviously

all of V (µ)
j ; these real vectors are a C-basis for V (µ)

j . They are also an R-basis for the

2-dimensional space (V µ
j )R = (Rxj + Ryj) + i0 of real points in V (µ)

j .
Note that xj + i0 ∈ (V µ

j )R can be written as

xj + i0 = 1
2(f

(µ)
j + J(f (µ)

j )), and similarly

yj + i0 =
1

2i
(f (µ)

j − J(f (µ)
j )) .

As previously noted, TC (resp. T ) leaves V µ
j (resp. (V µ

j )R) invariant.
We now determine the matrix of Tj = T |(V µ

j )R with respect to the ordered R-basis

Xj = {x(µ)
j , y(µ)j }. If µ = a+ ib with a, b real and b ̸= 0, then µ = a− ib; suppressing the

superscript “µ” for clarity, we then have

TC(xj + iyj) = µ(xj + iyj) = (a+ ib)(xj + iyj) = (axj − byj) + i(ayj + bxj)

TC(xj − iyj) = µ̄(xj − iyj) = (a+ ib)(xj − iyj) = (axj − byj)− i(ayj + bxj)

Write µ in polar form

µ, µ = a± ib = re±iθ = r cos(θ)± ir sin(θ) .

TC and J commute because TC is of real type TC, and since J(zw) = zJ(w) for z ∈ C we
get

T (xj) + i0 = TC(xj + i0) = TC(
fj + J(fj)

2
) =

TC(fj) + J(TC(fj))

2

= 1
2 [ (a+ ib)fj + J((a+ ib)fj)]

= 1
2 [ (a+ ib)(xj + iyj) + (a− ib) · (xj − iyj) ]

= (axj − byj)

= xj · r cos(θ)− yj · r sin(θ)

Similarly, we obtain

T (yj) + i0 = TC(
wj − J(wj)

2i
) = (ayj + bxj) = xj · r sin(θ) + yj · r cos(θ)

We previously proved that [TC]{ẽi} = [T ]{ei} for any R-basis in (V (µ)
j )

R
, so the matrix

of Tj : (V
µ
j )R → (V µ

j )R with respect to the R-basis Xj = {xj , yj} in (V (µ)
j )R is

[T |(V µ
j )R ]Xj

= r ·
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
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Reversing order of basis vectors yields basis X′ij = {yµj , x
µ
j } such that the matrix of

T |(V µ
j )R is a scalar multiple r ·R(θ) of the rotation matrix R(θ) =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

that corresponds to a counterclockwise rotation about the origin by θ radians, with
θ ̸= π, 0 (mod 2π) because µ = a+ ib is nonreal (b ̸= 0).

Of course, with respect to the complex basisY = {J(f (µ)
j ), f (µ)

j } = {xj−iyj, xj+iyj}
in V µ

j the operator TC|V µ
j

is represented by the complex diagonal matrix

[TC|V µ
j
]Y =

(

r e−iθ 0
0 r eiθ

)

=

(

µ 0
0 µ

)

To summarize: we have

VC = [
⊕

λ real

(
d(λ)
⊕

j=1

C · f (λ)
j ) ]⊕ [

⊕

µ̸=µ nonreal

(
d(µ)
⊕

j=1

V (µ)
j ) ]

= [
⊕

λ real

(Eλ(T ))C ]⊕ [
⊕

µ̸=µ nonreal

(
d(µ)
⊕

j=1

((V (µ)
j )

R
)
C
]

where
V (µ)
j = Cf (µ)

j ⊕ C·J(f (µ)
j ) = C(x(µ)

j + i0)⊕ C(y(µ)j + i0) ,

and all the spaces Cf (λ)
j , V (µ)

j are of real type. Restricting attention to the real points
in VC we arrive at a direct sum decomposition of the original real vector space V into
T -invariant R-subspaces

(30) V = [
⊕

λ real

Eλ(T ) ]⊕ [
⊕

µ̸=µ nonreal

(
d(µ)
⊕

j=1

(V (µ)
j )

R
) ]

We have arrived at the following decomposition of the R-linear operator T : V → V ,
when TC is diagonalizable. Note: For each complex pair (µ, µ) in sp(TC), Eµ ⊕ Eµ̄ is of

real type and we claim that (Eµ ⊕Eµ) ∩ (V + i0) =
⊕d(µ)

j=1 (V
µ
j )R. The sum on the right

is direct so dimR(
⊕

µ,µ · · · ) = 2d(µ). Since we also have

dimR (Eµ ⊕ Eµ)R = dimC (Eµ ⊕ Eµ) = 2d(µ) ,

the spaces coincide.

1.20. Theorem (TC Diagonalizable). If T : V → V is R-linear and TC is diagonal-
izable with eigenvalues labeled µ1, µ̄1, · · · ,λr+1, · · · ,λs as in (28), there is an R-basis X
such that [T ]X has the block diagonal form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

R1 0
·

·
Rr

D1

·
·

0 Ds

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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where

Rk =

⎛

⎜

⎜

⎝

rkR(θk) 0
·

·
0 rkR(θk)

⎞

⎟

⎟

⎠

for 1 ≤ k ≤ r, and

Dk =

⎛

⎜

⎜

⎝

λk 0
·

·
0 λk

⎞

⎟

⎟

⎠

for r + 1 ≤ k ≤ s.

Here, µk = rkeiθk are representatives for the non-real pairs (µ, µ) in sp(TC).

When TC is not diagonalizable, we apply the Jordan Canonical form for TC.

1.21. Lemma. If T : V → V is a linear operator on a vector space over R, let µ ∈ C

and Mµ = {w ∈ VC : (TC − µI)kw = 0 for some k ∈ N}. Then w ∈ Mµ ⇔ J(w) ∈ Mµ,
so that

J(Mµ) = Mµ and J(Mµ) = Mµ

Proof: The map Φ : S 7→ JSJ = JSJ−1 is an automorphism of the algebra of all
C-linear maps HomC(VC, VC): it preserves products, Φ(S1S2) = Φ(S1)Φ(S2) because
J2 = I ⇒ JS1S2J = (JS1J)(JS2J), and obviously Φ(S1 + S2) = Φ(S1) + Φ(S2),
Φ(cS) = cΦ(S) for c ∈ C. In particular, Φ(Sk) = Φ(S)k for k ∈ N. Then

J((TC − µI)k)J = (J(TC − µI)J)k = (JTCJ − J(µI)J)
k
= (TC − µI)k

(JTC = TCJ because TC is of real-type by definition), and

J(µI)J(w) = J(µ · J(w)) = µ̄J2(w) = µ̄w, for w ∈ VC

Finally, we have (TC − µI)kw = 0 if and only if

J(TC − µI)kw = 0 ⇔ J(TC − µI)J(J(w)) = 0

⇔ (TC − µ)kJ(w) = 0 ⇔ J(w) ∈Mµ .

Hence J(Mµ) = Mµ, which implies Mµ = J(Mµ) since J2 = I. !

1.22. Theorem (TC not Diagonalizable). Let T : V → V lie a linear operator on
a finite dimensional vector space over R and let µ1, µ1, · · · , µr, µr,λr+1, · · · ,λs be the
eigenvalues of TC : VC → VC, listed as in (28). Then there is an R-basis for V that puts
[T ]X in block diagonal form:

[T ]X =

⎛

⎜

⎜

⎜

⎝

A1 0

·
·

0 Am

⎞

⎟

⎟

⎟

⎠

,

in which each block Aj has one of two possible block upper-triangular forms:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ 1 0

·
. . .
· 1

0 λ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

for real eigenvalues λ of TC ,
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or

A =

⎛

⎜

⎜

⎜

⎜

⎝

Rµ,µ I2 0

·
. . .
· I2

0 Rµ,µ

⎞

⎟

⎟

⎟

⎟

⎠

for conjugate pairs µ = eiθ, µ = e−iθ

where I2 is the 2× 2 identity matrix and

Rµ,µ = r

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

.

Proof: The proof will of course employ the generalized eigenspace decomposition VC =
⊕

z∈sp(TC)
Mz(TC). As above, we write Mµ,µ = Mµ⊕Mµ for each distinct pair of nonreal

eigenvalues. The summands Mλ,Mµ,µ are of real type and are TC invariant, so for each
µ we may write Mµ,µ as the complexification of its space of real points

(31) Wµ = Mµ,µ ∩ (V + i0) .

Here Mµ,µ = Wµ + iWµ is TC-invariant. Since TC is of real type (by definition), it leaves
invariant the R-subspace V +i0; therefore the space of real points Wµ is also TC invariant,
with TC|(Wµ+i0) = T |Wµ . It follows that TC|Mµ,µ

is the complexification

(T |Wµ)+ i(T |Wµ)

of TWµ . If we can find an R-basis in the space (31) of real points Wµ ⊆ Mµ,µ for which
T |Wµ takes the form described in the theorem, then our proof is complete. For this we
may obviously restrict attention to a single subspace Mµ,µ in VC.

Case 1: A Real Eigenvalue λ. If λ is real then

(TC − λ)k(x+ iy) = (TC − λ)k−1[(T − λ)x + i(T − λ)y ] = · · ·
= (T − λ)kx+ i(T − λ)ky for k ∈ N .

Thus, x + iy ∈ Mλ(TC) if and only if x, y ∈ Mλ(T ), and the subspace of real points in
Mλ(TC) = Mλ(T ) + iMλ(T ) is precisely Mλ(T ) + i0. There is a C-basis X = {fj} of
real vectors in Mλ(TC) that yields the same matrix for TC and for its restriction to this
subspace of real points, and we have

TC|Wλ
= T |Wλ

= T |Mλ(T ) . and (TC)|Mλ(T ) = T |Mλ(T ) .

Case 2: A Conjugate Pair µ, µ. The space Mµ,µ = Mµ(TC) ⊕ Mµ(TC) is of real
type because J(Mµ) = Mµ. In fact, if v ∈ Mµ then (TC − µ)kv = 0 for some k. But
TCJ = JTC, so

(TC − µ)kJ(v) = (TC − µ)k−1J(TC − µ)(v) = · · · = J(TC − µ)k(v) = 0 .

Thus Mµ,µ is the complexification of its subspace of real points Vµ = Mµ,µ(TC)∩(V +i0).
By the Cyclic Subspace Decomposiiton (Theorem 3.2) a generalized eigenspace Mµ

for TC is a direct sum of TC-invariant spaces Cj that are cyclic under the action of the

nilpotent operator (TC − µI). In each Cj take a basis Xj = {f (j)
1 , · · · , f (j)

dj
} that puts

(TC − µI)|Cj into elementary nilpotent form
⎛

⎜

⎜

⎝

0 1 · 0
· · ·

· 1
0 0

⎞

⎟

⎟

⎠

so that [TC] =

⎛

⎜

⎜

⎝

µ 1 · 0
· · ·

· 1
0 µ

⎞

⎟

⎟

⎠
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For the basis Xj we have

(TC − µI)f1 = 0 and (TC − µI)fj = fj−1 for j > 1,

which implies that TC(f1) = µf1 and TC(fj) = µfj + fj−1 for j > 1.

If fj = xj + iyj ∈ Wµ + iWµ, we have f̄j = J(fj) = xj − iyj and TC(fj) = µfj + fj−1,
hence

TC(f̄j) = TC(J(fj)) = J(TC(fj)) = J(µfj + fj−1) = µJ(fj) + J(fj−1) .

Since real and imaginary parts must agree we get TC(f̄j) = µf̄j + f̄j−1, as claimed.
Writing µ = a+ ib with b ̸= 0 (or in polar form, µ = reiθ with θ /∈ πZ), we get

T (xj) + iT (yj) = TC(xj + iyj) = TC(fj) = µfj + fj−1

= (a+ ib)(xj + iyj) + (xj−1 + iyj−1)

= (axj − byj) + i(bxj + ayj) + (xj−1 + iyj−1)

Since µ = reiθ and µ = re−iθ this means

T (xj) = axj − byj + xj−1 = xj · r cos(θ) − yj · r sin(θ) + xj−1

T (yj) = bxj + ayj + yj−1 = xj · r sin(θ) + yj · r cos(θ) + yj−1

with respect to the R-basis

{x(1)
1 , y(1)1 , · · · , x(1)

d1
, y(1)d1

, x(2)
1 ; y(2)1 , · · · }

in Vµ = Mµ,µ ∩ (V + i0) =
⊕d

j=1 V
(µ)
J . Thus the matrix [T ]X consists of diagonal blocks

of size 2dj × 2dj that have the form

⎛

⎜

⎜

⎜

⎝

R I2 · 0
R I2

. . . I2
0 R

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

rR(θ) I2 · 0
rR(θ) I2

. . . I2
0 rR(θ)

⎞

⎟

⎟

⎟

⎠

in which I2 is the 2× 2 identity matrix and

R = r · R(θ) =

(

a −b
b a

)

=

(

r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

)

if µ = a+ ib = reiθ . !
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Chapter IX. Bilinear and Multilinear Forms.

IX.1. Basic Definitions and Examples.

1.1. Definition. A bilinear form is a map B : V ×V → C that is linear in each entry
when the other entry is held fixed, so that

B(αx, y) = αB(x, y) = B(x,αy)

B(x1 + x2, y) = B(x1, y) + B(x2, y) for all α ∈ F, xk ∈ V, yk ∈ V

B(x, y1 + y2) = B(x, y1) +B(x, y2)

(This of course forces B(x, y) = 0 if either input is zero.) We say B is symmetric if
B(x, y) = B(y, x), for all x, y and antisymmetric if B(x, y) = −B(y, x).

Similarly a multilinear form (aka a k-linear form , or a tensor of rank k) is a
map B : V × · · ·×V → F that is linear in each entry when the other entries are held fixed.
We write V (0,k) = V ∗ ⊗ . . . ⊗ V ∗ for the set of k-linear forms. The reason we use V ∗

here rather than V , and the rationale for the “tensor product” notation, will gradually
become clear.

The set V ∗ ⊗ V ∗ of bilinear forms on V becomes a vector space over F if we define

1. Zero element: B(x, y) = 0 for all x, y ∈ V ;

2. Scalar multiple: (αB)(x, y) = αB(x, y), for α ∈ F and x, y ∈ V ;

3. Addition: (B1 +B2)(x, y) = B1(x, y) +B2(x, y), for x, y ∈ V .

When k > 2, the space of k-linear forms V ∗ ⊗ . . . ⊗ V ∗ is also a vector space, using
the same definitions. The space of 1-linear forms (= tensors of rank 1 on V ) is the dual
space V ∗ = HomF(V,F) of all F-linear maps ℓ : V → F. By convention the space of
0-forms is identified with the ground field: V (0,0) = F; its elements are not mappings on
V . It is also possible (and useful) to define multilinear forms of mixed type, mappings
θ : V1 × . . . × Vk → F in which the components Vj are not all the same. These forms
also constitute a vector space. We postpone any discussion of forms of “mixed type.”

If ℓ1, ℓ2 ∈ V ∗ we can create a bilinear form ℓ1 ⊗ ℓ2 by taking a “tensor product” of
these forms

ℓ1 ⊗ ℓ2(v1, v2) = ⟨ℓ1, v1⟩ · ⟨ℓ2, v2⟩ for v1, v2 ∈ V

Bilinearity is easily checked. More generally, if ℓ1, · · · , ℓk ∈ V ∗ we obtain a k-linear map
from V × . . . × V → F if we let

ℓ1 ⊗ . . . ⊗ ℓk(v1, · · · , vk) =
k∏

j=1

⟨ℓj , vj⟩ .

We will show that “monomials” of the form ℓ1⊗ . . . ⊗ ℓk span the space V (0,k) of rank-k
tensors, but they do not by themselves form a vector space except when k = 1.

1.2. Exercise. If A : V → V is any linear operator on a real inner product space verify
that

φ(v1, v2) = (Av1, v2) for v1, v2 ∈ V

is a bilinear form.
Note: This would not be true if F = C. Inner products on a complex vector space are
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conjugate-linear in their second input, with (x, z · y) = z · (x, y) for z ∈ C; for C-linearity
in the second entry we would need (x, z · y) = z · (x, y). However, c = c for real scalars so
an inner product on a real vector space is a linear function of each input when the other
is held fixed. !

1.3. Example. Let A ∈ M(n,F) and V = Fn. Regarding elements of Fn as n × 1
column vectors, define

B(x, y) = xtAy =
n∑

ij=1

xiAijyj

where xt is the 1 × n transpose of the n × 1 column vector x. If we interpret the 1 × 1
product as a scalar in F, then B is a typical bilinear form on V = Fn. !

The analogous construction for multilinear forms is more complicated. For instance,
to describe a rank-3 linear formB(x, y, z) on V ×V ×V we would need a three-dimensional
n×n×n array of coefficients {Bi1,i2,i3 : 1 ≤ ik ≤ n}, from which we recover the original
multilinear form via

B(x, y, z) =
n∑

i1,i2,i3=1

xi1yi2zi3Bi1,i2,i3 for (x, y, z) ∈ F
3 .

The coefficient array is an ntimesn square matrix only for bilinear form (k = 2). For the
time being we will focus on bilinear forms, which are quite important in their own right.

Many examples involve symmetric or antisymmetric bilinear forms, and in any case
we have the following result.

1.4. Lemma. Every bilinear form B is uniquely the sum B = B+ +B− of a symmetric
and antisymmetric form.

Proof: B± are given by

B+(v1, v2) =
B(v1, v2) +B(v2, v1)

2
and B− =

B(v1, v2)−B(v2, v1)

2
.

As for uniqueness, you can’t have B = B′ with B symmetric and B′ antisymmetric
without both being the zero form. !

Variants. If V is a vector space over C, a map B : V × V → C is sesquilinear if it is
a linear function of its first entry when the other is held fixed, but is conjugate-linear in
its second entry, so that

B(x1 + x2, y) = B(x1, y) +B(x2, y) and B(x, y1 + y2) = B(x, y1) +B(x, y2)

B(αx, y) = αB(x, y) and B(x,αy) = B(x, y)α for all α ∈ C .

This is the same as bilinearity when F = R. The map is Hermitian symmetric if

B(y, x) = B(x, y)

On a vector space over R, an inner product is a special type of bilinear form, one that
is strictly positive definite in the sense that

(32) B(x, x) ≥ 0 for all x ∈ V and B(x, x) = ∥x∥2 = 0 ⇒ x = 0

Over C, an inner product is a map B : V × V → C that is sesquilinear, Hermitian
symmetric, and satisfies the nondegeneracy condition (32).
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A bilinear form B ∈ V ∗ ⊗ V ∗ is completely determined by its action on a basis
X = {ei} via the matrix [B]X = [Bij ] with entries

Bij = B(ei, ej) for 1 ≤ i, j ≤ n

This matrix is symmetric/antisymmetric if and only if B has these properties. Given
[B]X we recover B by writing x =

∑
i xiei, y =

∑
j yjej ; then

B(x, y) = B(
∑

i

xiei ,
∑

j

yjej) =
∑

i

xi B(ei,
∑

j

yjej)

=
∑

i,j

xiBijyj = [x]tX[B]X[y]X ,

a 1 × 1 matrix regarded as an element of F. Conversely, given a basis and a matrix
A ∈ M(n,F) the previous equality determines a bilinear form B (symmetric if and only
if B = Bt etc) such that [B]X = A. Thus we have isomorphisms between vector spaces
over F:

1. The space of rank-2 tensors V (0,2) = V ∗ ⊗ V ∗ is ∼= M(n,F) via B → [B]X;

2. The space of symmetric bilinear forms is isomorphic to the space of symmetric
matrices , etc.

We next produce a basis for V ∗ ⊗ V ∗ and determine its dimension.

1.5. Proposition. If X = {ei} is a basis in a finite-dimensional vector space V , and
X∗ = {e∗i } is the dual basis in V ∗ such that ⟨e∗i , ej⟩ = δij , then the monomials e∗i ⊗ e∗j
given by

e∗i ⊗ e∗j (v1, v2) = ⟨e∗i , v1⟩ · ⟨e∗j , v2⟩

are a bases on V ∗ ⊗ V ∗. Hence, dim(V ∗ ⊗ V ∗) = n2.

Proof: The monomials e∗i ⊗ e∗j span V ∗ ⊗ V ∗, for if B is any bilinear form and Bij =

B(ei, ej), then B̃ =
∑

i,j Bije∗i ⊗e∗j has the same action on pairs ek, eℓ ∈ V as the original
tensor B.

B̃(ek, el) = (
∑

i,j

Bij · e∗i ⊗ e∗j)⟨ek, eℓ⟩ =
∑

i,j

Bij⟨e∗i , ek⟩ · ⟨e∗j , eℓ⟩

=
∑

i,j

Bijδikδjℓ = Bkℓ = B(ek, eℓ) ,

so B̃ = B ∈ F-span{e∗i ⊗ e∗j}. As for linear independence, if B̃ =
∑

i,j bije
∗
i ⊗ e∗j = 0 in

V (0,2), then B̃(x, y) = 0 for all x, y, so bkℓ = B̃(ek, eℓ) = 0 for 1 ≤ k, ℓ ≤ n. !

A similar discussion shows that the space V (0,r) of rank-k tensors has dimension

dim(V (0,r)) = dim(V ∗ ⊗ . . . ⊗ V ∗) = dim(V )r = nr .

If X = {e1, . . . , en} is a basis for V and {e∗i } is the dual basis in V ∗, the monomials

e∗i1 ⊗ . . . ⊗ e∗ir 1 ≤ i1, . . . , ir ≤ n

are a basis for V (0,r).

1.6. Theorem (Change of Basis) Given B ∈ V ∗⊗V ∗ and a basis X in V , we describe
B by its matrix via (32). If Y = {fj} is another basis, and if

(33) id(fj) = fj =
∑

k

skjek for 1 ≤ j ≤ n ,
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then S = [sij ] = [id]XY is the transition matrix for basis vectors and we have

([B]Y)ij = B(fi, fj) = B(
∑

k,ℓ

skiek ,
∑

ℓ

sℓjeℓ)

=
∑

k,ℓ

SkiBkℓSℓj =
∑

k,ℓ

(St)ikBkℓSℓj

= (St[B]XS)ij

Note: We can also write this as [B]Y = P [B]XP t, taking P = St = [id]tXY. !

Thus change of basis is effected by “congruence” of matrices A -→ SASt, with det(S) ̸= 0.
This differs considerably from the “similarity transforms” A -→ SAS−1 that describe the
effect of change of basis on the matrix of a linear operator T : V → V . Notethet St is
generally not equal to S−1, so congruence and similarity are not the same thing. The
difference between these concepts will emerge when we seek “normal forms” for various
kinds of bilinear (or sesquilinear) forms.

1.7. Definition. A bilinear form B is nondegenerate if

B(v, V ) = 0 ⇒ v = 0 and B(V, v) = 0 ⇒ v = 0

If B is either symmetric or antisymmetric we only need the one-sided version. The
radical of B is the subspace

rad(B) = {v ∈ V : B(v, v′) = 0 for all v′ ∈ V } ,

which measures the degree of degeneracy of the form B The B-orthocomplement of a
subspace W ⊆ V is defined to be

W⊥,B = {v ∈ V : B(v,W ) = (0)} .

Obviously, W⊥,B is a subspace. When B is symmetric or antisymmetric the conditions
B(v,W ) = 0 and B(W, v) = 0 yield the same subspace B⊥,B. Then nondegeneracy
means that V ⊥,B = {0}, and in general V ⊥,B is equal to the radical of B.

1.8. Exercise (Dimension Formula). If B is nondegenerate and either symmetric or
antisymmetric, and if W ⊆ V is a subspace, prove that

dim(W ) + dim (W⊥,B) = dim(V ) !.

The notion of “nondegeneracy” is a little ambiguous when the bilinear form B is neither
symmetric nor antisymmetric: Is there a difference between “right nondegenerate,” in
which B(V, y) = 0 ⇒ y = 0, and nondegeneracy from the left: B(x, V ) = 0 ⇒ x = 0?
The answer is no. In fact if we view vectors x, y ∈ V as n × 1 columns, we may write
B(x, y) = [x]tX[B]X[y]X, and if [B]X is singular there would be some y ̸= 0 such that
[B]X[y]X = 0, hence B(V, y) = 0. That can’t happen if B is right nondegenerate so
B right-nondegenerate implies [B]X is nonsingular. The same argument shows B left-
nondegenerate also implies [B]X nonsingular.

But in fact, this works in both directions, so

1.9. Lemma. B is right nondegenerate if and only if [B]X is non singular.

Proof: We have already proved (⇐) for both left- and right nondegeneracy. Conversely,
if B(V, y) = 0 for some y ̸= 0, then [B]X[y]X ̸= 0 if det([B]X) ̸= 0, and we would have

B(ei, y) = eti [B]X [y]X ̸= 0
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for some i. This conflicts with the fact that [B]X[y]X ̸= 0. Contradiction. !

Thus for any basisX, B is right-nondegenerate⇔ [B]X is nonsingular⇔ left-nondegenerate,
and it is legitimate to drop the “left/right” conditions on nondegeneracy.

Hereafter we will often abbreviate dim(V ) = |V |, which is convenient in this and
other situations.

1.10. Lemma. If B is a nondegenerate bilinear form on a finite dimensional space V ,
and M is a vector subspace, we let M⊥,B = {w : B(V,w) = 0}. Then

|M |+ |M⊥,B| = |V | ,

even though we need not have M ∩M⊥,B = (0).

Proof: If |V | < ∞ any nondegenerate bilinear form B mediates a natural bijection
J : V → V ∗ that identifies each vector v ∈ V with a functional J(v) in V ∗ such that

⟨J(v), ℓ⟩ = ⟨ℓ, v⟩ for all v ∈ V, ℓ ∈ V ∗ .

This map is clearly F-linear and J(w) = 0 ⇒ B(V,w) = 0 ⇒ w = 0 by non degeneracy
of B, so J is one-to-one and also a bijection because |V | = |V ∗|.

In Section III.3 of the Linear Algebra I Course Notes, we defined the “annihilator”
of a subspace M ⊆ V to be

M◦ = {ℓ ∈ V ∗ : ⟨ℓ,M⟩ = 0}

and discussed its properties, indicating that

(M◦)◦ = M and |V | = |M |+ |M◦|

when |V | < ∞. The annihilator M◦ is analogous to the orthogonal complement M⊥

in an inner product space, but it lives in the dual space V ∗ instead of V ; it has the
advantage that M◦ makes sense in any vector space V , whether or not it is equipped
with an inner product or a nondegenerate bilinear form. (Also, orthogonal complements
M⊥ depend on the particular inner product on V , while the annihilator M◦ has an
absolute meaning.)

1.11. Exercise. When V is equipped with a nondegenerate bilinear form B we may
invoke the natural isomorphism V ∼= V ∗ it induces to identify an annihilator M◦ in
V ∗ with a uniquely defined subspace J−1(M◦) in V . From the definitions, verify that
M◦ ⊆ V ∗ becomes the B-orthocomplement M⊥,B ⊆ V under these identifications. !

1.12. Exercise. If B is a nondegenerate bilinear form on a finite dimensional vector
space, and if M is any subspace, prove that

(34) |M |+ |M⊥,B| = |V | and (M⊥,B)
⊥,B

= M.

Hint: Identifiying B-orthocomplements with annihilators, apply the basic properties of
annihilators mentioned in Exercise 1.12. !

If B is degenerate, so the radical rad(B) is nonzero, the role of the radical can be
eliminated for most practical purposes, allowing us to focus on nondegenerate forms.

1.13. Exercise. Let M = rad(B) and form the quotient space Ṽ = V/M . Show that

1. B induces a well-defined bilinear form B̃ : Ṽ × Ṽ → F if we let

B̃(x+M, y +M) = B(x, y) for all x, y ∈ V

58



2. B̃ is symmetric (or antisymmetric) ⇔ B is.

3. Prove that B̃ is now nondegenerate on V/M . !

1.14. Exercise. Given n× n matrices A,B show that

xtBy = xtAy for all x, y ∈ F
n if and only if A = B. !

IX.2. Canonical Models for Bilinear Forms.
Bilinear forms arise often in physics and many areas of mathematics are concerned with
these objects, so it is of some importance to find natural “canonical forms” for B that
reveal its properties. This is analogous to the diagonalization problem for linear opera-
tors, and we will even speak of “diagonalizing” bilinear forms, although these problems
are quite different and have markedly different outcomes.

In doing calculations it is natural to work with the matrices [B]X that represent B
with respect to various bases, and seek bases yielding the simplest possible form. If a
bilinear form B is represented by A = [B]X we must examine the effect of a change
of basis X → Y, and describe the new matrix [B]Y in terms of the transition matrix
S = [id]YX that tells us how to write vectors in the Y-basis in terms of vectors in X, as
in (32). Thus if X = {ei} and Y = {fj}, S = [sij ] is the matrix such that

(35) fj =
∑

k

skjek for 1 ≤ j ≤ n

Obviously det(S) ̸= 0 because this system of vector equations must be invertible.
In Theorem 1.6 we worked out the effect of such a basis change: [B]Y = St[B]XS,

which takes the form

(36) [B]Y = P [B]XP
t if we set P = St .

We now show that the matrix of a nondegenerate B has a very simple standard form,
at least when B is either symmetric or antisymmetric, the forms of greatest interest in
applications. We might also ask whether these canonical forms are unique. (Answer: not
very.)

The Automorphism Group of a Form B. If a vector space is equipped with a
nondegenerate bilinear formB, a natural (and important) automorphism group Aut(B) ⊆
GLF(V ) comes along with it. It consists of the invertible linear maps T : V → V that
“leave the form invariant,” in the sense that B(T (x), T (y)) = B(x, y) for all vectors. We
have encountered such automorphism groups before, by various names. For example,

1. The real orthogonal group O(n) consists of the invertible linear maps T on Rn

that preserve the usual inner product,

B(x,y) =
n∑

i=1

xiyi for x,y ∈ R
n .

As explained in Section VI.5 of the Linear Algebra I Notes, the automorphisms
that preserve this symmetric bilinear form are precisely the linear rigid motions on
Euclidean space, those that leave invariant lengths of vectors and distances between
them, so that

∥T (x)∥ = ∥x∥ and ∥T (x)− T (y)∥ = ∥x− y∥ for x,y ∈ R
n.

where ∥x∥ = (∑n
i=1 |xi|2)

1/2
(Pythagoras’ formula).
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2. The unitary group U(n) is the group of invertible linear operators on V = Cn

that preserve the (Hermitian, sesquilinear) standard inner product

B(z,w) =
n∑

k=1

zkwk

on complex n-space. For these operators the following conditions are equivalent
(see Linear Algebra I Notes, Section VI.4).

T ∈ U(n) ⇔ B(T (z) , T (w)) = B(z,w)

⇔ ∥T (z)∥ = ∥z∥
⇔ ∥T (z)− T (w)∥ = ∥z−w∥

for z,w ∈ Cn, where

∥z∥ = B(z, z)1/2 = (
n∑

i=1

|xi|2)
1/2

(Pythagoras’ formula for complex n-space).

2.1. Exercise. Explain why U(n) is a closed and bounded subset in matrix space

M(n,C) ∼= Cn2

!

3. The complex orthogonal group O(n,C) is the automorphism group of the bi-
linear form on complex n-space Cn

B(z,w) =
n∑

k=1

zkwk (z,w ∈ C
n)

This is bilinear over F = C, but is not an inner product because it is not conjugate-
linear in the entry w because wk appears in B instead of wk; furthermore, not all
vectors have B(z, z) ≥ 0 (try z = (1, i) in C2).

In the present section we will systematically examine the canonical forms and associated
automorphism groups for nondegenerate symmetric or antisymmetric forms over F = R

or C. The number of possibilities is surprisingly small.

2.1A. Definition. The automorphism group of a nondegenerate symmetric or anti-
symmetric form B : V × V → F is

(37) Aut(B) = {T ∈ GLF(V ) : B(T (v), T (w)) = B(v, w) for all v, w ∈ V } ,

where GLF(V ) = {T : det(T ) ̸= 0} is the general linear group consisting of all
invertible F-linear operators T : V → V .

Aut(B) is a group because it contains: the identity I = idV ; the composition product
S ◦ T of any two elements; and the inverse T−1 of any element.

Given a basis X for V , each element T ∈ Aut(B) corresponds to an invertible matrix
[B]X = [B(ei, ej)], and these matrices form a group

GB,X = {[T ]X : T ∈ Aut(B)}

under matrix multiplication (·). The group (Aut(B), ◦) and the matrix group (GB,X, · )
are isomorphic and are often identified.

Matrices in GB,X are characterized by their special algebraic properties,

(38) GB,X = {E ∈ GL(n,F) : Et[B]XE = [B]X} ,
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This identification follows because

T ∈ Aut(B) ⇔ B(T (x), T (y)) = B(x, y) for all x, y ∈ V

⇔ [x]tX[B]X[y]X = [T (x)]tX[B]X [T (y)]X

= [x]tX([T ]
t
X [B]X[T ]X)[y]X

⇔ [B]X = [T ]tX[B]X [T ]X for all x, y ∈ V .

Given basis X, T is an automorphism of the bilinear form B if and only if the matrix
[T ]X satisfies the identity [B]X = [T ]tX[B]X[T ]X, and this must be true for any basis X.
Matrices in GB,X are precisely the matrix realizations (with respect to basis X) of all the
automorphisms in Aut(B).

2.2. Exercise. If B is a non degenerate bilinear form, show that GB = Aut(B) is a
subgroup in the general linear group GLF(V ) – i.e. that (i) I ∈ GB , (ii) T1, T2 ∈ GB ⇒
T1, T2 ∈ GB, and (iii) T ∈ GB ⇒ T−1 ∈ GB . !

We can also assess the effect of change of basis X → Y: GB,Y is a conjugate of GB,X

under the action of GL(n,F).

2.3. Exercise. If X, Y are bases in V , define GB,X and GB,Y as in (38) and prove that

GB,Y = S−1GB,XS where S = [id]Y,X

(or equivalently GB,Y = S̃GB,XS̃−1 where S̃ = [id]Y,X since [id]Y,X · [id]X,Y = I). !

Recall that S is the matrix such that fi =
∑n

k=1 sjiej if X = {ei}, Y = {fj}.
The general linear group GLF(V ) in which all these automorphism groups live is de-

fined by the condition det(T ) ̸= 0, which makes no reference to a bilinear form. The
special linear group SLF(V ) = {T ∈ GLF(V ) : det(T ) = 1} is another “classical
group” that does not arise as the automorphism group of a bilinear form B. All the
other classical groups of physics and geometry are automorphism groups, or their inter-
sections with SLF(V )

Canonical Forms for Symmetric and Antisymmetric B. We classify the congru-
ence classes of nondegenerate bilinear forms according to whether B is symmetric or
antisymmetric, and whether the ground field is F = R or F = C, always assuming B is
nondegenerate. The analysis is the same for antisymmetric forms over F = R or C, so
there are really only three cases to deal with.

Canonical Forms. Case 1: B symmetric, F = R.
If B is a nondegenerate symmetric bilinear form on a vector space over R with dim(V ) =
n, there are n+ 1 possible canonical forms.

2.4. Theorem (B symmetric; F = R). is an R-basis X ⊆ V such that the matrix
describing B has the form

(39) [B]X =

(
Ip×p 0

0 −Iq×q

)

with p+ q = n = dim(V ) .

In this case, we say B has signature (p, q).

Proof: First observe that we have a polarization identity for symmetric B that deter-
mines B(v, w) from homogheneous expressions of the form B(u, u), just as with inner
products over R.

(40) Polarization Identity: B(v, w) = 1
2 [B(v + w, v +w)−B(v, v)−B(w,w) ]

for all v, w ∈ V .
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2.5. Definition. The map Q(v) = B(v, v) from V to R is the quadratic form as-
sociated with a symmetric is bilinear form. Note that B(λv,λv) = λ2B(v, v), and the
quadratic form Q : V → R determines the full bilinear form B : V × V → F via the
polarization identity (40).

Therefore, since B ≡/ 0 there is some v1 ̸= 0, such that B(v1, v1) ̸= 0, and after scaling
v1 by some a ̸= 0 we can insure that B(v1, v1) = ±1. But because F = R we can’t control
whether the outcome will be +1 or −1.

Let M1 = R·v1 and

M⊥,B
1 = {v ∈ V : B(V, v1) = 0} .

We have M1 ∩ M⊥,B
1 = {0} because any w in the intersection must have the form

w = c1v1, c1 ∈ R. But w ∈ M⊥,B
1 too, so 0 = B(w,w) = c21B(v1, v1) = ±c21, hence,

c1 = 0 and w = 0. ThereforeM1⊕M⊥,B
1 = V because |W |+|W⊥,B| = |V | for anyW ⊆ V

(Exercise 1.12). [For an alternative proof: recall the general result about the dimensions
of subspaces W1,W2 in a vector space V : |W1 +W2| = |W1|+ |W2|− |W1 ∩W2|.]

If B1 is the restriction of B to M⊥
1 we claim that B1 : M⊥,B

1 × M⊥,B
1 → R is

nondegenerate on the lower-dimensional subspace M⊥,B
1 . Otherwise, there would be

an x ∈ M⊥,B
1 such that B(x,M⊥,B

1 ) = 0. But since x ∈ M⊥,B
1 too, we also have

B(x,M1) = 0, and therefore by additivity of B in each entry,

B(x, V ) = B(x , M⊥,B
1 +M1) = 0 .

Nondegenerancy of B on V then forces x = 0.
We may therefore continue by induction on dim(V ). Choosing a suitable basis X′ =

{v2, · · · , vn} in M⊥,B
1 and X = {v1, v2, . . . , vn} in V we get

[B]X =

⎛

⎜⎜⎝

±1 · · · 0

0 Ip×p

0 −Iq×q

⎞

⎟⎟⎠ with p+ q = n− 1.

If the top left entry is −1, we may switch vectors e1 ↔ ep, which replaces [B]X with
[B]Y = Et[B]XE, where E is the following permutation matrix (the zero on the diagonal
is at the position p)

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · 1 · · 0
0 +1 0

·
. . .

· +1
1 0
· −1

·
. . .

0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(Note that Et = E for this particular permutation matrix). Then [B]Y has the block-
diagonal form (39), completing the proof. !

Later on, we will describe an algorithmic procedure for putting B into canonical form
diag(+1, · · · ,+1,−1, · · · ,−1); these algorithms work the same way over F = R or C.
We will also see that an antisymmetric B cannot be diagonalized by any congruence, but
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they do have a different (and equally useful) canonical form.

The Real Orthogonal Groups O(p,q), p+q = n. The outcome in Theorem 2.4
breaks into n+1 possibilities. If X is a basis such that [B]X has the standard form (39),
then A ∈ GB,X if and only if

(41) At

(
Ip×p 0
0 −Iq×q

)
A =

(
Ip×p 0
0 −Iq×q

)

This condition can be written concisely as AtJA = J where J =

(
Ip×p 0
0 −Iq×q

)
.

The members of this family of classical matrix groups over R are denoted by O(p, q),
and each one contains as a subgroup the special orthogonal group of signature
(p, q),

SO(p, q) = O(p, q) ∩ SL(n,R) .

Several of the groups O(p, q) and SO(p, q), are of particular interest.

The real Orthogonal Groups O(n, 0) = O(n) and SO(n). With respect to the
standard basis in Rn we have BX = In×n, so J = In×n in (41) and

O(n, 0) = GB,X = {A : AtA = AtIA = I} .

Thus O(n, 0) is the familar group of orthogonal transformations on Rn, traditionally

denoted O(n). This group is a closed and bounded set in matrix space M(n,R) ∼= Rn2

.
!

The Lorentz Group O(n − 1, 1). This is the group of space-time symmetries at the
center of Einstein’s theory of special relativity for n−1 space dimensions x1, . . . , xn−1 and
one time dimension xn which is generally labeled “t” by physicists. For a suitably chosen
basis X in Rn the matrix describing an arbitrary nondegenerate symmetric bilinear form
B of signature (n− 1, 1) becomes

(42) [B]X =

⎛

⎜⎜⎜⎝

1 0
. . .

1
0 −1

⎞

⎟⎟⎟⎠
,

and the associated quadratic form is

B(x, x) = [x]tX[B]X[x]X = x2
1 + . . .+ x2

n−1 − x2
n

Note: The physicists’ version of this is a little different:

B(x, x) = x2
1 + . . .+ x2

n−1 − c2t2 ,

where c is the speed of light. But the numerical value of c depends on the physical units
used to describe it – feet per second, etc – and one can always choose the units of (length)
and (time) to make the experimentally measured speed of light have numerical value
c = 1. For instance we could take t = (seconds) and measure lengths in (light seconds) =
the distance a light ray travels in one second; or, we could measure t in (years) and
lengths in (light years). Either way, the numerical value of the speed of light is c = 1.
!

From (41) it is clear that A is in O(n− 1, 1) if and only if

(43) At

(
In−1 0
0 −1

)
A =

(
In−1 0
0 −1

)
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O(n− 1, 1) contains the subgroup SO(n− 1, 1) = O(n− 1, 1) ∩ SL(n,R) of “proper”
Lorentz transformations, those having determinant +1. Within SO(n − 1, 1) we find a

copy S̃O(n − 1) of the standard orthogonal group SO(n − 1) ⊆ M(n − 1,R), embedded
in M(n,R) via the one-to-one homomorphism

A ∈ S̃O(n− 1) ⊆ M(n− 1,R) -→
(

A 0
0 1

)
∈ SO(n− 1, 1) ⊆ M(n,R) .

The subgroup S̃O(n−1) acts only on the “space coordinates” x1, · · · , xn−1 in Rn, leaving
the time coordinate t = xn fixed.

The following family of matrices in O(n−1, 1) is of particular interest in understanding
the meaning of special relativity.

(44) A =

⎛

⎜⎜⎜⎜⎜⎜⎝

1/
√
1− v2 0 0 −v/

√
1− v2

0 1
. . . 0

...
. . .

...
0 1 0

−v/
√
1− v2 0 · · · 0 1/

√
1− v2

⎞

⎟⎟⎟⎟⎟⎟⎠

When we employ units that make the speed of light c = 1, the parameter v must have
values |v| < 1 to prevent the corner entries in this array from having physically mean-
ingless imaginary values; as v → 1 these entries blow up, so SO(n − 1, 1) is indeed an
unbounded set in matrix space M(n,R).

In special relativity, an event is described by a point (x, t) in space-time Rn−1×R that
specifies the location x and the time t at which the event occurred. Now suppose two
observers are moving through space at constant velocity with respect to one another (no
acceleration as time passes). Each will use his or her own frame of reference in observing
an event to assign space-time coordinates to it. The matrix A in (44) tells us how to
make the (relativistic) transition from the values (x, t) seen by Observer #1 to those
recorded by Observer #2:1 (

x′

t′

)
= A ·

(
x
t

)

2.6. Exercise. Verify that the matrices in (44) all lie in SO(n− 1, 1). Be sure to check
that det(A) = +1.
Note: Show that (41) ⇒ det(A)2 = 1, so det(A) = ±1, and then argue that det(I) = 1
and det(A) is a continuous function of the real-valued parameter −1 < v < +1. !.

2.7. Exercise. Show that

B =

⎛

⎜⎜⎝

cosh(y) 0 0 sinh(y)
0 1 0 0
0 0 1 0

sinh(y) 0 0 cosh(y)

⎞

⎟⎟⎠

is in SO(3, 1) for all y ∈ R. !

A Final Remark about (44). If we work with physical units that do not make c = 1,
as assumed in (44), we must replace “

√
1− v2” everywhere it appears with
√
1− (

v

c
)
2

1To keep things simple, the transition matrix (44) describes what happens when Observer #2 is
moving with velocity v in the positive x1-direction, as seen by Observer #1, so that x′

1
= x1 − vt, x′

2
=

x2, . . . , x
′

n−1
= xn−1. The general formula is more complicated.
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in which the speed of light c appears explicitly !.

Invariance of the Signature for A ∈ O(p, q). One way to compute the signature
would be to find a basis that puts [B]X into the block-diagonal form (39), but how do we
know the signature does not depend on the basis used to compute it? That it does not
is the subject of the next theorem. Proving this amounts to showing that the signature
is a congruence invariant: you cannot transform
(

Ip×p 0

0 −Iq×q

)

to St

(
Ip×p 0

0 −Iq×q

)

S =

(
Ip′×p′ 0

0 −Iq′×q′

)

unless p′ = p and q′ = q. This fact is often referred to as “Sylvesters’s Law of Intertia.”

2.8. Theorem (Sylvester). If A is a nondegenerate real symmetric n×n matrix, then
there is some P ∈ GL(n,R) such that P tAP = diag(1, · · · , 1,−1, · · · ,−1). The number
p of +1 entries and the canonical form (39) are uniquely determined.

Proof: The existence of a diagonalization has already been proved. If B(x,y) =∑
i,j xiAijyj = xtAy is a nondegenerate symmetric bilinear form on Rn, so [B] =

[Aij ] with respect to the standard basis, then there is a basis X such that [B]X =
diag(1, · · · , 1,−1, · · · ,−1). Suppose p = #(entries = +1) for X, and that there is an-
other diagonalizing basis Y such that p′ = #(entries = +1) is ̸= p. We may assume
p < p′. Writing X = {v1, · · · , vp, vp+1, · · · , vn} and Y = {w1, · · · , wp′ , wp′+1, · · · , wn},
define L : V → Rp−p′+n via

L(x) = (B(x, v1), · · · , B(x, vp), B(x, wp′+1), · · · , B(x, wn))

The rank rk(L) of this linear operator is at most dim(Rp−p′+n) = p− p′ + n < n, hence
dim(ker(L)) = dim(V )− rk(L) > 0 and there is some v0 ̸= 0 in V such that L(v0) = 0.
That means

B(v0, vi) = 0 for 1 ≤ i ≤ p and B(v0, wi) = 0 for p′ + 1 ≤ i ≤ n .

Writing v0 in terms of the two bases we have v0 =
∑n

j=1 ajvj =
∑n

k=1 bkwk.
For i ≤ p we get

0 = B(v0, vi) = B(
∑

j

ajvj , vi) =
∑

j

ajB(vj , vi)

=
∑

j

ajδij = ai = aiB(vi, vi) ,

since [B]X = diag(1, · · · , 1,−1, · · · ,−1). But B(vi, vi) > 0 for i ≤ p while B(v0, vi) = 0,
so we conclude that ai = 0 for 0 ≤ i ≤ p. Similarly, bj = 0 for p′ + 1 ≤ j ≤ n.

It follows that ai ̸= 0 for some p′ < i ≤ n, and hence

B(v0, v0) = B(
n∑

j=1

ajvj ,
n∑

ℓ=1

aℓvℓ) =
n∑

j=1

a2jB(vj , vj)

=
n∑

j=p+1

a2jB(vj , vj) < 0 .

Furthermore,

B(v0, v0) = B(
n∑

j=1

bjwj ,
n∑

ℓ=1

bℓwℓ) =
n∑

j=1

b2jB(wj , wj)

=
p′∑

j=1

b2jB(wj , wj) > 0 .
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Thus B(v0, v0) < 0 and B(v0, v0) ≥ 0, which is a contradiction. !

2.9. Corollary. Two non singular symmetric matrices in M(n,R) are congruent via
A → P tAP for some P ∈ GL(n,R) if and only if they have the same signature (p, q).

Let A be a symmetric n × n matrix with entries from a field F not of characteristic
two. We know that there are matrices Q,D ∈ M(n,F) such that Q is invertible and
QtAQ = D is diagonal. We now give a method for computing suitable Q and diagonal
form D via elementary row and column operations; a short additional step then yields
the signature (p, q) when F = R.

The Diagonalization Algorithm. Recall that the effect of an elementary row opera-
tion on A is obtained by right multiplication A -→ AE by a suitable “elementary matrix”
E, as explained in Linear Algebra I Notes, Sections I-1 and IV-2. Furthermore, the same
elementary operation on columns is effected by a left multiplication A -→ EtA using the
same E. If we perform an elementary operation on rows followed by the same elementary
operation on columns, this is effected by

A -→ EtAE

(The order of the operations can be reversed because matrix multiplication is associative.)
Now suppose that Q is an invertible matrix such that QtAQ = D is diagonal. Any

invertible Q is a product of elementary matrices, say Q = E1E2 · · ·Ek, hence

D = QtAQ = Et
kE

t
k−1 · . . . ·Et

1AE1E2 · . . . · Ek

Putting these observations together we get

2.10. Lemma. A sequence of paired elementary row and column operations can trans-
form any real symmetric matrix A into a diagonal matrix D. Furthermore, if E1, · · · , Ek

are the appropriate elementary matrices that yield the necessary row operations (indexed
in the order performed), then QtAQ = D if we take Q = E1E2 · · ·Ek.

2.11. Example. Let A be the symmetric matrix in M(3,R)

A =

⎛

⎝
1 −1 3
−1 2 1
3 1 1

⎞

⎠

We apply the procedure just described to find an invertible matrix Q such that QtAQ = D
is diagonal.

Discussion: We begin by eliminating all of the nonzero entries in the first row and
first column except for the entry a11. To this end we start by performing the column
operation Col(2) → Col(2) + Col(1); this yields a new matrix to which we apply the
same operation on rows, Row(2) → Row(2) +Row(1). These first steps yield

A =

⎛

⎝
1 −1 3
−1 2 1
3 1 1

⎞

⎠ →

⎛

⎝
1 0 3
−1 1 1
3 4 1

⎞

⎠ →

⎛

⎝
1 0 3
0 1 4
3 4 1

⎞

⎠ = Et
1AE1

where

E1 =

⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ .

66



The second round of moves is: Col(3) → Col(3) − 3 · Col(1) followed by Row(3) →
Row(3)− 3 · Row(1), which yields

⎛

⎝
1 0 3
0 1 4
3 4 1

⎞

⎠ →

⎛

⎝
1 0 0
0 1 4
3 4 −8

⎞

⎠ →

⎛

⎝
1 0 0
0 1 4
0 4 −8

⎞

⎠ = Et
2E

t
1AE1E2

where

E2 =

⎛

⎝
1 0 −3
0 1 0
0 0 1

⎞

⎠ .

Finally we achieve a diagonal form by applying Col(3) → Col(3) − 4 · Col(2) and then
the corresponding operation on rows to get

Et
3E

t
2E

t
1AE1E2E3 =

⎛

⎝
1 0 0
0 1 0
0 0 −24

⎞

⎠ where E3 =

⎛

⎝
1 0 0
0 1 −4
0 0 1

⎞

⎠ .

Since the outcome is a diagonal matrix, the process is complete. To summarize: taking

Q = E1E2E3 =

⎛

⎝
1 1 −7
0 1 −4
0 0 1

⎞

⎠ we get a diagonal form D = QtAQ =

⎛

⎝
1 0 0
0 1 0
0 0 −24

⎞

⎠

To obtain the canonical form (39) we need one more pair of operations

Row(3) →
1√
24

·Row(3) and Col(3) →
1√
24

· Col(3) ,

both of which correspond to the (diagonal) elementary matrix

E4 =

⎛

⎝
1 0 0
0 1 0
0 0 1√

24

⎞

⎠ .

The canonical form is

diag(1, 1, 1,−1) = Q̃tAQ̃ where Q̃ = E4 · . . . ·E1 !

This example also shows that the diagonal form of a real symmetric matrix achieved
through congruence transformations A → QtAQ is not unique; both diag(1, 1, 1,−24)
and diag(1, 1, 1,−1) are congruent to A. Only the signature (3, 1) is a true congruence
invariant.

In Section IV-2 of the Linear Algebra I Notes we showed that the inverse A−1 of an
invertible matrix can be obtained multiplying on the left by a sequence of elementary
matrices (or equivalently, by executing the corresponding sequence of elementary row
operations). We also developed the Gauss-Seidel Algorithm does this efficiently.

Gauss-Seidel Algorithm. Starting with the n × 2n augmented matrix
[A : In×n], apply row operations to bring the left-hand block into reduced
echelon form, which must equal In×n since A is invertible. Applying the
same moves to the entire n × 2n augmented matrix we arrive at a matrix
[ In×n : A−1] whose right-hand block is the desired inverse.
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An algorithm similar to Gauss-Seidel yields a matrix Q such that QtAQ = D is
diagnonal; the signature (r, s) can then be determined by inspection as in the last steps
of Example 2.11. The reader should justify the method, illustrated below, for computing
an appropriate Q without recording each elementary matrix separately. Starting with
an augmented n× 2n matrix [A : In×n], we apply paired row and column operations to
drive the left-hand block into diagonal form; but we apply them to the entire augmented
matrix. When the left-hand block achieves diagonal form D the right-hand block in
[D : Qt] is a matrix such that QtAQ = D. The steps are worked out below; we leave
the reader to verify that QtAQ = D.

Details: Starting with Col(2) → Col(2)+Col(1) and then the corresponding operation
on rows, we get

[A : I ] =

⎛

⎝
1 −1 3 1 0 0
−1 2 1 0 1 0
3 1 1 0 0 1

⎞

⎠
paired R/C opns.
−−−−−−−−−−−−−−−→

⎛

⎝
1 0 3 1 0 0
0 1 4 1 1 0
3 4 1 0 0 1

⎞

⎠

paired R/C opns.
−−−−−−−−−−−−−−−→

⎛

⎝
1 0 0 1 0 0
0 1 4 1 1 0
0 4 −8 −3 0 1

⎞

⎠

paired R/C opns.
−−−−−−−−−−−−−−−→

⎛

⎝
1 0 0 1 0 0
0 1 0 1 1 0
0 0 −24 −7 −4 1

⎞

⎠ → [D : Qt]

Therefore,

Qt =

⎛

⎝
1 0 0
1 1 0
−7 −4 1

⎞

⎠ Q =

⎛

⎝
1 1 −7
0 1 −4
0 0 1

⎞

⎠

and a diagonalized form QtAQ is

D =

⎛

⎝
1 0 0
0 1 0
0 0 −24

⎞

⎠

We now turn to the the next type of bilinear form to be analyzed.

Canonical Forms. Case 2: B symmetric, F = C.

In this case there is just one canonical form.

2.12. Theorem (B symmetric; F = C). If B is a nondegenerate, symmetric bilinear
form over F = C there is a basis X such that [B]X = In×n. In coordinates, for this basis
we have

B(x, y) =
n∑

j=1

xjyj (no conjugate, even though F = C) .

Proof: We know (by our discussion of F = R), we can put B in diagonal form [B]X =
diag(λ1, · · · ,λn), with each λi ̸= 0 since B is nondegenerate. Now take square roots in
C and let P = diag(1/

√
λ1, · · · , 1/

√
λn) to get P t[B]XP = In×n. !

There is just one matrix automorphism group, modulo conjugations in GL(n,C). Taking
a basis such that [B]X = I, we get the complex orthogonal group in M(n,C),

O(n,C) = GB,X = {A ∈ M(n,C) : det(A) ̸= 0 and AtA = I}

(Note our use of the transpose At here, not the adjoint A∗ = At, even though F = C. As
a subgroup we have the special orthogonal group over C,

SO(n,C) = O(n,C) ∩ SL(n,C)
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These are closed unbounded subsets in and M(n,C).

2.13. Exercise.

1. Show that SO(2,C) is abelian and isomorphic to the direct product group S1 × R

where S1 = {z ∈ C : |z| = 1} and the product operation is

(z, x) · (z′x′) = (zz′, x+ x′)

2. Show that A ∈ SO(2,C) if and only if

A =

(
a b
−b a

)

with a, b ∈ C and a2 + b2 = 1.

3. Show that SO(2,C) is an unbounded subset in M(2,C), and hence that SO(n,C)
is unbounded in M(n,C) because we may embed SO(2,C) in SO(n,C) via

A ∈ SO(2,C) -→

⎛

⎜⎜⎜⎝

A 0 · 0
0 1 0
...

. . .
0 0 · · · 1

⎞

⎟⎟⎟⎠

if n ≥ 2.

Hints: For (1.) you must produce an explicit bijection Φ : S1 × R → SO(2,C) such that
Φ(q1, q2) = Φ(q1) · Φ(q2) (matrix product of elements in M(2,C)). In (2.), if we write
A = [a, b; c, d] the identities AtA = I = AAt plus det(A) = 1 yield 9 equations in the
complex unknowns a, b, c, d, which reduce to 7 when duplicates are deleted. There is a
lot of redundancy in the remaining system, and it can actually be solved by algebraic
elimination despite its nonlinearity . In (3.) use the sup-norm ∥A∥ = maxi,j{|Aij |} to
discuss bounded sets in matrix space. !

Note: A similar problem was posed in the Linear Algebra I Notes regarding the group
of real matrices SO(3) ⊆ M(3,R) – see Notes, Section VI-5, especially Euler’s Theorem
VI-5.6. The analog for SO(3) of the problem posed above for SO(2,C) is crucial in un-
derstanding the geometric meaning of the corresponding linear operators LA : R3 → R3.
By Euler’s Theorem SO(3) gets identified as the group of all rotations Rℓ,θ : R3 → R3,
by any angle θ about any oriented axis ℓ through the origin. !

2.14. Exercise. Is SO(n,C) a closed subset in M(n,C) ≃ Cn2

? Prove or disprove.
Which scalar matrices λI lie in SO(n,C) or O(n,C)?

Canonical Forms. Case 3: B Antisymmetric; F = R or C.
In the antisymmetric case, the same argument applies whether F = R or C. Note that
B(v, v) = 0 for all v, and if W ⊆ V the B-annihilator W⊥,B = {v : B(v,W ) = 0} need
not be complementary to W . We might even have W⊥,B ⊇ W , although the identity
dim(W ) + dim(W⊥,B) = dim(V ) remains valid.

2.15. Theorem (B antisymmetric; F = R or C). If B is a nondegenerate antisym-
metric form over F = R or C, there is a basis X such that

[B]X = J =

(
0 Im×m

−Im×m 0

)

In particular dimF(V ) must be even if V carries a nondegenerate skew-symmetric bilinear
form.
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Proof: Recall that dim(W ) + dim (W⊥,B) = dim(V ) for any nondegenerate bilinear
form B on V . Fix v1 ̸= 0. Then M1 = (Fv1)⊥,B has dimension n − 1 if dim(V ) = n,
but it includes Fv1 ⊆ (Fv1)⊥,B. Now take any v2 /∈ M1 (so v2 ̸= 0) and scale it
to get B(v1, v2) = −1 . Let M2 = (Fv2)⊥,B; again we have dim(M2) = n − 1 =
dim(M1). But M2 ̸= M1 since v2 ∈ M2 and v2 /∈ M1, so dim(M1 ∩M2) = n − 2. The
space M = M1 ∩ M2 is B-orthogonal to F-span{v1, v2} by definition of these vectors.
Furthermore, B|M is antisymmetric and nondegenerate. [ In fact, we already know that
B(w,w1) = B(w, v2) = 0 and V = Fv1 ⊕ Fv2 ⊕M , so if B(w,M) = 0 for some w ∈ M ,
then B(w, V ) = B(w,Rv1 + Rv2 +M) = 0 and w = 0 by nondegeneracy.] Furthermore,
if N = F-span{v1, v2} we have V = N ⊕M . (Why?)

We can now argue by induction on n = dim(V ): dim(M) must be even and there is
a basis X0 = {v3, · · · , vn} in M such that

[B|M ]X0
=

⎛

⎜⎝
R 0

. . .

0 R

⎞

⎟⎠

with

R =

(
0 1
−1 0

)

Hence, X = {v1, v2} ∪X0 is a basis for V such that

[B]X =

(
R 0

0 [B|M ]
X0

)

=

⎛

⎜⎜⎜⎜⎝

R 0

R
. . .

0 R

⎞

⎟⎟⎟⎟⎠

A single permutation of basis vectors (corresponding to some permutation matrix E such
that Et = E−1) gives the standard form

Et[B]XE = [B]Y =

(
0 Im×m

−Im×m 0

)

where m = 1
2 dim(V ). !

A skew-symmetric nondegenerate form B is called a symplectic structure on V . The
dimension dimF(V ) must be even, and as we saw earlier there is just one such nondegen-
erate structure up to congruence of the representative matrix.

2.16. Definition. The automorphism group Aut(B) of a nondegenerate skew-symmetric
form on V is called a symplectic group. If X is a basis that puts B into standard form,
we have

B(x, y) = [x]tX[B]X[y]X = [x]tXJ [y]X where J =

(
0 Im×m

−Im×m 0

)
.

By (38), elements of Aut(B) are determined by the condition

A is in GX,B ⇔ AtJA = J .

on V ≃ R2m. The corresponding matrix group

Sp(n,F) = GB,X = {A ∈ M(n,F) : AtJA = J}

is the classical symplectic group of degree m = 1
2 dim(V ).
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The related matrix

J ′ =

⎛

⎜⎝
R 0

. . .

0 R

⎞

⎟⎠ with R =

(
0 1
−1 0

)

is a GL-conjugate of J , with J ′ = CJC−1 for some C ∈ GL(2m,R), and the algebraic
condition

AtJ ′A = J ′

determines a subgroup G′ ⊆ GL(n,F) that is conjugate (hence isomorphic to) the matrix
group GB,X = Sp(n,F).

Both versions of the commutation relations determining matrix versions of Aut(B) are
used in the literature.

Note: det(A) ̸= 0 automatically because det(J) = (−1)m ̸= 0. In fact, A ∈ Sp(n,F)
implies det(J) = det(AtJA) ⇒ (det(A))2 = 1, so det(A) = ±1 whether the underlying
field F is R or C. !

The only scalar matrices λI in Sp(n,F) are those such that λ2 = 1. The fact that
det(J) = (−1)m follows because m row transpositions send J → I2m×2m.

IX-3. Sesquilinear Forms (F = C).
Finally we take up sesquilinear forms B : V ×V → C (over complex vector spaces), which
are linear functions of the first entry in B(v, w), but conjugate-linear in the second, so
that B(x,λy) = λB(x, y), B(λx, y) = λB(x, y). There are only a limited number of
possibilities.

3.1. Lemma. A sesquilinear form on V cannot be symmetric or antisymmetric unless
it is zero.

Proof: We know that λB(x, y) = B(λx, y), and if B is (anti-)symmetric this would be
equal to ±B(x,λy) = ±λB(x, y) for all λ ∈ C, x, y ∈ V . This is impossible if B(x, y) ̸= 0.
!

Thus the only natural symmetry properties for sesquilinear forms over C are

1. Hermitian symmetry: B(x, y) = B(y, x)

2. Skew-hermitian symmetry: B(x, y) = −B(y, x).

However, if B is Hermitian then iB (where i =
√
−1) is skew-Hermitian and vice-versa,

so once we analyze Hermitian sesquilinear forms there is nothing new to say about skew-
Hermitian forms.

The sesquilinear forms on V are a vector space over C. Every such form is uniquely
a sum B = BH +BS of a Hermitian and skew-Hermitian form

B(v, w) =
B(v, w) +B(w, v)

2
+

B(v, w) −B(w, v)

2
for all v, w ∈ V

As usual, a sesquilinear form B is determined by its matrix representation relative to a
basis X = {e1, . . . , en} in V , given by

[B]X = [Bij ] where Bij = B(ei, ej) .

Given any basis X, the form B is

1. Nondegenerate if and only if [B]X is nonsingular (nonzero determinant).
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2. Hermitian symmetric if and only if [B]X is self-adjoint (= [B]∗X).

3. The correspondence B -→ [B]X is a C-linear isomorphism between the vector space
of sesquilinear forms on V and matrix space M(n,C).

The change of basis formula is a bit different from that for bilinear forms. If Y = {fj}
is another basis, related to X = {ei} via

fi =
n∑

j=1

sjiej where S = [id]X,Y .

we then have

([B]Y)ij = B(fi, fj) = B(
∑

k

skiek ,
∑

ℓ

sℓjeℓ)

=
∑

k,l

ski sℓj ([B]X)kℓ

= (St[B]XS)ij where S is the complex conjugate matrix: Sij = sij

Letting P = S, we may rewrite the result of this calculation as

(45) [B]Y = P ∗[B]XP

where det(P ) ̸= 0, P ∗ = (P )t. In terms of the transition matrix S between bases, we
have P = S = [id]XY.

Note that P ∗ need not to be equal to P−1, so P need not be a unitary matrix in
M(n,C). Formula (45) differs from that for orthogonal matrices in that P t has been
replaced by P ∗.

3.2. Exercise. If B is sesquilinear, X is a basis in V , and x =
∑

i xiei, y =
∑

j yjej in
V , show that

B(x, y) = [x]tX[B]X[y]
−
X , so that B(x, y) =

∑

ij

xiBijyj . !

3.3. Definition. A non degenerate sesquilinear form is an inner product if

1. Hermitian: B(x, y) = B(y, x);

2. Positive Definite: B(x, x) ≥ 0, ∀x

3. Nondegenerate:: B(x, V ) = (0) ⇔ x = 0.

Conditions 2.+ 3. amount to saying B(x, x) ≥ 0 and B(x, x) = 0 ⇒ x = 0 – i.e. the
form strictly positive definite. This equivalence follows from the polarization identity for
Hermitian sesquilinear forms.

3.4. Lemma (Polartization Identity). If B is a Hermitian sesquilinear form then

B(v, w) =
1
4
[

3∑

k=0

ikB(v + ikw, v + ikw)], where i =
√
−1

Proof: Trivial expansion of the sum. !

If B is a nondegenerate Hermitian sesquilinear form and v ̸= 0 there must be some
w ∈ V such that B(v, w) ̸= 0, but by the polarization identity nondegeneracy of B
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implies that there is some v ̸= 0 such that B(v, v) ̸= 0 (and if B is positive definite it
must be strictly positive definite). If v1 is such a vector and M1 = Rv1, we obviously
have M1 ∩M⊥

1 = (0) because w ∈ M1 ∩M⊥
1 ⇒ w = cv1 and also 0 = (w, v1) = c(v1, v1),

which implies c = 0. The restricted form B|M⊥
1

is again Hermitian symmetric; it is also

nondegenerate because if B(w,M⊥
1 ) = 0 for some nonzero w ∈ M⊥

1 , then B(w, V ) =
B(w,M1 +M⊥

1 ) = (0) too, contrary to nondegeneracy of B on V . So, by an induction
argument there is a basis X = {e1 = v1, e2, · · · , en} in V such that

[B]X =

⎛

⎜⎝
µ1 0

. . .
0 µn

⎞

⎟⎠

where µk ∈ C and µk ̸= 0 (B being non degenerate).
Since B(ei, ej) = B(ej , ei) we get µk = µk, so all entries are real and nonzero. Taking

P = diag(1/
√
|µ1|, · · · , 1/

√
|µn| ), we see that

P ∗[B]XP =

⎛

⎜⎝
±1 0

. . .
0 ±1

⎞

⎟⎠

= [B]Y for some new basis Y; recall the change of basis formula.) Finally apply a
permutation matrix (relabel basis vectors) to get

(46) [B]Y = E∗P ∗[B]XPE =

(
P 0
0 Q

)

where P = Ip×p, Q = −Iq×q, and p+ q = n = dimC(V ). We have proved

3.5. Proposition. Every nondegenerate Hermitian sesquilinear form B can be put into
the canonical form (46) by a suitable choice of basis in V . If x =

∑
i xiei, y =

∑
j yjej

with respect to a basis such that [B]X has canonical form, we get

B(x, y) =
p∑

i=1

xiyi −
n∑

i=p+1

xiyi

In particular, if p = n and q = 0 we obtain the standard inner product (x, y) =
∑n

j=1 xjyj
in Cn when we identify V with Cn using the basis X such that [B]X has the form (46).

There are just n + 1 X-congruence classes of nondegenerate Hermitian sesquilinear
forms on a complex vector space of dimension n; they are distinguished by their signatures
(p, q). The possible automorphism groups

Aut(B) = {T ∈ HomC(V, V ) : det(T ) ̸= 0 and B(T (v), T (w)) = B(v, w) for all v, w}

are best described as matrix groups GB,X with respect to a basis that puts B into
canonical form. This yields the unitary groups of type (p,q). Aut(B) is isomorphic
to the matrix group

(47) U(p, q) = {A ∈ GL(n,C) : A∗JA = J} where J =

(
Ip×p 0

0 −Iq×q

)

There is a slight twist in the correspondence between operators T ∈ Aut(B) and
matrices A ∈ U(p, q).
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3.6. Exercise. Let B be nondegenerate Hermitian sesquilinear and let X = {ei}
be a basis such that [B]X is in canonical form. If [T ]X is the matrix associated with

T ∈ Aut(B), verify that the complex conjugate A = ([T ]X)
−

satisfies the identity (47),

and conversely if A ∈ U(p, q) then A = ([T ]X)
−
for some T ∈ Aut(B). !

Thus the correspondence Φ : T -→ A = ([T ]X)
−

(rather than T -→ A = [T ]X) is a
bijection between Aut(B) and the matrix group U(p, q) ⊆ GL(n,C) such that Φ(T1◦T2) =
Φ(T1) · Φ(T2) (matrix product), and Φ is a group isomorphism between Aut(B) and
U(p, q).

When p = n, we get the classical group of unitary operators on an inner product
space, and when we identify V ≃ Cn via a basis such that [B]X = In×n, we get the group
of unitary matrices in M(n,C),

U(n) = U(n, 0) = {A ∈ GL(n,C) : A∗A = I} (because A∗IA = A∗A)

As a closed subgroup of U(n) we have the special unitary group

SU(n) = U(n) ∩ SL(n,C) ⊆ U(n) .

There are also special unitary group of type (p, q), the matrix groups

SU(p, q) = U(p, q) ∩ SL(n,C) .

For A ∈ U(p, q) the identity (46) implies

det(A∗) · det
(

Ip×p 0
0 −Iq×q

)
· det(A) = (−1)q

so | det(A)|2 = (−1)q (remember: F = C so this could be negative). In particular,
| det(A)|2 = 1 if A ∈ U(n), so det(A) always lies on the unit circle S1 = {z : |z| = 1} in
the complex plane.

We already know that unitary matrices are orthogonally diagonalizable since they
are normal operators (A∗A = AA∗, so A∗A = I ⇔ AA∗ = I). Since ∥Ax∥2 = ∥x∥2 for
all x, all eigenvalues λi have absolute value 1, so the spectrum spC(A) is a subset of the
unit circle S1 = {z ∈ C : |z| = 1} for unitary matrices (or operators). Furthermore,
U(n) contains a copy of the unit circle (which is a group under the usual multiplication
of complex number because |zw| = |z| · |w| and |z| = 1 ⇒ |1/z| = 1); in fact (S1, ·) ∼=
{λIn×n : |λ| = 1}. In SU(n), however, the only scalar matrices are of the form λI where
λ is an nth root of unity, λ = e2πik/n with 0 ≤ k ≤ n.

Notice the parallel between certain groups over F = R and F = C.

1. SO(p, q) and O(p, q) over R are the “real parts” of SU(p, q) and U(p, q). In fact we
have

O(p, q) = U(p, q) ∩ (M(n,R) + i0) .

when we identity M(n,C) = M(n,R)+
√
−1M(n,R) by splitting a complex matrix

A = [zij ] as [xij ] +
√
−1 [yij ] if zij = xij +

√
−1 yij .

2. We also recognize SO(n) and O(n) as the real parts of the complex natrix groups
SO(n,C) and O(n,C), as well as being the real parts of SU(n) and U(n).

3.7. Exercise. Prove that U(n) is a closed bounded subset when we identify M(n,C) ≈
Cn2

; hence it is a compact matrix group. !

3.8. Exercise. If p ̸= n, prove that U(p, q) and SU(p, q) are closed but unbounded
subsets in M(n,C) when q ̸= 0. !
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Notes c⃝ F.P. Greenleaf and S. Marques 2006-2016 LAII-s16-matrixgps.tex version 7/28/2016

Chapter X. Matrix Lie Groups.

X.1. Matrix Groups and Implicit Function Theorem.

The rank of a linear operator T : V → W is dim(range(T )) = dim(V ) − dim(ker(T )). If
X, Y are bases in V, W the rank of T can be determined from the matrix A = [T ]Y,X

as follows. A k × k submatrix is obtained by designating k rows and k columns and
extracting from A the k × k array where these meet. To describe the outcome we must
specify the row indices I = {i1 < · · · < ik} and column indices J = {j1 < · · · < jk}, and
then we might indicate how the submatrix was constructed by writing AIJ . Note that
A itself is not necessarily square; it is n × m if dim(V ) = m, dim(W ) = n.

1.1. Lemma. Given a nonzero n × m matrix A its rank rk(A) is equal to

kmax = max{k ∈ N : A has a nonsingular k × k submatrix AIJ}

Proof: Obviously rk(A) ≥ kmax: if AIJ is nonsingular its columns {C′
j1 , · · · , C′

jk
} are

truncated versions of the corresponding columns {Cj1 , · · · , Cjk
} of A, which forces the

latter to be linearly independent. Hence |J | ≤ kmax ≤ rk(A).
We also have rk(A) ≤ kmax, for if rk(A) = k there is some set of column indices

with |J | = k such that {Cj : i ∈ J} are linearly independent. If B is the n × k matrix
[Cj1 ; · · · ; Cjk

], it is well known that

row rank(B) = column rank(B) ,

so we can find a set I of row indices with |I| = |J | = k such that the rows {Ri(B) : i ∈ I}
are linearly independent. The rows in the n× k matrix B = |Cj1 ; · · · ; Cjk

| are truncated
versions of the corresponding rows in A, and those with row indices in J are precisely
the rows of the k × k submatrix AIJ . Obviously, this submatrix is nonsingular, so
kmax ≥ k = rk(AIJ) = rk(A). !

Note that various choices I, J of row and column indices may yield nonsingular square
submatrices AIJ of maximal size.

Smooth Mappings and their Differentials. Now consider a mapping y =
φ(x) = (φ1(x), . . . ,φn(x)) from Fm → Fn (F = R or C, but mostly R in our discussion).
We say that φ is a C∞ map (or smooth map) if the scalar components φk(x) have
continuous partial derivatives of all orders.

Figure 10.1. A square k × k submatrix AIJ is extracted from an n × m matrix by specifying
row indices I = {i1 < · · · < ik} and column indices J = {j1 < · · · < jk}. The rank rk(A) is
equal to k if AIJ is nonsingular and all nonsingular square submatrices have size r ≤ k
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The Jacobian matrix for φ at base point p is the n × m matrix

(dφ)p =

⎛

⎜⎜⎜⎜⎝

∂y1

∂x1
(p) · · · ∂y1

∂xm
(p)

· ·
· ·
· ·

∂yn

∂x1
(p) · · · ∂yn

∂xm
(p)

⎞

⎟⎟⎟⎟⎠

n×m

whose entries are smooth scalar-valued functions of x ∈ Fm. We will be concerned with
the rank rk(dφ)x of the Jacobian matrix at and near various base point. We assign a
linear operator, the differential of φ at p,

(dφ)p : F
m → F

n such that (dφ)p(v) = (dφ)p · col(v1, . . . , vm)

at each base point in Fm where φ is smooth. The operator (dφ)p is the unique linear
operator Fm → Fn that “closely approximates” the behavior of the (nonlinear) map
φ : Fm → Fn near p, in the sense that

∆φ = φ(p + ∆x) − φ(p) = (dφ)p · (∆x) + E(∆x) ,

in which the “error term” E(∆x) becomes very small compared to ∆x for small incre-
ments away from the base point p:

(48) Error Estimate:
∥E(∆x)∥
∥∆x∥

−→ 0 in F
n as ∥∆x∥ → 0 in F

m.

As a function of the base point p ∈ Fm, the linear operator (matrix) (dφ)p is a C∞ map
from Fm into the matrix space M(n × m, F).

We define the rank of φ at p to be the rank r = rk(dφ)p of its Jacobian matrix. As
above, we have rk(dφ)p = r ⇔ dim(range(dφ)p) ⇔ m − dim(ker(dφ)p) = m − r ⇔ there
are r row indices I = {i1 < · · · < ir} and column indices J = {j1 < · · · < jr}, such that

1. The submatrix (dφp)IJ is non singular, and

2. No larger square submatrix (with k > r) can be nonsingular, so r×r is the maximum
size of any nonsingular square submatrix.

Note the following points:

1. Various choices of I, J may yield nonsingular submatrices (dφ)IJ of maximal size
r × r. The valid choices of I, J may also vary with the base point p.

2. For fixed choices of indices I, J the entries in the r×r matrix (dφx)IJ vary smoothly
with x, and so does the determinant det (dφ)x, so if the determinant is nonzero at
p it must also be nonzero for all x near p. Hence for fixed choice of I, J we have

rk(dφx)IJ ≥ r for all x near p if rk(dφp)IJ = r.

Now let rmax be the largest value rk(dφx) achieves on Fm. If rk(dφ)p = rmax it
follows that rk(dφ)x = rmax (constant rank) on some open neighborhood of p in Fm.
Quite often, as when φ : Fm → Fn has scalar components φ = (φ1(x), . . . ,φn(x))
that are polynomials in x = (x1, · · · , xm), this open set is dense in Fm and its
complement has Lebesgue measure zero – i.e. maximal (constant) rank is achieved
at “almost all” points in Fm.
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Figure 10.2. The projection maps π
J′ , πJ and direct sum decomposition Fm = FJ′

⊕ FJ

associated with a partition of column indices [ 1, m] = J ′ ∪ J, J ′ ∩ J = ∅. Near any base

point p ∈ M this splits the variables in x = (x1, . . . , xm) into two groups so x = (x
J′ , xJ ) with

xJ = (xk1 , . . . , xr ) and x
J′ = (xℓ1 , . . . , xℓs), where r = |J |, s = |J ′|, and r+s = m = dim(Fm).

In our narrative such partitions of variables arise in discussing the rank r = rk(dφ)p of the the
n × m Jacobian matrix [∂fi/∂xj ] of a differentiable map φ : Fm → Fn at points on a typical
level set L(φ = q).

3. For any choice of indices I, J with |I| = |J | = k ≤ min{m, n} define J ′ = [1, m] ∼ J
and let FJ , FJ′ ⊆ Fm be the subspaces

F
J = R-span{ei : i ∈ J}, F

J′

= R-span{ei : i ∈ J ′} ,

where {ei} is the standard basis in Fm. Then Fm splits as a direct sum FJ′ ⊕ FJ ,
and this decomposition determines projections

π
J′ : F

m → F J′

and π
J

: F
m → F

J

onto these subspaces.

Note: By composing φ with translations in Fm and Fn we can assume φ maps the
origin in Fm to the origin in Fn. This will not change rk(dφp), but greatly simplifies the
notation. The following exercise shows that this maneuver does not affect the Jacobian
matrices or their determinants. !

1.2. Exercise. If p ∈ Rm

(a) Consider a translation operator y = φ(x) = (x1+p1, . . . , xm +pm) from Rm → Rm.
Prove that (dφ)p = Im×m at every base point.

(b) Given smooth maps Rm φ−→ Rn ψ−→ Rk and base points p ∈ Rm, q = φ(p) ∈ Rn,
explain why the differential of a composite map ψ ◦ φ : Rm → Rk is the matrix
product of their differentials

d(ψ ◦ φ)p = (dψ)φ(p) · (dφ)p !

Smooth Hypersurfaces and the Implicit Function Theorem. The
Implicit Function Theorem (IFT) concerns itself with level sets

L(φ = q) = {x ∈ F
m : φ(x) = q} ⊆ F

m ,

on which a smooth mapping φ : Fm → Fn has constant (vector) value φ(x) = q ∈ Fn. In
essence, the IFT says that if p lies in a level set L(φ = q), and if (dφ)x has constant rank
= r at and near p, then the locus L(φ = q) can be described locally as a smooth surface
of dimension m − r in Fm. That is to say, near p the level set coincides with the graph

Γ = {(x, f(x) : x ∈ F
m−r} ⊆ F

m = F
m−r × F

r

77



Figure 10.3. Level sets for the map f : R2 → R with f(x, y) = |z2−1|2, identifying z = x+ iy
with (x, y) ∈ R2. If c < 0 the level set Lc = L(f = c) is empty; when c = 0 it consists of three
isolated points z = −1, 0,+1 ; and for c > 0 the locus is usually a smooth curve (perhaps with
more than one connected component, as when 0 < c < 1). But when c = 1 the locus has a
singularity at the origin. It cannot be represented near the origin as the graph of any smooth
function y = h(x) or x = g(y). The origin is a “branch point” for the locus.

of a smooth map f : Fm−r → Fr. The idea is illustrated in the following example (see
also Figure 10.2.) The map y = f(x) is the “implicit function” of the IFT.

1.3. Example. Define φ(z) = |z2 − 1|2 ifor z ∈ C and regard it as a map R2 → R by
identifying z = x+iy ∈ C with x = (x, y) ∈ R2. Then φ becomes a 4th degree polynomial
in x and y,

φ(x, y) = x4 + 2x2y2 + y4 − 2x2 + 2y2 + 1 .

The level sets Lc = L(φ = c) are empty if c < 0; reduce to the isolated points {−1, 0, +1}
if c = 0; and for c > 0 are smooth curves (sometimes with more than one connected
component if 0 < c < 1). However there is one exception. When c = 1 the locus
L(φ = 1), shown in Figure 10.3, has a singularity at the origin. Near z = 0 + i0 it
cannot be described locally as the graph of a smooth function y = h(x) or x = g(y). The
1×2 Jacobian matrix Jφ(z) = [∂φ/∂x(z), ∂φ/∂y(z)] = (dφ)z has rk(dφ)z ≡ 1 (constant)
throughout R2 except at z = 0, z = −1 and z = +1 on the real axis (the “critical points”
where both partial derivatives of f are zero). !

1.4. Exercise. Let φ : R2 → R be the function in Example 1.3

(a) Verify that the Jacobian matrix

(dφ)x = [∂φ
∂x

,
∂φ

∂y
]

has rank zero (both components = 0) if and only if x = (−1, 0), (0, 0), or (+1, 0) in
R2, by solving the system of equations

∂φ

∂x
(x) = 0

∂φ

∂y
(x) = 0

(b) At which points x is one of the derivatives ∂φ/∂x and ∂φ/∂y zero, while the other
is nonzero? Draw pictures of the sets

S1 = {x : ∂φ/∂x = 0 and ∂φ/∂y ̸= 0}
S2 = {x : ∂φ/∂x ̸= 0 and ∂φ/∂y = 0}

78



(c) Verify that rk(dφ)x = 1 at all points of S1 and S2 identified in (b). How are these
points related to the pattern of level curves shown in Figure 10.3?

Note: The point sets in (b) are infinite. !

In discussing the IFT we will discover that a level set Lc = L(φ = c) in Example 1.3
can be described as the graph of a smooth function y = f(x) near any point p on the
locus where ∂φ/∂x(p) ̸= 0, and similarly we can write x = g(y) if ∂φ/∂y(p) ̸= 0. In
Example 1.3, at least one of these condition is satisfied at every base point, except the
origin x = (0, 0), which lies on the locus L(φ = 1), and the points x = (−1, 0) and
(1, 0) which make up the degenerate locus L(φ = 0). Consequently, for c ̸= 0 or 1 the
non-empty level curves Lc = L(φ = c) can be described locally as smooth curves (the
graphs of smooth functions y = f(x) or x = g(y)). Furthermore, Lc can be described
both ways (with y = f(x) or with x = g(y)) near most points p ∈ Lc, but at a few points
only one such description is possible – these are the points on the curves in Figure 10.3
at which Lc has either a horizontal or vertical tangent line.

We will apply the IFT to show that the “classical matrix groups” O(n), SO(n), U(n),

SO(n, C), etc. are actually smooth “hypersurfaces” in matrix space M(n, F) ≃ Fn2

, and
hence have well-defined “dimensions,” “tangent spaces,” etc.

If φ : Fm → Fn is a C∞ map and if rk(dφ)x ≡ r (constant) on some open neighborhood
of p in Fm, the IFT asserts that the level set Sp = {x ∈ Fm : φ(x) = φ(p)} passing
through p can be described near p as a smooth hypersurface of dimension m − r in Fm.
For simplicity we state the result taking F = R, though it remains true almost verbatim
for F = C.

1.5. Theorem (Implicit Function Theorem). Let φ : Rm → Rn be a C∞ map
defined near p ∈ Rm and let M = L(φ = φ(p)) be the level set containing p. Assume
rk(dφ)x ≡ r (constant) for x near p in Rm. Given index sets I = {i1 < · · · < ir} ⊆ [1, n],
J = {j1 < · · · < jr} ⊆ [1, m] such that the square submatrix [(dφ)p]IJ is non singular,

let J ′ = [1, m] ∼ J and let π
J′ ,πJ

be the projections of Rm onto RJ′

, RJ associated with

the decomposition Rm = RJ′ ⊕RJ , in which |J | = r, |J ′| = m− r. Then there is an open
rectangular neighborhood B1 × B2 of p in Rm = RJ′ ⊕ RJ such that

1. On the relatively open neighborhood Up = (B1 ×B2)∩M of p in M , the restriction

π
J′ |Up : Up → B1 of the linear projection π

J′ : Rm → RJ′ ∼= Rm−r is a bicontinuous
bijection between the open set Up ⊆ M and the open set B1 ⊆ Rm−r. It assigns
unique Euclidean coordinates x = (x1, · · · , xm−r) to every point in Up.

2. The inverse map

Ψ = (π
J′ |Up)

−1
: B1 → Up ⊆ R

m

is a C∞ map from the open set B1 ⊆ RJ′

into all of Rm, and maps B1 onto the
relatively open neighborhood Up of p in the level set M .

Then the map f : Rr → Rn obtained by following Ψ with the “horizontal” projection π
I

shown in Figure 10.4
f = πI ◦ Ψ : B1 → B2 ⊆ R

n

is a C∞ map. Furthermore Ψ is the graph map for the smooth function f because

Ψ(x) = (π
J′ (Ψ(x)),π

I
(Ψ(x))) = (x,π

I
◦ Ψ(x)) = (x, f(x)) for x ∈ B1 .

In particular the open neighborhood Up in M is the graph of the C∞ map f : RJ′

→ RI .

Conclusion: Near p the locus M = L(φ = φ(p)) passing through p looks like part of a
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Figure 10.4. A diagram showing the players in the Implicit Function Theorem. Here Sp is
the level set passing through p for a C∞ map φ : Rm → Rn. By splitting coordinates in Rm

into two groups we get a decomposition Rm = RJ′
⊕ RJ and associated projections π

J′ , πJ

from Fm to FJ′
, FJ such that (i) the restriction π

J′ |Up becomes a bijective bicontinuous map

to an open set B1 in RJ′
for a suitably chosen open neighborhood Up of p in Sp, and (ii) the

inverse Ψ = (πJ′
|Up)

−1

: B1 → Up is a C∞ map from the open set B1 ⊆ RJ′
into the entire

Euclidean space Rm in which the level set Sp lives.

smooth hypersurface in Rm of dimension k = m−n. The situation described in the IFT
is shown in Figure 10.4.

A rough general principle is at work here. If φ : Rm → R is a scalar valued C∞

function we often find that the solution set L(φ = c), c ∈ R, is a smooth hypersurface of
dimension m− 1. A level set of a vector valued map φ : Rm → Rn with φ = (φ1, . . . ,φn)
is the intersection of the solution sets for a system of scalar constraint equations

φ1(x) = c1, . . . ,φn(x) = cn

The solution set tends to lose one degree of freedom for each imposed constraint, so
the outcome is usually a smooth hypersurface in Rm of dimension m − n, but that is
not always the case and the point of the IFT is to make clear when it is true. This
principle also suggests why it is often natural to restrict attention to the case m ≥ n, in
which “maximal rank” means rk(dφ)p = n. If the number of constraints n exceeds the
dimension m of the space Rm in which the level set lives, the locus may be degenerate
with solutions at all, or it may reduce to a set of isolated points in Rm. !

The “Maximal Rank” Case: As a particular example, if φ maps Fm → Fn and
m ≥ n, the maximum possible value for the rank of (dφp) is n. If this maximal rank is
achieved at some base point p ∈ Fm, φ will automatically have the same (maximal) rank
at all points x near p in Fm. The maximal rank case is often encountered, but the IFT
is proved in the more general “constant rank” case, in which we do not assume m ≥ n,
or that the “constant rank” is the maximum possible rank of (dφ)p on all of Fm. !

1.6. Exercise. Consider the C∞ map φ : R4 → R2 given by

y = f(x) = φ(x1, x2, x3, x4) = (y1(x), y2(x)) = (x2
1 + x2

2 , x2
3 − x2

4 + x1x4)

(a) Show that the locus M = L(φ = q) can be described as a smooth two-dimensional
hypersurface in R4 near p = (1, 2,−1, 3), at which q = φ(p) = (5,−5). Identify all
pairs of variables xi, xj , (1 ≤ i < j ≤ 4) that can be used to smoothly parametrize
this hypersurface near p
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(b) Is this locus smooth near all of its points?

Hint: In (b), start by showing x4 ̸= 0 for every point x ∈ M , so you can assume x4 ̸= 0
in calculations involving points on this locus, even if you cannot draw a picture. In
answering (b) you will have to compute rk(AIJ ) for various square submatrices of the
2× 4 Jacobian matrix [ ∂yi/∂xj], which has variable coefficients. Do this using symbolic
row operations. !

1.7. Exercise. Consider the C∞ scalar-valued function f : R2 → R,

φ(x, y) = x3y + 2exy

(a) Find all critical points, where both partial derivatives ∂φ/∂x and ∂φ/∂y are zero.

At a critical point p there is no way to represent the level set Sp = L(φ = φ(p)) passing
through p as the graph of a smooth function y = f(x) or x = g(y).

(b) Locate all points p where one of the partial derivatives is zero but the other is not
(two cases to consider). Find the value of φ at each such base point to determine
which level sets L(φ = c), c ∈ R, contain such points.

(c) The locus M = L(φ = 2) obviously contains the horizontal and vertical axes. Prove
that there are no other points on this locus. (Thus the origin is a singularity for
the locus M , and there are no others.)

Hint: In (c): Quadrant-by-quadrant, what is the sign of ∂φ/∂y off of the x- and y-axes?
!

1.8. Exercise. Let y = φ(x) = (y1(x), y2(x)) be a C∞ map from R3 → R2 such that

(i) φ(p) = q = (0, 0) at base point p = (3,−1, 2)

(ii) At p the Jacobian matrix is [∂yi/∂xj] =

(
1 2 1
1 −1 1

)

Answer the following questions without knowing anything more about φ.

(a) Can the level set M = L(φ = q) be described near p = (3,−1, 2) as a smooth
hypersurface in R3? Of What dimension k?

(b) Which of the variables x1, x2, x3 can be legitimately be used to parametrize M near
p = (3,−1, 2) as the graph of a smooth map f : Rk → R3? List all valid choices of
the parametrizing variables xi1 , . . . , xik

. !

1.9. Exercise. If f : Fr → Fs is a C∞ map defined on open set B ⊆ Fr, its graph
Γ = {(x, f(x)) ∈ Fr × Fs : x ∈ B} is the range of the graph map F (x) = (x, f(x))
from Fr → Fr+s Show that the graph map is C∞ for x ∈ B ⊆ Fr and that rk(df)x ≡ r
(constant) for all x ∈ B. !

Smooth Submanifolds in Fm. A space M is locally Euclidean of dimension
d if it can be covered by a family of charts {(xα, Uα) : α in some index set I}, where
xα : Uα → Vα ⊆ Rd is a bicontinuous map from an open subset Uα ⊆ M to an open
set Vα = xα(Uα) in the Euclidean space Rd. The “chart maps” xα assign locally defined

Euclidean coordinates xα(u) = (x(α)
1 (u), . . . , x(α)

k (u)) for u ∈ Uα. Thus M looks locally
like Euclidean coordinate space Rd.

Where the domains of two charts (xα, Uα), (xβ , Uβ) overlap we have the situation
shown in Figure 10.5. The intersection Uα ∩ Uβ is an open set in M , the images Nα =
xα(Uα ∩ Uβ), Nβ = xβ(Uα ∩ Uβ) are open sets in coordinate space Rk, and we have
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Figure 10.5. The coordinate transition maps xα ◦ x−1

β and xβ ◦ x−1
α between two charts

(xα, Uα), (xβ , Uβ) and their (shaded) domains of definition in Rr are shown. Both shaded
domains Nα, Nβ in Rr correspond to the intersection Uα ∩ Uβ of the chart domains, which is
an open set in the locally Euclidean space M .

induced coordinate transition maps that tell us how the coordinates x = xα(u) and
y = xβ(u) assigned to u ∈ M by the chart maps are related. These transition maps

x = (xα ◦ x−1
β )(y) from Nβ → Nα

y = (xβ ◦ x−1
α )(x) from Nα → Nβ

are bicontinuous bijections between the open sets Nα and Nβ in Rk

1.10. Definition. A locally Euclidean space M is a smooth manifold of dimension
dim(M) = d if the charts (Uα, xα) that cover M map it into Rd and are C∞-related, so
the coordinate transition maps are C∞ between the open sets Nα, Nβ ⊆ Rd that correspond
to the (open) intersection Uα ∩ Uβ of chart domains in M .

This allows us to make sense of “smooth manifolds” without requiring that they be
embedded in some surrounding Euclidean space. IT is the starting point for modern
differential geometry.

Once we make M a C∞ manifold by introducing C∞ related covering charts, we can
begin to do Calculus on M . The following concepts now make sense:

1. Given any chart (xα, Uα) on M , a scalar function f : M → F on M becomes a
function of local chart coordinates if we write

y = F (x) = (f ◦ x−1
α )(x) ,

which is defined on the open set Vα = xα(Uα) in coordinate space Fm. We say that
f is a C∞ function on M if y = F (x) has continuous partial derivatives of all
orders, for each of the covering charts that determine the manifold structure of M .

2. A map φ : M → N is a C∞ mapping between manifolds M and N of dimensions
m and n if it becomes a C∞ map from Fm → Fn when described in local coordinates
on M and N . Thus if (xα, Uα) and (yβ , Uβ) are charts on M and N respectively,
the composite y = Φ(x) = yβ ◦ φ ◦ x−1

α (x) is a C∞ map from Fm → Fn wherever it
is well-defined.

3. A parametric curve in M is any continuous map y = γ(t) from some interval
[a, b] ⊆ R into M . It is a C∞-curve in M if it becomes a C∞ vector-valued map

x = (y1(t), . . . , ym(t)) = xα ◦ γ(t) for t ∈ [a, b]
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for every chart (xα, Uα) on M .

1.11. Definition. Suppose M
h−→ N

f−→ R are C∞ maps between C∞ manifolds. In
terms of the preceding definitions, explain why the composite f ◦ h : M → R is a C∞

map wherever it is well-defined.
Hint: If M, N, R are Euclidean coordinate spaces Fm, Fn, Fr this follows by the Chain
Rule of multivariate Calculus. !

Smooth Manifolds and the IFT. One consequence of the IFT is this: If φ
is a C∞ map Rm → Rn and if rk(dφ)x ≡ r (constant) near every point in a level set
M = L(φ = q), q ∈ Rn, we can use the IFT to create a family of C∞-related charts
(xα, Uα) that cover M . The resulting standard C∞ structure makes M into a smooth
r-dimensional manifold. The crucial fact that the charts are C∞-related follows directly
from the way the standard charts are constructed (see Proposition 1.13 below).

1.12. Constructing “Standard Charts” on a Level Set M . The IFT and the
“constant rank” condition allow us to construct a chart (xα, Uα) about a typical base
point p ∈ M .

1. Write φ as v = φ(u) in terms of the standard coordinates u = (u1, . . . , um) and
v = (v1, . . . , vn) in Rm and Rn. By Lemma 1.1 and the “constant rank” condition
we can, for each u ∈ M , choose row and column indices I ⊆ [ 1, n] and J ⊆ [ 1, m]
with |I| = |J | = r = rk(dφ)u such that the square submatrices [∂vi/∂uj(u)]IJ are
nonsingular for u near p in Rm. By Lemma 1.1 this cannot be done for any larger
square submatrix.

2. Using the column indices determined in Step 1, let J ′ = [ 1, m] ∼ J , split Rm =
RJ′ ⊕ RJ and let π

J′ ,πJ
be the projection maps from Rm to RJ′

or RJ . By the
IFT there is a rectangular open neighborhood B1 × B2 of p in Fm such that the
projection

π
J′ : (B1 × B2) → B1

maps the relatively open neighborhood Up = (B1 × B2) ∩ M in M onto the open
set B1 ⊆ RJ′ ∼= Rm−r. To get a chart (xα, Uα) that imposes Euclidean coordinates
on M near p we take Uα = Up and bijective chart map xα = (π

J′ |Up) : Up → B1

(an open set in Rm−r). The charts (xα, Uα) obviously cover M owing to constancy
of rk(dφ) near every point in M .

3. The inverse map Ψ = (π
J′ |Up)

−1
: B1 → Up ⊆ M ⊆ Rm is C∞ from B1 ⊆ RJ′

into
all of Rm, and its range is precisely the chart domain Up. !

We now show that charts created this way, perhaps about different base points, are
always C∞-related wherever the chart domains overlap.

1.13. Proposition. If φ : Rm → Rn is a C∞ map and M = L(φ = q) a level set
such that rk(dφ)x ≡ r (constant) on an open neighborhood of every point in M , then all
standard charts on M obtained by the preceding construction are C∞ related where they
overlap. This determines the standard C∞ structure on M . The dimension of the
resulting C∞ manifold is k = m − r.

Proof: Consider two standard charts (xα, Uα) and (xβ , Uβ) about a typical point p
in Uα ∩ Uβ . The chart (xα, Uα) is determined by a partition of column indices [1, m] =
J ′(α)∪J(α) and a choice of row indices I(α) ⊆ [1, n] with |J(α)| = r and |J ′(α)| = m−r,
such that [(dφ)p]IJ is nonsingular. In the notation of the IFT we then have

Uα = (Bα
1 × Bα

2 ) ∩ M xα = (πJ′(α)|Uα) and Vα = xα(Uα) = Bα
1 ⊆ R

m−r
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The chart map is the restriction to Uα of a linear projection map Rm → RJ′(α) ∼= Rm−r,

xα = (πJ′(α)|Uα) : Uα → Bα
1 ⊆ R

m−r .

Its inverse Ψ = x−1
α is the graph map

Ψα = (πJ′(α)|Uα)
−1

: Vα → Uα ,

which is actually a C∞ map from Bα
1 into all of Rm.

The chart (xβ , Uβ) corresponds to some other choice of column and row indices
[1, m] = J ′(β) ∪ J(β) and I(β) ⊆ [1, n], and a corresponding rectangular open neigh-
borhood Bβ

1 × Bβ
2 of p in Rm. The chart map on Uβ = (Bβ

1 × Bβ
2 ) ∩ M is just the

restriction to Uβ of a linear projection πJ′(β), and by the IFT its inverse is a C∞ map

from Bβ
1 into all of Rm. Therefore the coordinate transition map

xβ ◦ x−1
α = πJ′(β) ◦ (πJ′(α)|Uα)

−1
= πJ′(β) ◦ Ψα

is the composite of a linear map and a C∞ map

R
m−r ∼= R

J′(α)
x−1

α

−−−−→ R
m

xβ

−−−−→ R
J′(β) ∼= R

m−r

and is certainly C∞. Likewise for the transition map in the reverse direction. !

The preceding proof is burdened by the complicated notation needed to label all the
players. Here is a shorter proof that emphasizes the intuition behind the proof.

Alternative Proof of Proposition 1.13: Suppose p is any point in Uα ∩ Uβ and
x0 = xα(p),y0 = xβ(p) in Rm−r. To show y = xβ ◦ x−1

α (x) is C∞ near x0 we observe
that

• Near x0 the chart map x−1
α coincides with the map (πJ′(α)|Uα)

−1
, which by the

IFT is a C∞ map from an open set in Rm−r into all of Rm that sends x0 → p, and
whose range is contained in M .

• Near p the chart map xβ coincides with the globally defined linear projection map
π

J′(β)
, which is certainly C∞.

Therefore the transition map xβ ◦ x−1
α is the composite of a linear map and a C∞ map

R
m−r ∼= R

J′(α) x−1
α−→ R

m xβ−→ R
J′(β) ∼= R

m−r

and is C∞. Likewise for the transition map in the reverse direction. !

1.14. Example. Let φ : R3 → R1 with φ(x) = x2
3 − x2

1 − x2
2. At any p = (x1, x2, x3)

the 1 × 3 Jacobian matrix

(dφ)p = [ ∂φ
∂x1

, · · · ,
∂φ

∂x3
] = [ − 2x1 , −2x2 , 2x3 ]

is just the classical “gradient” vector ∇φ(p). The rank rk(dφ)x is constant ≡ 1 unless
all three entries are zero, which happens only at the origin p = (0, 0, 0). The level set
M0 = L(φ = 0) is the double cone shown in Figure 10.6(b). This two-dimensional
hypersurface has a singularity at the origin in R3, where it fails to be locally Euclidean.
Thus the locus L(φ = 0) cannot be made into a smooth manifold by covering it with
suitably defined coordinate charts. All other level sets Mc (c ̸= 0) are smooth two-
dimensional manifolds; a few of these level surfaces are shown in Figure 10.6(a).
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Figure 10.6. In (a) we show some level sets Lc = L(φ = c) for the map φ(x1, x2, x3) =
x2
3
− x2

2
− x2

1
from R3 → R1. For c = 0 the level set where x2

1
− x2

2
− x2

3
= 0, shown in (b), is

a double cone with a singularity at the origin, where it fails to be locally Euclidean. All other
level sets are smooth two-dimensional hypersurfaces in R3, but the geometry of Lc changes as
we pass from c < 0 to c > 0. For c < 0, we get a single connected surface; for c > 0 there are
two isolated pieces, both smooth.

Consider the possible charts we might impose near the point p = (1, 1,
√

3) on the
particular level set M = L(φ = 1). Entries in (dφ)p

(dφ)p = [−2x1,−2x2, 2x3] = (−2
√

2,−2
√

2, 2
√

3) at p ,

are all nonzero near p, so we have constant rank rk(dφ)x ≡ 1 near p, ]and may apply
the IFT to define standard charts about p. Each nonzero entry in (dφ)p corresponds to
a nonsingular 1 × 1 submatrix, so several legitimate groupings of variables are available
to parametrize M near p:

(49) I = {1}, J = {2, 3} or I = {2}, J = {1, 3} or I = {3}, J = {1, 3}

Thus L(φ = 1) can be described as the graph in R3 of various smooth functions xk =
fk(xi, xj) by solving

1 = φ(x) = x2
3 − x2

2 − x2
1

for one variable in terms of the other two.

1. x1 = f1(x2, x3) = +
√

x2
3 − x2

2 − 1 near (1,
√

3) in the (x2, x3)-plane.

2. x2 = f2(x1, x3) = +
√

x2
3 − x2

1 − 1 near (1,
√

3) in the (x1, x3)-plane.

3. x3 = f3(x1, x2) = +
√

1 + (x2
1 + x2

2) near (1, 1) in the (x1, x2)-plane.

The coordinate transition map (x1, x3) = yβ ◦ x−1
α (x2, x3) can be computed directly by

writing x1 = f1(x2, x3) to get (x1, x3) in terms of (x2, x3). The resulting transition map

(x1, x3) = Φ(x2, x3) = yβ ◦ x−1
α (x2, x3)

= (x1, x3)|x1=f1(x2,x3)

= ( +
√

x2
3 − x2

2 − 1 , x3)

is clearly a C∞ map from (x2, x3) to (x1, x3). So is its inverse. !

1.15. Exercise. In Example 1.14,
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(a) Compute the inverse (x2, x3) = Φ−1(x1, x3).

(b) One of the valid splittings [1, 3] = J ′∪J of column indices listed in (49) is J ′ = {1, 2}
J = {3}. Find an explicit formula for the corresponding projection map (x1, x2) =
π

J′ (x1, x2, x3) that assigns Euclidean coordinates to points x = (x1, x2, x3) on M

near p = (1, 1,
√

3).

(c) Give an explicit formula for the inverse

(x1, x2, x3) = (π
J′ |RJ′ )

−1
(x1, x3)

of the projection map in (b). !

1.16. Exercise. Consider the points

(a) p = (1, 0,
√

2) (b) p = (0, 0,−1)

on the two-dimensional hypersurface M = L(φ = 1) of Example 1.14. In each case
determine all pairs of coordinates x

J′ = (xi, xj) that give a legitimate parametrization
of M near the prescribed base point p. !

1.17. Exercise. Verify that the unit sphere S2 = L(φ = 1) for φ(x) = x2
1 + x2

2 + x2
3 is

a C∞ manifold in R3 by showing that rk(dφ)x ≡ 1 near every point x ∈ S2. !

1.18. Exercise. Describe a set of standard charts covering the unit sphere S2 =
L(φ = 1) where φ(x) = x2

1 + x2
2 + x2

3, taking for your chart domains the relatively open
hemispheres (boundary circles excluded)

U+
k = {x ∈ S2 : xk > 0} U−

k = {x ∈ S2 : xk < 0}

for k = 1, 2, 3. All six hemispheres are required to fully cover S2.
The chart maps x±

k : U±
k → R2 project points x ∈ U±

k onto the open unit disc
x2

1 + x2
3 < 1 in the (x2, x3)-plane when k = 1; project U±

2 onto the open disc in the
(x1, x3)-plane when k = 2; and project onto the disc in the (x1, x2)-plane when k = 3.

(a) Give explicit formulas for the chart maps on the particular domains U+
1 and U−

3 .

(b) Compute the coordinate transition maps in both directions for these two charts,
noting that they have the form (xi, xj) = xα(x) = xα(x1, x2, x3) for x ∈ M .

Note: These are examples of standard charts on the level set L(φ = 1). !

1.19. Exercise (Stereographic Projection). Let H+ be the two-dimensional hyper-
plane in R3 that is tangent to the unit sphere M = S2 at its “north pole” N = (0, 0, +1),
and consider the “punctured sphere” Uα = S2 ∼ {S} obtained by deleting the south pole
S = (0, 0,−1) from the sphere. Each point u ∈ Uα determines a unique straight line in
R3 that passes through S and the point u; continuing along this line, we will meet the
hyperplane H+ in a unique point with coordinates (x(u), y(u), +1). The resulting bijec-
tion Φ+ : Uα → H+ is an example of stereographic projection. Dropping the redundant
coordinate entry “1” we obtain the stereographic projection map xα : Uα → R2,

xα(u) = (x1(u), x2(u)) ∈ R
2

which is is bicontinuous from the open subset U+
α ∈ S2 onto all of coordinate space R2.

Similarly we may stereographically project the punctured sphere Uβ = S2 ∼ {N}
onto the hyperplane H− tangent to the sphere at the south pole S = (0, 0,−1), to define
a second chart map xβ(v) = (x′, y′) ∈ R2 for v ∈ Uβ .
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(a) Give an explicit formula for the stereographic projection map (x1, x2) = xα(u) =
xα(u1, u2, u3). Note carefully that Φ+ maps triples u with u2

1 +u2
2 +u3

3 = 1 to pairs
(x1, x2) ∈ R2.

(b) Compute the coordinate transition map v = xβ ◦x−1
α (u) and its inverse, and check

that it is C∞ where defined. !

Stereographic projection allows us to cover the sphere S2 with just two C∞-related charts,
the minimum number possible since it is well known that S2 cannot be mapped bicon-
tinuously to the plane R2. But for many purposes the covering with hemispheres leads
to simpler computations.
Note: These charts are not of the standard form in Proposition 1.12 but they are C∞-
related to all standard charts (which by 1.13 are C∞-related to each other).
Hint: In (a) use similar triangles, and rotational symmetry of the problem. !

X.2. Matrix Lie Groups.1

The classical groups are the level sets of certain polynomial maps Fm → Fn, except for
the general linear group GL = GL(n, F) = {A ∈ M(n, F) : det(A) ̸= 0}, which is an open

subset in matrix space M(n, F) ≃ Fn2
. This is a smooth manifold and it is covered by

a single chart with chart domain Uα = GL and chart map xα = the identity map of
GL(n, F) → Fn2

, which we shall write as

xα(A) = (A11, . . . , Ain; A21, . . . , A2n; . . . ; An1, . . . , Ann)

in what follows. Obviously dimF(GL) = n2 since GL is an open set in M(n, F). All other

classical groups are closed lower-dimensional subsets in GL(n, F) and in M(n, F) ∼= Fn2

.

2.1. Definition. A smooth manifold G is an abstract Lie group if

1. It is a group under some product operation P : G×G → G and under the inversion
map J : G → G that sends x → x−1.

2. The product operation and inverse operation are both C∞ maps.

In particular if (Uα, xα), (Uβ , yβ) are coordinate charts the product operation becomes a
C∞ map from Fm × Fm → Fm when expressed in these coordinates. Thus if x ∈ Uα,
y ∈ Uβ, and (Uγ , zγ) is a chart containing z = P (x, y) = x · y, the composite map

zγ ◦ P ◦ (x−1
α × y−1

β ) : F
m × F

m → F
n is a C∞ map.

Similarly, if z ∈ Uα and z−1 ∈ Uβ,

xβ ◦ J ◦ x−1
α : F

m → F
m is a C∞ map

The dimension d = dimF(G) is the dimension of the charts that cover G. If F = C, we
regard F ≃ R2 and view G as a real manifold of dimension dimR(G) = 2 · dimC(G), with
charts x̃α : Uα → R2d. !

The general theory of Lie groups has become a vast subject. To keep things simple we
restrict attention to matrix Lie groups, subsets G ⊆ M(n, F) such that G is:

(i) A group under matrix multiplication, as in Definition 2.1.

(ii) A C∞ manifold (smooth hypersurface) in matrix space, as in Definition 1.10.

1That’s pronounced “Lee” Groups. Sophus Lie was a Norwegian mathematician who pioneered the
study of these structures toward the end of the 1800s. Esoteric concepts then, they are ubiquitous in
modern physics and differential geometry.
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The simplest example of a Lie group is G = (Rn, +) with structure given by the single
identity chart (Uα, xα) = (Rn, id). Clearly, the (+) operation is a C∞ map Rn×Rn → Rn,
as is the inverse map J(x) = −x on Rn. But this in not a matrix Lie group because its
elements are not matrices.

The general linear group GL(n, F) is a (noncommutive) matrix Lie group of dimF(G) =
n2. The group operation, expressed in chart coordinates

xα(A) = (A11, . . . , A1n; . . . ; An1, . . . , Ann) ∈ F
n2

,

is a polynomial map of Fn2 → Fn2
with

(AB)ij =
n∑

k=1

AikBkj ,

and inversion is the rational map

A−1 =
1

det(A)
Cof(A)t

This involves the transpose of the cofactor matrix Cof(A), whose entries are polynomials
in the entries of A; det(A) is also a polynomial in the entries of A.

Other matrix Lie groups are level sets in matrix space for various C∞ (polynomial,
actually) maps φ : M(n, F) → Fk with k ≤ n2 = dimF M(n, F). We will soon indicate
why they are all smooth manifolds. To see that they are also Lie groups we prove:

2.2. Theorem. Suppose M is the level set through p for some C∞ map φ : M(n, F) → Fk,
and that rk(dφ)x ≡ r (constant) on some open neighborhood of each p ∈ M . If M is also a
subgroup of GL(n, F) under matrix multiplication, then M is a Lie group in the standard

C∞ structure it inherits as a smooth submanifold in matrix space M(n, F) ≃ Fn2

.

Proof: If a, b ∈ M , let (Uα, xα), (Uβ , xβ) be standard charts about a, b and let (Uγ , zγ)
be a chart about c = ab = P (a, b). By the IFT xγ is the restriction to Uγ of a linear

projection πJ′(γ) from Fn2
to an open set in Fd ∼= F J′(γ). The product map P (a, b) = a ·b

is defined and C∞ on all of matrix space M(n, F) × M(n, F) → M(n, F); and in fact it is
a polynomial map. To verify that it is a C∞ map on the manifold G we must show that

zγ ◦ P ◦ (x−1
α × y−1

β ) : F
d × F

d → F
d = (π

J′(γ)
|Uγ) ◦ P ◦ (x−1

α × y−1
β ) : F

d × F
d → F

d

is C∞, where d = dimF(G) = n2 − r and r = rk(dφ), by breaking this composite into
steps

F
d2 ∼= F

d × F
d

x−1
α ×y−1

β

−−−−−−−−−−→ Uα × Uβ
P−→ Uγ

zγ=πJ′(γ)

−−−−−−−−→ F
d

The matrix product operation P : Fn2×Fn2 → Uγ is defined and C∞ on all of M(n, F). In
particular points near (a, b) map to points near a · b in Uγ ; furthermore P (Uα×Uβ) ⊆ G
because G is a group. The map zγ : Uγ → Fd is the restriction to Uγ ⊆ G of a globally

defined linear projection map π
J′(γ)

: Fn2 → FJ′(γ) ∼= Fd, so it is the restriction to Uγ of
a globally C∞ map. Clearly then,

zγ ◦ P ◦ (x−1
α × y−1

β ) = π
J′(γ)

◦ P ◦ (x−1
α × y−1

β ) : F
d2

→ F
d

is C∞ too. Similarly, the inversion map J : G → G is C∞ when expressed in standard
chart coordinates because J : GL(n, F) → GL(n, F) is a rational function of matrix co-
ordinates. !
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The first example where we really need the Implicit Function Theorem is

2.3. Example. The special linear group G = SL(n, F) has dimension n2 − 1 if F = C.

But if we regard F ∼= R2 and SL(n, C) ⊆ M(n, C) ∼= R2n2
, then dimR(G) = 2n2 − 2.

On the other hand, if F = R we have dimR SL(n, R) = n2 − 1. (Geometrically, we have
SL(n, R) = SL(n, C)∩M(n, R)+ i0 when we identify M(n, C) = M(n, R)+

√
−1M(n, R).)

We will restrict attention is the case F = R.

Discussion: SL(n, R) is the level set L(φ = 1) where φ : Rn2 ∼= M(n, R) → R is
φ(A) = det(A). To see that SL is a smooth manifold in matrix space we must show
that the 1 × n2 Jacobian matrix has rk(dφ)X = 1 near every X ∈ SL(n, R). If we write

coordinates of A as (a11, . . . , a1n; . . . ; an1, . . . , ann) ∈ Rn2

, then

φ = det(A) =
∑

σ∈Sn

sgn(σ) · a1,σ(1) · . . . · an,σ(n) ,

and by the product formula for derivatives we get

∂φ

∂ak,ℓ
=

∑

σ

sgn(σ) · [
n∑

j=1

a1,σ(1) · . . . ·
∂aj,σ(j)

∂ak,ℓ
· . . . · an,σ(n) ]

=
∑

σ:σ(k)=ℓ

sgn(σ) · a1,σ(1) · . . . · âk,ℓ · . . . · an,σ(n)

(Here we use the standard math notation b1 · · · b̂i · · · bn =
∏

j ̸=i bj.) Indeed, ∂aj,σ(j)/∂ak,ℓ =
0 unless (j,σ(j)) = (k, ℓ) which happens if and only if j = k and σ(k) = ℓ, in which case
it is equal to 1. Therefore we have

akℓ
∂φ

∂ak,ℓ
=

∑

σ:σ(k)=ℓ

sgn(σ) · a1,σ(1) · . . . · ak,ℓ · . . . · an,σ(n)

But the 1 × n2 matrix [∂φ/∂akℓ] has rank = 1 (maximal rank) unless all entries are
zero, in which case we get

det(A) =
∑

σ(1)=1

(· · · ) +
∑

σ(1)=2

(· · · ) + . . . +
∑

σ(1)=n

(· · · )

=
∑

σ∈Sn

sgn(σ) · a1,σ(1) · · · an,σ(n) = 0

That contradicts the hypothesis det(A) = 1, and cannot occur. Thus (dφ)X has maximal
rank (= 1) at each point in SL(n, R), and in fact at every point in GL(n, R). !

2.4. Example. The (real) orthogonal groups O(n) and SO(n), for which F = R, both

have dimension 1
2 (n2 − n).

Discussion: Both are closed subgroups of M(n, R). On O(n), det(A) can only achieve
values ±1 (and −1 is actually achieved); the value is +1 precisely on the subgroup SO(n).
The full orthogonal group O(n) consists of two disjoint closed cosets, the subgroup SO(n)
and the coset J · SO(n), where J is any orthogonal matrix with det(J) = −1 such as
J = diag(1, · · · , 1,−1). The coset J ·SO(n) is the set of orientation-reversing orthogonal
maps on Rn, which is not a subgroup in O(n), while SO(n) is the group of invertible
orientation-preserving maps in O(n).

To show O(n) is smooth manifold recall that A ∈ O(n) ⇔ AtA = I ⇔ the rows Ri

are an ON basis in Rn, so (Ri, Rj) = δij (Kronecker delta) for 1 ≤ i, j ≤ n. Eliminating
redundant identities in this list of n2 identities by requiring i ≤ j, we define the map

φ : R
n2 ∼= M(n, R) → R

(n2+n)/2 = R
d
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given by

φ(A) = ((R1, R2), . . . , (R1, Rn); (R2, R2), . . . , (R2, Rn); · · · ; (Rn, Rn)) .

Then O(n) is the level set L(φ = x) where

x = (1, 0, · · · , 0; · · · ; 1, 0 ; 1)

We must show rk(dφ)A = d for all A ∈ M(n, R) near an arbitrary point p ∈ O(n). The
idea is clearly revealed by the case n = 3, where

φ(A) = (
3∑

i=1

a2
1i ,

∑

i

a1ia2i ,
∑

i

a1ia3i ;
∑

i

a2
2i ,

∑

i

a2ia3i ;
∑

i

a2
3i)

Writing x = (a11, a12, a13; a22, a23; a33) we have

[ ∂φi

∂aij
] =

⎛

⎜⎜⎜⎜⎜⎜⎝

2a11 2a12 2a13 0 0 0 0 0 0
a21 a22 a23 a11 a12 a13 0 0 0
a31 a32 a33 0 0 0 a11 a12 a13

0 0 0 2a21 2a22 2a23 0 0 0
0 0 0 a31 a32 a33 a21 a22 a23

0 0 0 0 0 0 2a31 2a32 2a333

⎞

⎟⎟⎟⎟⎟⎟⎠

6×9

Recall that row rank and column rank of any matrix are equal. Symbolic row/column op-

erations show that the row rank rk(dφ)A of this matrix is 6 = 1
2 (n2 +n), so dimR O(3) =

dimR SO(3) = 9 − 6 = 3 (see next exercise for hints on this calculation). !

2.5. Exercise. Verify that the row rank of the matrix above is 6, at every A ∈ O(3).
Note: The row rank is equal to the number of linearly independent rows. But rk(dφ)A

is always less than or equal to 6, so the rank must in fact be ≡ 6 (constant) in a neigh-
borhood of every A ∈ O(3).
Hint: The original rows and columns of A are independent so we can transform A → I3×3

by column operations. If we scale the first row of (dφ)A by 1
2 the matrix A appears as

a 3 × 3 submatrix in the upper left corner, with zeros below it. What happens if you
apply the same column operations that worked for A to the full Jacobian matrix? Etc.
(In later steps you may have to use both row and column operations.) !

All the classical groups mentioned in the previous section can be shown to be smooth
closed manifolds over F = R; we will not do that here. However, if G ⊆ M(n, C) we

should identify C ∼= R2 and M(n, C) ∼= R2n2

in discussing G as a real submanifold. For
example SU(2) is ⊆ M(2, C) but dimR SU(2) = 3, so there is no way complex coordinate
charts xα : Uα → Cn can be introduced into SU(2) (or SU(n) for that matter). The

classical groups are generally viewed as smooth hypersurfaces in Rn2
or R2n2

, even if they
are defined as subsets of M(n, C). However, a few actually are complex manifolds. For
instance, dimC GL(n, C) = n2 and dimC SL(n, C) = n2−1, although these groups can also
be regarded as real manifolds with dimR = 2n2 or 2n2−2. Other examples of intrinsically
complex matrix Lie groups are O(n, C) and SO(n, C) which have dimC = 1

2 (n2 − n).

2.6. Exercise. Prove that the matrix group

G = U(2) = {A ∈ M(2, C) : A∗A = I}

is a smooth hypersurface of dimension dimR(G) = 4 when we identify M(2, C) ∼= C4 ∼= R8

via the correspondence that sends A ∈ U(2),

A =

(
z11 z12

z21 z22

)
with zij = xij +

√
−1 yij , (xij , yij ∈ R) ,
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to the real 8-tuple x = (x11, . . . , x44; y11, . . . , y44) in R8 (see next exercise for further
comments).
Hint: Write the identities implied by A∗A = I2×2 as a system of several scalar equations
in the variables x ∈ R8, deleting any that are redundant. Define a C∞ map φ : R8 →
Rk has constant rank on and near U(2). (What is the appropriate value of k in this
situation?)
Note: SU(2) cannot be a smooth complex manifold even though it is carved out of
complex matrix space M(2, C), because dimR SU(2) = 4 − 1 = 3. !

Observe that dimR SO(3) = 3 is also the real dimension of SU(2). This coincidence is no
accident because there is a two-to-one homomorphism mapping SU(2) onto the Euclidean
rotation group SO(3). This “double covering” of SO(3) has profound implications in
quantum mechanics.

In the previous exercise you were asked to show that the polynomial map φ : R8 → Rk

that identifies M = U(2) as a (real) hypersurface of dimension d = 8− r in R8 ∼= M(2, C)
if rk(dφ)A ≡ r (constant) at all points of M . In the next exercise you are asked to find
valid choices of d coordinates xi1 , . . . , xid

from x1, . . . , x8 that parametrize M near p. As
in the IFT, given a base point g ∈ M you must find a partition of coordinate indices
[1, 8] = J ∪ J ′ such that the restriction (πJ′ |M) : M → RJ′

is an admissible coordinate
chart near g.

2.7. Exercise. Consider the identity element g = e = I2×2 in G = U(2).

1. Produce a partition of [ 1, 8] = J ′ ∪ J such that the projection πJ′ : R8 → RJ′

restricts to SU(2) to give a standard chart defined near the identity I2×2.

This will show that dimR(M) = |J ′| = 3.

2. Determine all partitions [1, 8] = J ′ ∪ J that produce admissible chart maps near
the identity in SU(2).

3. Produce an explicit partition [ 1, 8] = J ′ ∪ J with |J ′| = 3 that does not yield valid
coordinates describing SU(2) near the identity element I. !

2.8. Exercise. Perform the calculations outlined in the previous exercise for the group
G = SO(3), identifying the matrix A = [aij ] with the vector

x = (x1, · · · , x9) = (a11, · · · , a13; · · · ; a31, · · · , a33) ∈ R
9 . !

2.9. Exercise. We have already shown that G = SL(n, R) is a hypersurface in M(n, R)
with dimR(G) = n2−1. Taking n = 3 and identifying matrices A ∈ M(3, R) with vectors
x = (a11, a12, a13; · · · ; a31, a32, a33) ∈ R9,

1. Exhibit a partition [1, 9] = J ′ ∪J such that the projection (π
J′ |G) : G → RJ′ ∼= R8

yields a standard chart on SL(3, R) near the identity element I.

2. Does every choice J ′ = {1 ≤ i1 < · · · < i8 ≤ 9} of eight matrix entries (out of 9)
yield a standard coordinate chart about the identity element I3×3 in G? If not,
exhibit a choice for which this fails.

3. Repeat (1.) taking A =

(
2 3

0 1
2

)
as the base point in SL(3, R). !

The need for detailed matrix calculations of this sort can sometimes be avoided by
appeal to a theorem of Elie Cartan.

2.10. Theorem (E. Cartan). Every closed subgroup G ⊆ M(n, R) can be covered with
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C∞-related charts (xα, Uα) with values in some Rd that make it into a real Lie group.

No hypothesis is made here that G is a level set for some C∞ map φ : Rm → Rn; and
even if G happens to be a level set of this kind, there is no need to investigate its rank
on G. The subgroup G could even be a closed discrete subgroup (a zero-dimensional Lie
group consisting of isolated points in matrix space) such as G = Z ⊆ R, or

SL(n, Z) = {A ∈ M(n, R) : det(A) = +1 and all entries aij are integers} ,

for which differentiability considerations are irrelevant.

Translations and Automorphisms on Matrix Lie Groups.

There are some obvious remarks to be made about any matrix Lie group G. If g ∈ G we
can define left and right translation operators λx, ρx : G → G, letting

λx(g) = x · g and ρx(g) = g · x .

These are continuous and invertible maps with the properties

λe = idG λx·y = λx ◦ λy λx−1 = (λx)
−1

,

and likewise for right translations, except that

ρx·y = ρy ◦ ρx

They are invertible bicontinuous maps when G is given the obvious metric it inherits from
the surrounding space M(n, F). Furthermore, all these maps are diffeomorphisms:
when λx or ρx are described in terms of chart coordinates they (and their inverses)
become C∞ maps of Rd → Rd, where d = dimR(G).

The action of an element g ∈ G by conjugation yields an inner automorphism of
the group,

ig(x) = gxg−1 for all x ∈ G .

This is a diffeomorphisms of G → G because ig = λg ◦ ρ−1
g is a composite of C∞ maps.

(Note that λx, ρy commute for all x, y ∈ G.) Its inverse is the inner automorphism

(ig)
−1

= ig−1 , and the correspondence g 4→ ig is a homomorphism from G into the full
group Aut(G) of automorphisms of G, because

ie = idG and ig1g2 = ig1 ◦ ig2

If G ̸= GL(n, R) is a matrix Lie group its C∞ structure is obtained by identifying

G ⊆ M(n, R) ∼= Rn2
and then covering G with standard charts (xα, Uα) constructed via

the IFT, where Uα is an open subset in G and xα is a bicontinuous map from Uα to the
open set Vα = xα(Uα) in coordinate space Rd. As in the IFT, the chart maps xα are

just restrictions to G of various projection maps π
J′ : Rn2

→ RJ′

corresponding to some

splitting Rn2

= RJ ⊕RJ′

with |J ′| = d. Because of the way standard charts are defined,
it is not hard to verify that a C∞ map ψ : Rk → M(n, R) whose range happens to lie
within the set G ⊆ M(n, R), is automatically a C∞ map ψ : Rk → G when G is given its
standard structure as a real C∞ manifold.

2.11. Exercise. Left translations λx are obviously bijective maps on G. Prove that
they are C∞ maps for the standard C∞ structure on G. Thus if if (xα, Uα), (yβ, Uβ)
are standard charts about a point p ∈ G and its image λx(g) = x · p, explain why λx

becomes a C∞ map Fd → Fd when described in local chart coordinates – i.e. why is the
coordinate map

y = Φ(x) = yβ ◦ λx ◦ x−1
α (x)
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a C∞ map Fd → Fd wherever it is well-defined?
Note: Since (λx)−1 = λx−1 is also a translation, λx is a C∞ diffeomorphism of G. Likewise
for right translations ρx. !

2.12. Lemma. Let G be a matrix Lie group in M(n, R) and f : Rk → M(n, R) ∼= Rn2
a

C∞ map. If G is given the standard C∞ structure as a smooth real hypersurface and if
range(ψ) ⊆ G, then f : Rk → G is automatically a C∞ map – i.e. if x0 ∈ Rk, p0 = ψ(x0)
and if (xα, Uα) is a standard chart on G about p0, then

xα ◦ ψ : R
k → R

d

is a C∞ map between Euclidean spaces.

X.3. The Exponential Map Exp : M(n, R) → GL(n, R).
The matrix groups above were all described as smooth d-dimensional hypersurfaces M
embedded in some Euclidean space Rm with m ≥ d. At each base point p ∈ M there is
a well-defined d-dimensional tangent space TMp, a translate TMp = p + Ep of some
d-dimensional vector subspace Ep ⊆ Rm (see Figure 10.7). It is an almost universal
convention to indicate tangent vectors in TMp by capital roman letters X, Y, ..., or by
Xp, Yp, ... when it is necessary to indicate the base point.

The tangent hyperplane TMp itself is not itself a vector subspace in matrix space
(for one thing, it does not contain the zero element), but we may nevertheless define
vector space operations on tangent vectors attached to the same base point p, and think
of TMp = p + Ep as a vector space, by referring everything back to Ep by translation.

(50)

Vector Operations in TMp. Given tangent vectors X1, X2 in TMp form
their sum X1 + X2 in TMp by

(i) Subtracting p from each to get actual vectors vk = Xk − p in Ep, then
add these to get v1 + v2 in Ep where (+) makes sense.

(ii) Then move the result back into the tangent space to get X1 + X2 =
p + (v1 + v2) in TMp.

Scalar multiples λ·X = p+(λ ·v) in TMp are defined similarly. Note carefully
that there is no natural way to define the sum of two tangent vectors attached
to different base points p ̸= q in M .

Equipped with these operations the tangent hyperplane TMp becomes a vector space
isomorphic to Ep under the bijection v 4→ v + p, v ∈ Ep.

To carry out calculations with tangent vectors we shall exploit the close connection
between derivatives of smooth curves in Rm passing through p and tangent vectors in
TMp. A parametric curve in E = Rm is a continuous map γ : [a, b] → Rm, and if {ej} is
the standard basis in Rm we may describe γ by writing

γ(t) =
m∑

j=1

xj(t) ej .

This is a C∞ curve if the scalar components xj(t) are smooth functions.
Note: When E = Cm a parametric curve takes the form

γ(t) =
m∑

j=1

zj(t) ej with complex coefficients zj(t) = xj(t) +
√
−1 yj(t) ,
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Figure 10.7. The tangent hyperplane TMp to a smooth d-dimensional hypersurface in Eu-
clidean space Rm is made up of vectors p + v attached to the base point p, where v lies in a
certain vector subspace Ep passing through the origin in Rm. Vector space operations are intro-
duced into the tangent space by parallel transport between vectors X = p +v ∈ TMp = p +Ep

and v ∈ Ep, which actually is a vector subspace of Rm.

and γ(t) is a C∞ curve if the real and imaginary parts xj , yj : [a, b] → R are real-valued
C∞ functions. In this situation the vector derivative takes the form

γ′(t) =
m∑

j=1

dzj

dt
ej =

m∑

j=1

(dxj

dt
+
√
−1

dyj

dt
) ej !

3.1. Definition. Let M be any smooth d-dimensional manifold embedded in Euclidean
space Rm and consider any C∞ curve γ(t)

∑m
j=1 xj(t) ej in Rm that remains in M for

all t. By Lemma 2.12, γ is a C∞ map from R into M equipped with its standard C∞

structure, so if (xα, Uα) is a standard chart on M the map xα ◦γ(t) is differentiable from
R → Rd.

Any C∞ curve γ(t) with values in Rm is differentiable, with vector derivative

γ′(t0) =
dγ

dt
(t0) = lim

∆t→0

γ(t0 + ∆t) − γ(t0)

∆t
=

dx1

dt
e1 + . . . +

dxm

dt
em

(limit computed in Rm) for all a < t0 < b. Moreover, if γ(t) remains in M for all t and
passes through p when t = t0, then the vector derivative γ′(t0) must lie in the hyperplane
tangent to M at p. Therefore γ′(t0) is an element of the tangent space TMp, and in fact
every tangent vector at p arises this way, as the vector derivative of a smooth curve in
M passing through p.

In discussing tangent vectors to smooth curves we may as well assume t0 = 0 because
we can always reparametrize γ via γ(t) → γ̃(t) = γ(t − t0) to make γ(0) = p without
changing the tangent vector at p.

Lie Algebra of a Matrix Lie Group. If M is a smooth hypersurface in
Euclidean space Rm the tangent space TMp at p ∈ M acquires a vector space structure
as explained in (50). But if the hypersurface is a matrix Lie group G, the tangent
space TGe at the identity element acquires additional algebraic structure, induced by
the algebraic operations in G itself, and becomes a Lie algebra.

3.2. Definition. An abstract Lie algebra over F is a vector space V over F equipped
with a bracket operation B(X, Y ) = [X, Y ] that is:
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1. Bilinear. B(X, Y ) = [X, Y ] is bilinear map from V × V → V (linear in each
entry when the other is held fixed).

2. Antisymmetric. [X, Y ] = −[Y, X ] for all X, Y ∈ V, so [X, X ] = 0 for all X.

3. Jacobi Identity. [X, [Y, Z]] + [Y, [Z, X ]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ V .

A concrete example is provided by the imposing the “commutator operation” [X, Y ] =
XY − Y X on the algebra of n × n matrices over any field F; it measures the degree to
which X and Y fail to commute.

3.3. Exercise. Verify that the Jacobi identity in Definition 3.2 holds if we take [X, Y ] =
XY − Y X for X, Y in the matrix algebra M(n, F) !

Similarly, the space HomF(V, V ) of F-linear operators on a vector space is an associative
algebra over F if we take composition of operators S◦T as its multiplication operation. It
becomes a Lie algebra when equipped with the commutator operation [S, T ] = S◦T−T ◦S.
(No surprise here: If dimF(V ) = n and X is a basis in V , the correspondence T 4→ [T ]X
is a natural isomorphism HomF(V, V ) ∼= M(n, F) of associative algebras, which sends
commutators to commutators.)

If G is a matrix Lie group there is a natural bracket operation [X, Y ] that makes the
tangent space at the identity TGe a Lie algebra – the Lie algebra of G – which will
hereafter be denoted by the German “fraktur” letter g instead of TGe. But it is not
immediately apparent how the multiplication operation (·) in G induces such a bracket
operation in g. The key is to get a handle on tangent vectors X ∈ g by realizing them as
vector derivatives γ′(0) of various C∞ curves γ(t) that pass through the group identity
p = e when t = 0,

Xp = γ′(0) =
d

dt
{γ(t)}|

t=0

To pursue this we need some basic facts about derivatives of algebraic combinations
of smooth curves in matrix space.

3.4. Lemma. If γ, η : R → M(n, F) are C∞ curves defined for a < t < b, then

(i) Sum Rule:
d

dt
{γ(t) + η(t)} =

d

dt
{γ(t)} +

d

dt
{η(t)}

(ii) Product Rule: The matrix product γ(t) · η(t) has derivative

d

dt
{γ(t) · η(t)} =

dγ

dt
· η(t) + γ(t) ·

dη

dt

for all t.

Proof: Item (1.) is trivial. For (2.) write the appropriate difference quotients as

γ(t + ∆t) · η(t + ∆t) − γ(t) · η(t)
∆t

=
γ(t + ∆t) · η(t + ∆t) − γ(t) · η(t + ∆t)

∆t
+
γ(t) · η(t + ∆t) − γ(t) · η(t)

∆t
→ γ′(t) · η(t) + γ(t) · η′(t) as t → 0 ,

because the product operation is jointly continuous, with γ(s) · η(t) → γ(0) · η(0) as
s, t → 0 independently. !

This yields an intrinsic description of the vector space operations in the tangent space
at the identity element of a matrix Lie group.

3.5. Lemma. The Lie algebra g = TGe of a matrix Lie group is a vector space over R.
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Proof: If c ∈ R and γ(t) a smooth curve passing through g when t = 0, and if γ′(0) =
X ∈ g, then η(t) = γ(ct) is also smooth, with

d

dt
{η(t)} = c ·

dγ

dt

Hence η′(0) = c · X is in g = TGe if X ∈ g.
If γ, η have γ′(0) = X , η′(0) = Y in g then Φ(t) = γ(t) · g−1 · η(t) is a C∞ map with

Φ(0) = gg−1g = g, and by Lemma 3.4 we get

Φ′(0) = γ′(0) · g−1η(0) + γ(0)g−1 · η′(0) = X + Y ∈ g

since γ(0) = η(0) = g. !

3.6. Exercise. If γ : R → GL(n, F) is a C∞ matrix-valued curve that passes through
I = In×n when t = 0, prove that

(a) For sufficiently small values of t the curve

η(t) = (γ(t))
−1

(inverse of γ(t) in M(n, F))

is a C∞ curve with η(0) = I and η′(0) = −γ′(0).

(b) For fixed g ∈ GL(n, F), η(t) = λg(γ(t)) = g ·γ(t) is a C∞ curve with η(0) = g and
vector derivative η′(t) = g ·γ′(t) for all t ∈ R.

Note: In (a), γ(0) = I ⇒ det(γ(0)) = 1; by continuity, det(γ(t)) ̸= 0 for all t near zero,
so γ(t)−1 exists. Furthermore, since γ : R → M(n, F) is a C∞ map, as are t 4→ det(γ(t))
and t 4→ det(η(t)) = 1/ det(γ(t)) for small values of t. It follows that γ(t)−1 is a C∞

matrix-valued map for small values of t. !

3.7. Lemma. The similarity transformation ig : X → gXg−1 leaves g = TGe invariant
for every g ∈ G.

Proof: If X ∈ g and γ is a C∞ curve such that γ(0) = e and γ′(0) = X , then
η(t) = gγ(t)g−1 is a smooth curve with η(0) = e because products and inverses in
G are C∞ operations. By Lemma 3.4 we have η′(t) = gγ′(t)g−1 = gXg−1. !

Next, we observe that the tangent space TGg to a matrix Lie group at a base point
g ∈ G is a left translate (by λg) of the tangent space TGe = g.

3.8. Lemma. If g ∈ G the tangent space to G at g is

TGg = λg(g) = {g ·X : X ∈ g} (matrix product in M(n, F)) .

Proof: For x ∈ G the left/right translation operations λg(x) = gx and ρg(x) = xg are
both bijective C∞ maps on G with C∞ inverses, so they are C∞ diffeomorphisms of the
Lie group.

If γ(t) is a C∞ curve in G with γ(0) = e and γ′(0) = X ∈ g, then η(t) = λg(γ(t)) =
g · γ(t) is a C∞ curve with values in G that passes through η(0) = g. Furthermore,
η′(0) = g · γ′(0) = g · X , and as noted earlier X = γ′(0) is a typical tangent vector to G
at e. Conversely any Y ∈ TGg is obtained in this way, for if Y = η′(0) for some smooth
curve η passing through g when t = 0, then γ(t) = λ−1

g · (η(t)) passes through γ(0) = e
and X = γ′(0) = g−1 ·η(0) = g−1 ·Y is in g with λg(X) = Y . !

This transfer of tangent vectors between base points in G is illustrated in Figure 10.8.
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In view of Lemma 3.8, any tangent vector X ∈ TGe at the identity element extends
uniquely by left translations to a “field of tangent vectors” X̃ defined everywhere on G,

(51) X̃g = λg(X) = g ·X for g ∈ G.

We could also shift vectors X ∈ g by right translation X 4→ X · g = ρg(X), but unless G
is commutative this does not produce the same field of tangent vectors as left translation.
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 10.8. INSERT NEW CAPTION.

NOTE: A block of text about extending X ∈ g to all of GL has been stored
at EOF under heading ”Fields on GL vs fields on G” Use it later on.

xxxxxxx ARCHIVED BLK: Fields on GL vs fields on G -¿ ARCHIVE xxxxxxxxxxxxxx

3.9. Definition (Smooth Vector Fields on G). A map X̃ : G → M(n, F) that assigns
a tangent vector X̃g ∈ TGg to each base point g ∈ G is a vector field on G. It is a

smooth vector field if the matrix elements in [(X̃g)ij ] are C∞ scalar valued functions

when described in local chart coordinates on G – i.e. if X̃ij ◦ x−1
α : Rd → R is a C∞

function on coordinate space Rd (d = dim G), for every standard chart (xα, Uα) on G.
A left-invariant vector field on G is one such that

X̃gh = λg(X̃h) = g ·Xh for all g, h ∈ G .

There are many smooth vector fields on G, but a left-invariant field is completely de-
termined by its value X̃e = X ∈ g at the identity element in G, because X̃g = X̃ge =
λg(X̃e) = λg(X) in TGg. Thus there is a bijective correspondence between elements

X ∈ g and the space of left-invariant vector fields X̃g on G.

The fields X̃ defined in (51) are typical left-invariant fields of vactors on G; they are also
smooth vector fields as in Definition 3.10.

3.10. Exercise. If G is a matrix Lie group and X ∈ g = TGe, prove that the vector field
X̃g defined in (51) is smooth. Thus if X̃g = [Xij(g)] in TGg ⊆ M(n, F) and if (xα, Uα) is
one of the standard charts covering G, show that the matrix coefficients Xij(g) become
C∞ scalar-valued functions

Xij ◦ x−1
α = (λg(X))ij ◦ x−1

α = (g ·X)ij ◦ x−1
α
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from Rd → R for 1 ≤ i, j ≤ n.
Hint: X and g are both matrices in M(n, F) and so is their product. !

We now show how the tangent space space g = TGe acquires a Lie algebra structure.

3.11. Proposition (Lie Algebra Property). If G is a matrix Lie group in M(n, F)
its tangent space at the identity g = TGe is closed under formation of commutators in
M(n, F),

(52) X, Y ∈ g ⇒ [X, Y ] = XY − Y X is also in g ,

so g is a Lie subalgebra in M(n.F).

Note: Vector fields on G have values Xg ∈ TGg ⊆ M(n, F). The products XY and Y X
of fields appearing in (52) are defined pointwise, as products of their matrix values – i.e.
(XY )g = Xg ·Yg (matrix product), etc. It is worth noting that the individual products
(XY )g and (Y X)g need not lie in the tangent space TMg, but their commutator [X, Y ]g
is always an element of TMg. !

SOMETHING THAT NEEDS TO BE RESOLVED: Is [X, Y ]g = λg([X, Y ])
actually equal to [Xg, Yg] = XgYg − YgXg (commutator of of matrices in
TGg ⊆ M(n, F) ??

Proof: Let γ(t), η(t) be C∞ curves in G that pass through e when t = 0 and have vector
derivatives γ′(0) = X, η′(0) = Y in g. For s, t ∈ R let f(t) = γ(s)η(t)γ(s)−1 (product
of elements in G). Then f is C∞, f(0) = e, and f(t) remains within G for all t (and s)
because G is a group, so f ′(0) is in the Lie algebra g. But we also have

f ′(0) =
d

dt
{γ(t)}|

t=0
=

∂

∂t
{γ(s)η(t)γ(s)−1}|

t=0

= iγ(s)Y γ(s)−1

for all s near 0. Hence γ(s) · TGe · γ(s)−1 ⊆ TGe for all s, and then

∂

∂s
{γ(s)Y γ(s)−1}|

s=0
= γ′(0)Y γ(0)−1 + γ(0)Y

d

ds
{γ(s)−1}|

s=0

= γ′(0)Y γ(0)−1 + γ(0)Y · (−γ′(0))

= XY − Y X = [X, Y ] (commutator in M(n, R))

as required to show [g, g] ⊆ g. !

Note: Another way to say this is:

(53) [X, Y ] =
∂2

∂s ∂t
{γ(s)η(t)γ(s)−1}|

s=t=0
.

Lie Algebras of Classical Groups. We now compute some examples by deter-
mining which matrices in M(n, R) appear in g. When G = GL(n, F) there is nothing to
do: because GL(n, F) is an open set in matrix space, gl(n, F) is all of M(n, F) for F = R

or C.

3.12. Example. If G = SL(n, F) then sl(n, F) = {X ∈ M(n, F) : Tr(X) = 0}, which has
dimF(sl) = n2 − 1.

Discussion: Let φ(t) be a C∞ curve in G with φ(0) = In×n and φ′(0) = X in the Lie
algebra g. Then by definition of SL

1 ≡ det (φ(t)) =
∑

π∈Sn

sgn(π) ·
n∏

j=1

φ(t)j,π(j) for all t,
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which by the Product Rule implies

0 =
d

dt
{φ(t)} =

∑

π∈Sn

sgn(π) · (
n∑

k=1

φ(t)1,π(1) · . . . · φ′(t)k,π(k) · . . . · φn,π(n)(t)) .

Setting t = 0 we have φ(0) = In×n. Therefore, for j ̸= k the jth term in (
∑n

k=1 · · · ) is
zero unless unless π(j) = j; but then when j = k we must have π(k) = k too, so π = id
in Sn. We conclude that the entire sum over k is zero, except for the term corresponding
to π = id in the outer sum over Sn. Then, since φ′(0) = X in M(n, F) we get

0 =
n∑

k=1

1 · . . . · 1 · xkk · 1 · . . . · 1 =
n∑

k=1

xkk = Tr(X)

where xkk = [φ′(0)]kk

Conversely, if X ∈ M(n, F) and Tr(X) = 0 the curve φ(t) = etX =
∑∞

n=0(t
n/n!)Xn

is C∞ and passes through I when t = 0. Furthermore the Exponent Law for matrix
exponentials e(s+t)X = esX · etX implies that

(54)
d

dt
{etX} = X ·etX for all X ∈ M(n, F), t ∈ R

In fact,

d

dt
{etX} = lim

∆t→0

e(t+∆t)X − etX

∆t
= lim

∆t→0
etX · (e∆t·X − 1

∆t
)

= lim
∆t→0

etX · (X +
∆t·X2

2!
+

(∆t)2X3

3!
+ · · ·)

= lim
∆t→0

etX(X + o(∆t)) = X ·etX

Thus φ′(0) = X and φ(0) = I.
Furthermore, X ∈ g ⇒ φ(t) remains within G for all t because

det(φ(t)) = det (etX) = et·Tr(X) = 1 for all t .

Thus sl(n, F) = {X ∈ M(n, F) : Tr(X) = 0}. When F = C, SL(n, C) is a complex group
and sl(n, C) a complex Lie algebra. In either case dimF(G) = dimF(sl(n, F)), and our
identification of the Lie algebra immediately shows dimF(SL(n, F) = n2 − 1. !

3.13. Exercise. When G = U(n) or SU(n) the Lie algebras are

u(n) = {X ∈ M(n, C) : X∗ = −X}
su(n) = {X ∈ M(n, C) : X∗ = −X and Tr(X) = 0}

Proof (⊆): Let φ : R → G be a C∞ curve in G with φ(0) = I, φ′(0) = X in g. Since

d

dt
{φ∗(t)} =

(
dφ

dt

)∗

and

0 =
d

dt
{φ∗(t) · φ(t)} =

d

dt
{φ∗} · φ(t) + φ(t)∗

d

dt
{φ}

we get
0 = φ′(t)∗φ(t) + φ(t)∗φ′(t) for all small t

Setting t = 0, we get X∗ = −X , which shows that u(n) ⊆ {X : X∗ = −X} and similarly
for su(n).
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Proof (⊇): Conversely, if X∗ = −X and φ(t) = etX we have

φ(t)∗ = et(X∗) = e−tX = φ(t)−1

and hence φ(R) ⊆ G = U(n). Since φ is C∞, φ(0) = I, and φ′(0) = X we see that X is a
tangent vector in u(n), proving the inclusion (⊇). The same argument works for su(n).

These groups are real, not complex, even though they are carved out of M(n, C), because
X∗ = −X forces diagonal elements to be in iR (imaginary). !

3.14. Exercise. Show that dimR(u(n)) = n2 and dimR(su(n)) = n2 − 1. !

3.15. Example. If G = O(n, C) then o(n, C) = {X ∈ M(n, C) : Xt = −X}.

Discussion. This is also so(n, C) even though O(n, C)
⊃
̸= SO(n, C). [ Recall that O(n, C)

consists of two connected closed cosets (though we have not yet shown SO(n, C) is an
arcwise connected group). These are intrinsically complex Lie groups, and it is easily
seen that dimC o(n, C) = dimC so(n, C) for the tangent spaces at the identity, which have
the same dimensions as the groups.] Here φ(s)tφ(s) = I so φ′(s)tφ(s) + φ(s)tφ′(s) = 0
for all s, which implies that Xt = X , Clearly φ(s) is a C∞ curve in matrix space such
that φ(0) = I and φ′(0) = X , by (3.4(ii)). Furthermore φ(s) = esX remains confined
within SO(n, C)) for all s because

φ(s)t = (esX)
t
= es(Xt) = e−sX = φ(s)−1 ,

which insures that φ(s)tφ(s) ≡ I.
The subgroup SO(n, C) is a complex group with dimC SO(n, C) = dimC so(n, C) =

1
2 (n2−n), but SO(n, C) can also be regarded as a Lie group over R of twice the dimension,
with dimR so(n, C) = 2·(n2 − n). !

3.16. Example. O(n) and SO(n) are real Lie groups having the same Lie algebra
because O(n) consists of two connected components (connectedness not yet proved),
with O(n) = SO(n)∪R ·SO(n) where R = diag(1, · · · , 1,−1) is a real orthogonal matrix
with det(R) = −1. The same argument used in 3.15 shows that so(n) = {X ∈ M(n, R) :
Xt = −X}; the trace Tr(X) is automatically zero. It is also clear that dimR SO(n) =

dimR so(n) = 1
2 (n2 − n). !

3.17. Example. The Lie algebra of the symplectic group Sp(2n, F) is

sp(2n, F) = {X ∈ M(2n, F) : XtJ + JX = 0} .

where

J =

(
0 In×n

−In×n 0

)

2n×2n

Here 2n is needed because only even dimensional vector spaces can support non-degenerate
skew-symmetric bilinear forms.

Discussion: The inclusion (⊆) is seen by differentiating the relation that defines Sp(n, F):

A is non singular and AtJA = J

Notice that J t = J−1, so ( det(A))
2

= 1 and det(A) can only be ±1 for A ∈ Sp(n, F),
for F = R and F = C. The condition defining g can be rewritten as

JXJ−1 = JXJ t = −Xt ,

hence Tr(X) = 0 automatically for X ∈ sp(n, F).
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To prove the inclusion (⊇), we rewrite AtJA = J as JAJ−1 = (At)−1. If X ∈ M(n, F)
satisfies

XtJ + JX = 0 (or JXJ−1 = −Xt, same thing),

then φ(s) = esX is a C∞ matrix-valued curve such that φ(0) = I, φ′(0) = X , and φ(t)
remains wihtin Sp(n, F) because

Jφ(s)J−1 = es(JXJ−1) = e−s(Xt) = (e−sX)t = (φ(s)t)
−1

for all s ∈ R. !

X.4. Integral Curves for Vectors Fields.

4.1. Definition. Let X̃ be a smooth vector field defined on an open subset E in a C∞

manifold M , so X̃(p) is a vector in TMp at each base point. A solution curve (or
integral curve) for X̃ is any C∞ curve γ : (a, b) → M for which

γ′(t) = X̃γ(t) for all a < t < b,

Thus the velocity vector at time t of the moving point x = γ(t) is at all times equal to
the vector specified by the vector field at the base point γ(t).

When M = Rn we have the following classical result from ODE, which we cite without
proof.

4.2. Theorem (Local Existence and Uniqueness of Solutions). Let

X̃x =
n∑

i=1

xi(x)·ei (e1, . . . , en the standard basis vectors in Rn)

be a smooth field of vectors on an open subset E ⊆ Rn and let p ∈ E. Then there is an
ϵ > 0 and a C∞ map γ : (−ϵ, ϵ) → E such that γ(0) = p (the initial condition for the
solution), and

d

dt
{γ(t)} =

n∑

i=1

dxi

dt
·ei = X̃γ(t)

for all |t| < ϵ. The solution is locally unique: any two solutions γ1, γ2 satisfying the same
initial condition at t = 0 must agree in some neighborhood of zero.

If γ1, γ2 are solution curves defined on intervals Ik = (ak, bk) containing t0, and if they
satisfy the same initial condition at t0, then γ1(t) = γ2(t) for t ∈ (t0 − ϵ, t0 + ϵ), for some
ϵ > 0. This leads to a fundamental global existence theorem.

4.3. Lemma. If γ1(t) and γ2(t) are solutions to the initial value problem that agree
on some small neighborhood of t0, they must agree throughout the intersection I1 ∩ I2 of
their domains.

We may assume t0 = 0 because the curves ηk(t) = γk(t − t0) defined near t = 0 have

η′k(t) = γ′k(t − t0) = X̃γk(t−t0) = X̃ηn(t) ,

so the ηk are solution curves for X̃ defined near t0 = 0 such that ηk(0) = p.
Now let (α,β) be the largest interval about 0 such that (α,β) ⊆ I1∩I2 = (a0, b0) and

γ1 = γ2 on (α,β). If α = a0, β = b0, we are done. If not, suppose β < b0. For t near β,
γ1 and γ2 are both solution curves for X̃ such that γ1(β) = γ2(β). But then by Lemma
3.20 we have γ1(t) = γ2(t) in some interval about β, which contradicts the definition of
β. Likewise if α > a0. !

This simple observation allows us to piece together a “maximal solution” γ(t) of the
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initial value problem.

4.4. Corollary (Maximal Solutions). Let X̃ be a C∞ vector field on an open set
E ⊆ Rn. Given p ∈ Rn and t0 ∈ R, there is a largest open interval Imax containing
t0, and a C∞ curve γ(t) defined on it, such that γ(t) ∈ E for all t in Imax and

(55)
dγ

dt
= X̃γ(t) for all t ∈ Imax and γ(t0) = p

This maximal solution to the initial value problem and its domain Imax are unique.

Proof: Consider all solutions γk to this initial-value problem defined on open intervals
Ik containing t0 (the intervals can be unbounded or even all of R), and let Imax =

⋃
k Ik.

By Lemma 3.19, the solutions agree wherever their domains Ik overlap and can be pieced
together to get a well defined solution curve γ(t) on Imax. Obviously the solution cannot
be extended to any larger interval containing t0. !

It can happen that the maximal domain Imax for a solution to the initial value problem
(55) is not all of R = (−∞,∞). Examples show that γ(t) can run off to ∞ in finite time,
or run out of the set E on which X̃ is defined, or display other singular behavior that
forces Imax ̸= R.

If we identify M(n, F) ≃ Rn2
then GL(n, F) is an open dense set in matrix space, and

if we specify a tangent vector X ∈ T(GL)I = gl(n, F) = M(n, F) at the identity element
in GL, left translates of X by elements of GL determine a unique field of tangent vectors
on GL

X̃g = λg(X) = g ·X for g ∈ GL .

In this setting we can find explicit solutions for initial value problems of the form
(55) posed for left-invariant vector fields on the general linear group GL(n, F), and in
fact we will show that this can also be done for left-invariant vector fields on any matrix
Lie group G ⊆ M(n, F). Because the underlying manifold for X̃ is a group the maximal
solutions γ(t) for such fields are defined for all −∞ < t < ∞ (they never become singular)
and are given by the exponential map for matrices Exp : M(n, F) → GL(n, F).

4.5. Lemma. When F = R or C the matrix exponential series

Exp(tA) = etA =
∞∑

k=0

tk

k!
Ak for t ∈ R

is absolutely norm convergent for all A ∈ M(n, F), and is a C∞ map from t ∈ R (or t ∈ C)
into matrix space equipped with any convenient norm. Furthermore, if X ∈ M(n, F) and
if X̃ is the unique left-translation invariant C∞ vector field on GL such that X̃I = X,
then

γ(t) = etX =
∞∑

k=0

tk

k!
Xk for t ∈ (−∞,∞)

is the unique C∞ solution curve for X̃ such that γ(0) = I.

Note: Given any A ∈ M(n, F), the curve γ(t) = etA is a one-parameter group in GL
in the sense that

(56) Exponent Law: γ(t1 + t2) = γ(t1) · γ(t2) and γ(0) = I, γ(1) = A.

In particular γ(0) = I, γ(−t) = γ(t)−1 exists, and det(etA) ̸= 0 for all A and t. !

We defer the proof of 4.5 while we review basic properties of the matrix exponential
map Exp : M(n, F) = gl(n, F) → GL(n, F) ⊆ M(n, F). We will then show there is
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an analogous “exponential map” associated with any matrix Lie group G. This map
exp : g → G is C∞ on all of the vector space g, and is a C∞ diffeomorphism between some
open neighborhood of the zero element in the Lie algebra g and an open neighborhood of
the identity element e ∈ G. Existence of this correspondence allows us to transfer many
questions posed on the (nonlinear) manifold G to problems on the linear space g, where
the tools of linear algebra can be used to find a solution that can be transferred back to
the original group G via the exp map.

Properties of Matrix Exponential Map.
When F = R or C there are various natural norms on the vector space V = M(n, F)
which allow us to discuss the distance ∥A − B∥ between two matrices, and convergence
An → A of matrices as n → ∞. By definition, all norms have the properties

(57)

1. ∥X∥ ≥ 0 and ∥X∥ = 0 ⇔ X = 0;

2. ∥λA∥ = |λ| · ∥A∥ for λ ∈ F;

3. ∥A ± B∥ ≤ ∥A∥ + ∥B∥.

When V is finite-dimensional the choice of norm is unimportant because all norms on
such spaces are equivalent, in the sense that there are constants C, D > 0 such that

(58) ∥x∥2 ≤ C · ∥x∥1, ∥x∥1 ≤ D · ∥x∥2 for all x ∈ V .

Thus we have convergence An → A in one norm if and only if An → A in the other.

4.6. Exercise. Prove that (58) holds for any two norms on a finite dimensional vector
space.
Hint: It suffices to compare a given norm ∥ · ∥ with the “Euclidean ” norm ∥ · ∥2

determined by a basis X = {ek} in V :

∥v∥2 = ∥
n∑

k=1

ckek∥2 = (
n∑

k=1

|ci|2)
1/2

Use the Reverse Triangle Inequality to show that the map v → ∥v∥ is continuous on
(V, ∥ · ∥2). Then m = min{∥v∥ : ∥v∥2 = 1} and M = max{∥v∥ : ∥v∥2 = 1} are achieved
on the compact set S = {v : ∥v∥2 = 1}. Etc. !

On an associative algebra like M(n, F), in which both sums (+) and products (·) are
defined, it is really convenient to work with a norm ∥A∥ having the multiplicative property

∥AB∥ ≤ ∥A∥ · ∥B∥

(It would desirable, but not necessary, to have ∥I∥ = 1 too.) Such norms exist. One is
the Hilbert-Schmidt norm

∥A∥HS = (
n∑

i,j=1

|aij |2)
1/2

which is the norm associated with the inner product (A, B)HS = Tr(B∗A). Another
choice is the operator norm with respect to a given norm on Fn,

∥A∥op = max{∥Ax∥ : x ∈ F
n, ∥x∥ ≤ 1}

The norm properties (57) and (58) are easily verified and we obviously have ∥I∥op = 1.

4.7. Exercise. Show that Tr(B∗A) is an inner product on matrix space M(n, F), and
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that ∥A∥HS is the associated norm. Then verify that ∥AB∥HS ≤ ∥A∥HS · ∥B∥HS for all
A, B.
Hint: Schwartz inequality for inner products over R or C.
Note: ∥I∥HS =

√
n. !

For some purposes the most popular choice is the operator norm ∥A∥ obtained by re-
garding A as the left-multiplication operator LA : Fn → Fn and taking the Euclidean

norm ∥v∥2 = (
∑n

i=1 |vi|2)
1/2

on Fn. The operator norm ∥A∥ = max{∥Ax∥2 : ∥v∥2 ≤ 1}
is the maximal length ∥Av∥2 of the image vector as v runs though vectors in the unit
ball B1 = {v : ∥v∥2 ≤ 1} in Fn (or the unit sphere S = {v : ∥v∥2 = 1}). Obviously,
∥I∥ = 1 in this norm. !

4.8. Exercise. Verify that operator norm has the properties (57) and that ∥AB∥ ≤
∥A∥ · ∥B∥. !

Despite its convenient properties, the operator norm is less convenient if you need to
compute its numerical value.

4.9. Exercise. If A = [aij ] and Cn is given the Euclidean norm ∥v∥2, find a formula for
computing ∥A∥op in terms of the matrix coefficients aij . !

By (58), M(n, F) is a complete metric space in either of these norms, for F = R or C.
If A ∈ M(n, F) the exponential series

∑∞
n=0

1
n!A

n is then absolutely norm convergent,
with

∞∑

n=0

1

n!
∥A∥n < ∞ ,

by the norm triangle inequality. This immediately forces norm convergence of the series
because the partial sums Sn = I + A + · · · + 1

n!A
n form a Cauchy sequence in M(n, F),

with

∥Sm − Sn∥ = ∥ 1

m!
Am + . . . +

1

(n + 1)!
An+1∥ ≤

m∑

k=n+1

1

k!
∥A∥k .

Then ∥Sm − Sn∥ → 0 as m, n → 0 because

∞∑

k=0

1

k!
∥A∥k = e∥A∥ < ∞ .

Similarly, if a power series is absolutely convergent with
∑∞

n=0 |an||z|n < ∞ for |z| < R,
we may conclude that

∑∞
n=0 anAn is absolutely norm convergent for all A such that

∥A∥ < R. As an example we have

4.10. Example. Let ∥A∥ < 1. The Taylor series for Log(1 + z) about z = 0 is

∞∑

n=1

(−1)n+1zn

n
and similarly Log(1 − z) = (−1) ·

∞∑

n=1

zn

n
.

The function Log(z) agrees with the series sum for all z inside the radius of convergence
R = 1, so we can define Log(A) for all A such that ∥A − I∥ < 1 by writing

Log(A) = Log(I + (A − I)) =
∞∑

n=1

(−1)n

n
(A − I)n

(absolutely norm convergent for ∥A − I∥ < I).
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Notes c⃝ F.P. Greenleaf and S. Marques 2006-2017 LAII-s16-vcalc.tex version 2/14/2017

Chapter XI. Tensor Fields & Vector Calculus.
... or, what they never told you in Calculus III.

XI.1 Tangent Vectors, Cotangent Vectors and Tensors.
This chapter explores some aspects of linear algebra that lie at the heart of modern
differential geometry, and ends with a reinterpretation of many of the the main results
of multivariate Calculus. This is a vast subject, so the presentations of this chapter will
not be as fully developed as those in preceding chapters.1 Some of the missing details
can be found in Appendices A - C at the end of this chapter.

Euclidean n-dimensional space En is a featureless space: a line, a plane, etc, perhaps
equipped with a metric, a distance function d(x, y) between points. By marking an origin
and imposing coordinates we can model En as n-tuples of real numbers x = (x1, . . . , xn)
in Rn. In addition to allowing us to describe locations of points p as coordinate n-tuples,
Rn comes equipped with certain algebraic operations – scaling and vector addition –
which make Euclidean space into a vector space over R. This extra structure, unknown
to Euclid, was inspired by the “parallelogram law” for vector addition that arose in
physics as the correct law for adding forces. In the late 1800’s additional operations on
coordinate space Rn were introduced, such as the inner product (x,y) =

∑n
i=1 xiyi (for

arbitrary dimensions) and the cross product x × y (which makes sense only in n = 3
dimensions).

The tangent space TEp to En at a base point p was thought of as a copy of the vector
space Rn attached to En at p; elements in TEp are sometimes described as pairs (p,x)
where p is a base point in E and x a vector in Rn. There is a separate tangent space
attached to each base point in E. In Calculus tangent vectors based at p are thought of
as “arrows” attached to the base point. These can be scaled and added to other tangent
vectors attached to the same base point via the rules

λ·(p,x) = (p,λx) and (p,x1) + (p,x2) = (p,x1 + x2)

However, there is no meaningful way to add tangent vectors (p,x) ∈ TEp and (q,y) ∈ TEq

attached to different base points p ̸= q. When elements of TEp are viewed as arrows, those
arrows might represent force vectors acting at p, or the velocity of a moving particle as
it passes through p. They could also represent more general fields: an electric field,
magnetic field, gravitational field, or a field of stress tensors that pervade some solid
medium, etc.

Many mathematical models are concerned with fields of vectors F(x) defined on En

(or some open subset). These assign a tangent vector F(p) ∈ TEp to each base point, and
the coordinates imposed on En determine basis vectors {e1(p), · · · , en(p)} in the tangent
space TEp that allow us to describe any tangent vector at p as a linear combination
a = a1e1 + . . .+ anen (ai ∈ R). Similarly we can describe a field of vectors on En as

F(p) = F1(p) e1 + · · ·Fn(p) en ,

where the scalar-valued coefficients Fk(p) vary with the base point. If a,b ∈ TEp and

1This chapter is a “compactified” version presenting highlights of Class Notes developed over sev-
eral semesters for a full semester NYU Senior Honors course Vector Analysis: Calculus on Mani-
folds. A pdf version of those notes for personal use is available on request from Prof. Greenleaf at
fred.greenleaf@nyu.edu who should be contacted regarding classroom use.
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n = 3 their scalar multiples and vector sums are given by

λa =
n∑

i=1

λai ei and a+ b =
3∑

i=1

(ai + bi) ei ,

and their cross product is

a× b = det

⎛

⎝
e1 e2 e3
a1 a2 a3
b1 b2 b3

⎞

⎠

= (a2b3 − a3b2) e1 + (a1b3 − a3b1) e2 + (a1b2 − a2b1) e3

Scalar fields on En are just scalar-valued functions F : En → R.
This coordinate description of vector fields on R3 or Rn is used in Calculus to define

the standard “vector operations” on vector fields y = F(x) =
∑n

i=1 Fi(x) ei that have
differentiable coefficients. Writing Dxiφ(p) for the ith partial derivative ∂φ/∂xi(p) of a
scalar-valued function φ : Rm → R, we define the operations

1. Gradient:

gradF (p) = ∇F (p) =
n∑

i=1

DxiF (p) · ei

for scalar fields F : Rn → R.

2. Curl:

curl F(p) = ∇× F(p) = det

⎛

⎝
e1 e2 e3

∂/∂x1 ∂/∂x2 ∂/∂x3

F1 F2 F3

⎞

⎠

= (∂F3

∂x2
−
∂F2

∂x3
) e1 − (∂F3

∂x1
−
∂F1

∂x3
) e2 + (

∂F2

∂x1
−
∂F1

∂x2
) e3

for smooth vector fields F = F1 e1+ . . .+F3 e3. This definition only works for fields
on 3-dimensional space R3, though it can be adapted to deal with vector fields on
the plane R2.

3. Divergence:

divF(p) = ∇ ◦ F(p) =
∂F1

∂x1
(p) e1 + . . .+

∂F3

∂x3
(p) e3 = Trace[∂Fi

∂xj
](p)

for smooth vector fields F : R3 → R3. The result is a scalar field. This also works
only for fields on 3-dimensional Euclidean space, but can be adapted to work for
fields on R2.

Some question lurk in the background of these definitions.

Question: All these operators are described in terms of Cartesian coordi-
nates imposed on the blank slate of Euclidean space. What happens in polar
coordinates or other coordinates systems? What bases in the tangent spaces
TEp are induced by these alternative coordinates on En? How should the vec-
tor operations ∇F , ∇×F, ∇◦F be described in non-Cartesian coordinates?

One might also wonder what analogs of these vector operators that pervade physics might
exist in dimensions n ≥ 4, where the classical definitions of curl and div no longer make
sense.
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Calculus on Manifolds. Flat and featureless Euclidean space is a very limited
setting for developing mathematical physics, or for understanding the possible meaning of
“tangent vectors.” It is simply too special to reveal the subtleties involved. For instance,
suppose you wanted to model phenomena on the spherical surface of the Earth.

• What does a vector field on the 2-dimensional sphere

S2 = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1}

mean? How about vector fields on the 3-dimensional sphere

S3 = {x ∈ R4 : ∥x∥2 = 1}

that lives in 4-dimensional space?

• What becomes of the classical operations on vector fields in this higher dimensional
setting?

The same questions apply to any curved lower-dimensional hypersurface embedded in
Rn.

There are deeper and more fundamental issues to deal with in a consistent re-
imagining of Calculus. Suppose we regard S2 or S3 as the entire universe of discourse.
For instance, in general relativity the universe can be viewed as a 3-dimensional sphere
S3 with a metric structure that evolves with time. There is no outside space R4 in which
this object lives, and any reference to it is pure metaphysics, divorced from any phenom-
ena observable from within S3. “Tangent vectors” or “tangent spaces” viewed as arrows
or hyperplanes attached to a base point p ∈ S3 and extending into the “surrounding
space” simply have no meaning. There is no “outside” to the universe. So, let’s see how
Calculus might be developed using concepts intrinsic to S2 or S3, or more general spaces
that might be used to model phenomena.

Local Coordinates. An m-dimensional locally Euclidean space M is a set of
points that can be covered with coordinate charts (xα, Uα), each consisting of an
open set Uα ⊆ M and a continuous map xα : Uα → Rm that assigns coordinates
x = xα(u) = (x1, . . . , xm) in Rm to each point u ∈ Uα. We require

(1)

1. The chart domains Uα cover all of M .

2. Vα = xα(Uα) is an open set in Rm for each index α.

3. The chart map xα is a bicontinuous bijection (a homeomorphism)
from Uα to the open set Vα = xα(Uα) in coordinate space Rm.

Then xα : Uα → Vα ⊆ Rm and its inverse x−1
α : Vα → Uα ⊆ M are both continuous maps.

Thus a locally Euclidean space M looks exactly like Rm near any base point p ∈ M ; in
particular, Cartesian coordinates can be imposed on M near p. But more is needed to
do Calculus on M – in order to discuss derivatives of functions on M the charts (xα, Uα)
should be “differentiably related” whenever two chart domains Uα and Uβ overlap.

1.1. Definition. For k ∈ N a C(k)-structure on an m-dimensional locally Euclidean
space M is a covering by charts (xα, Uα), α in some index set I, such that the coordinate
transition maps between overlapping charts (xα, Uα) and (yβ , Uβ),

xα ◦ y−1
β : Rm → Rm and yβ ◦ x−1

α : Rm → Rm ,

are of class C(k) on the open sets in coordinate space Rm where they are defined. Recall
that a map y = f(x) from Rm → Rn is class C(k) on an open set U ⊆ Rm if all partial
derivatives of the scalar components fi : U → R in y = f(x) = (f1(x), · · · , fm(x)),

Dα
xfi = Dα1

x1
· . . . ·Dαm

xm
fi(x) where α = (α1, . . . ,αm) ∈ Zm

+ ,
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Figure 11.1. The coordinate transition maps xα◦y
−1
β

and yβ◦x
−1
α between two charts (xα, Uα)

an (yβ , Uβ), and their (shaded) domains of definition Nα, Nβ in Rm are shown. The domains
Nα, Nβ live in different copies of coordinate space Rm; both correspond to the intersection
Uα ∩ Uβ of the chart domains, which is an open set in the locally Euclidean space M .

exist and are continuous for 1 ≤ i ≤ m and all m-tuples α = (α1, · · · ,αm) of total degree
|α| = α1+ . . .+αm ≤ k. The “exponents” α = (α1, · · · ,αm) are called multi-indices and
Dα

x is a partial derivative of total degree |α| = α1 + . . . + αm. By convention, Dαi
xi

= I
(the identity operator) if αi = 0, and the multi-index α = (0, · · · , 0) yields Dα

x = I (the
identity operator).

The meaning of the coordinate transition maps is illustrated in Figure 11.1.
Once we have a “founding set” of C∞-related charts U = {(xα, Uα) : α ∈ I} that

cover M , these determine a maximal atlas of consistent charts on M .

The maximal atlas U determined by U consists of all charts (φ,W ) with
φ : W → Rm as in (1) such that (φ,W ) is differentiably related to all the
founding charts (xα, Uα) ∈ U .

1.2. Lemma. All charts (φ,W ), (ψ,W ′) in the atlas U are C(k)-related to each other,
so coordinate transition maps φ ◦ ψ−1 and ψ ◦ φ−1 : Rm → Rm are C(k) where defined if
the chart domains W,W ′ overlap.

Proof: This follows from the classical chain rule: If p ∈ W ∩ W ′ and (xα, Uα) is a
founding chart in U that contains p, we can split

φ ◦ ψ−1 = (φ ◦ x−1
α ) ◦ (xα ◦ ψ−1)

The factors (φ ◦ x−1
α ), (xα ◦ψ−1) are both C(k) maps between copies of Rm because φ, ψ

are C∞-related to the founding chart (Uα, xα). !

1.3. Example. Consider the 2-sphere M = S2 in R3. A family of charts that cover M
is given by (H±

i , Pi) where H±
i are the open hemispheres

H+
i = {x ∈ S2 : xi > 0} H−

i = {x ∈ S2 : xi < 0} (1 ≤ i ≤ 3)

and Pi = the restriction to S2 of the projection maps Pi : R3 → R2

P1(x) = (x2, x3), · · · , P3(x) = (x1, x2)

that project out the ith coordinate of x = (x1, x2, x3), see Figure 11.2 for an illustration.
In each case, range(Pi) is the open unit disc D = {(s1, s2) ∈ R2 : s21 + s22 < 1}.

Obviously the restriction Pi|H±
i

: H±
i → D is one-to-one and continuous onto D and is

the restriction of the C∞ map Pi : R3 → R2. Its inverse can be calculated explicitly, for
instance

(P3|H+
3
)−1(s1, s2) = (s1, s2,

√
1− (s21 + s22) ) for all s ∈ D
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Figure 11.2. One of the charts (xα, Uα) that determine the standard manifold structure for
the smooth hypersurface M = S2, a 2-dimensional sphere embedded in R3. The chart domain
is the hemisphere

Uα = H+
3 = {x : ∥x∥ = 1 and x3 > 0} .

The chart map xα = P3|H
+
3 sending x → (x1, x2) projects the hemisphere Uα onto an open

disc D of radius r = 1 in the x1, x2-plane.

is clearly a C∞ map from D ⊆ R2 onto H+
3 . The coordinate transition maps between

two such charts, say xα = (P3|H+
3
) and yβ = (P2|H−

2
), are then

xα ◦ y−1
β (s) = P3(s1,−

√
1− (s21 + s22), s2 ) = (s1,−

√
1− (s21 + s22) )

and

yβ ◦ x−1
α (s) = P2(s1, s2,+

√
1− (s21 + s22) ) = (s1,+

√
1− (s21 + s22) )

for s = (s1, s2) ∈ D. Both are C∞ maps from R2 → R2.
In the maximal atlas we find other charts, for example, a chart imposing spherical

coordinates (see Figure 11.3) on the open hemisphere H+
1 : if x = (x1, x2, x3) ∈ S2 with

x1 > 0, we define a chart (zγ , Uγ) on Uγ = H+
1 : for x ∈ S2 we let

(θ,φ) = zγ(x1, x2, x3) = ( arctan (x2

x1
), arcsin(x3) )

so the transition map from (xα, Uα) = (P3, H
+
3 ) to (zγ , Uγ), Uγ = H+

1 is

(θ,φ) = zγ ◦ x
−1
α (s1, s2) = zγ(s1, s2,

√
1− (s21 + s22))

= ( arctan (s2
s1
), arcsin(

√
1− (s21 + s22) )

The inverse map can be handled similarly; both are C∞ from R2 → R2. !

The maximal atlas U determined by founding charts includes all possible determinations
of spherical coordinates on open sets U ⊆ S2 that avoid the north and south poles
N = (0, 0, 1) and S = (0, 0,−1).

Smooth Functions and Mappings on M .

Once M is equipped with a differentiable structure (a maximal atlas of differentiably
related covering charts), we can define

1. Smooth Functions f : M → R.
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Figure 11.3. Spherical coordinates (θ,φ) on the two-dimensional sphere S2 = {x ∈ R3 :
x2
1 + x2

2 + x2
3 = 1} are assigned as shown. We have chosen a somewhat non-standard definition

of φ, one that agrees with the way latitude is assigned on the surface of the Earth. Both angles
are ambiguous up to a multiple of 2π radians (= 360◦); to get definite values, our convention
restricts −π < θ < π and −π < φ < π. The angles θ and φ cannot be defined at the north pole
N = (0, 0, 1) or south pole S = (0.0.− 1) on the sphere.

2. Smooth Parametrized Curves, γ : R → M .

3. Smooth Mappings φ : M → N between differentiable manifolds M and N .

1.4. Definition. A function f : M → R is of class C∞, indicated by writing f ∈ C∞(M),
if f ◦x−1

α : Vα → R is C∞ for every chart – i.e. f is smooth (of class C∞) if it is smooth in
the classical sense when described in local chart coordinates. The same definition, applied
to any open set U ⊆ M , determines the space C∞(U) of smooth scalar valued functions
on U . These are not only infinite-dimensional vector spaces, they are also associative
algebras since they are closed under forming pointwise products (f ·h)(u) = f(u)h(u), as
well as scalar multiples λ · f , sums f1 + f2, and linear combinations

∑r
i=1 cifi. By the

classical chain rule, smoothness of f : M → N does not depend on a particular choice of
local coordinates.

We now call attention to a special class of functions associated with a base point
p ∈ M .

1.5. Definition (The Local Algebra C∞(p)). The local algebra C∞(p) at p ∈ M is
the associative algebra of C∞ functions defined at and near p. A typical element in C∞(p)
is a pair (f, U) involving an open neighborhood U of p and a C∞ function f : U → R.
We then define (+), (·), and scaling operations

λ · (f, U) = (λ · f, U), for all λ ∈ R

(f1, U1) + (f2, U2) = (f1 + f2, U1 ∩ U2)

(f1, U1) · (f2, U2) = (f1 · f2, U1 ∩ U2) (pointwise product)

on C∞(p). The zero element in this vector space is the pair (0,M) and 1 = (1-,M) is the
multiplicative identity element. Note that C∞(p) contains the algebra C∞(M) of globally
C∞ functions on M , as well as C∞(U) for any open set U that contains p.

1.6. Definition. A map φ : M → N between differentiable manifolds M,N is smooth
near p if it becomes a C∞ map from Rm → Rn when described in local coordinates, so
that

yβ ◦ φ ◦ x−1
α : Rm → Rn is C∞ in the classical sense ,

for all charts (xα, Uα) about p and (yβ , Uβ) about q = φ(p). The map is C∞ on an open
subset (or on all of M), if it is C∞ near each base point in U .
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1.7. Definition. A parametrized curve γ : R → M is of class C(k) if, for all charts
(xα, Uα) on M , xα ◦ γ(t) is a C(k)-map from R → Rm on some open interval (a, b) ⊆ R.
It is C(k) on a closed interval [a, b] if there is a slightly larger interval (a − ϵ, b + ϵ) on
which γ is defined and of class C(k). In local coordinates γ becomes a classical C(k) curve
from R → Rm

γ̃(t) = xα ◦ γ(t) = (x1(t), · · · , xm(t))

with scalar components xk(t) that are differentiable of class C(k).

The classical derivative dγ/dt of a smooth curve γ : [a, b] → Rm is

dγ

dt
(t0) = lim

∆t→0

γ(t0 +∆t)− γ(t0)

∆t
=

= lim
∆t→0

f ◦ γ(t0 +∆t)− f ◦ γ(t0)

∆t
= (dx1

dt
(t0), · · · ,

dxm

dt
(t0)) ,(2)

But this makes no sense at all for smooth curves γ : [a, b] → M with values in a manifold;
M is not a vector space and differences of points in M are undefined. (Try interpreting
the difference quotients ∆γ/∆t in (2) for a curve that lives within in the 2-sphere M =
S2 ⊆ R3, without making any reference to the surrounding space R3.) We can, however,
make sense of γ′(t0) as an operator γ′(t0) : C∞(p) → R that acts on the local algebra of
C∞ functions defined near p = γ(t0), by defining

(3) ⟨γ′(t0), f⟩ =
d

dt
{f ◦ γ(t)}|

t=t0

The operator γ′(t0) sends f to the time derivative of the f -values f(γ(t)) seen as t
increases past t0.

Given a chart (xα, Uα) about p the action of γ′(t0) on functions can be computed by
writing f ◦ γ(t) as a composite (f ◦ x−1

α ) ◦ (xα ◦ γ) : R → Rm → R and applying the
classical chain rule. If xα ◦ γ(t) = (x1(t), . . . , xm(t)) we get

⟨γ′(t), f⟩ =
d

dt
{f ◦ γ(t)}|

t=t0

=
d

dt
{(f ◦ x−1

α ) ◦ (xα ◦ γ)}|
t=t0

=
m∑

i=1

Dxi(f ◦ x−1
α )(xα ◦ γ(t0)) ·

dxi

dt
(t0)(4)

=
m∑

i=1

(Dxi(f ◦ x−1
α )) ◦ xα(p) ·

dxi

dt
(t0)

Notation. Here, as in earlier chapters, we use “bracket notation” ⟨ℓ, v⟩ to indicate the
result ℓ(v) when we combine a vector v ∈ V with a dual vector ℓ ∈ V ∗. (This turns out
to be a good idea.) !

1.8. Definition. Any linear map ℓ : C∞(p) → R with the property

⟨ℓ, f ·h⟩ = ⟨ℓ, f⟩ · h(p) + f(p) · ⟨ℓ, h⟩

is referred to as a derivation on the local algebra. In particular, if γ : [a, b] → M is
a smooth curve passing through p ∈ M when t = t0, the directional derivative γ′(t0) :
C∞(p) → R along γ is a derivation on C∞(p).

It can be shown that all derivations on the local algebra C∞(p) arise in this manner (see
Appendix XI-A for the technical details). Given this, we arrive at the modern definition
of tangent vector and tangent space for a differentiable manifold M .

Tangent Vectors and the Tangent Space TMp of a Manifold.
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Figure 11.4. The tangent space TMp to a smooth m-dimensional hypersurface M ⊆ Rn

is a translate p + E of some m-dimensional vector subspace E ⊆ Rn. Elements v = p + a,
w = p + b in TMp are indicated by arrows attached to the base point p. Scaling and vector
addition in TMp is accomplished by transferring arrows back to the corresponding vectors in
E, which can be added via the usual parallelogram law for vector addition. This makes TMp

an m-dimensional vector space, see Figure 11.4.

Classically, manifolds were taken to be smooth hypersurfaces M embedded in a larger
Euclidean space Rn. The tangent space TMp at a base point p ∈ M consisted of “tangent
vectors,” arrows attached to p pointing out into the surrounding space. TMp was then
viewed as a translate p+ E ⊆ TMp of some m-dimensional vector subspace E; addition
of vectors in TMp was accomplished by translating arrows p + a, p + b back to the
corresponding vectors a,b in E, where they could be added or scaled. The result was
then translated back to an arrow p+ (a+ b) or p+ (λa) attached to p.

Some Objections:

1. This makes no sense if we regard M as our entire universe of discourse and are
forbidden to refer to objects lying in some “all encompassing Euclidean space.”

2. A more intrinsic approach (still regarding M as an embedded hypersurface in Rn)
is to note that classical velocity vector for a moving point whose position is γ(t) at
time t, is given by

dγ

dt
(t0) = lim

∆t→0

γ(t0 +∆t)− γ(t0)

∆t
.

(derivative taken in Rn). When this velocity vector is viewed as an arrow attached
to p = γ(t0) in M , it always lies in the classical tangent space to M at p because
γ(t) remains within M at all times. If we interpret tangent vectors at p as velocity
vectors for various curves passing through p, this defines tangent vectors in terms
of objects intrinsic to M – smooth parametrized curves in M – but there are still
problems. The vector derivative dγ/dt is a limit of difference quotients ∆γ/∆t,
which cannot be computed without referring to the surrounding space Rn.

3. The tangent space to M at p is supposed to be a vector space. If smooth curves
γ1, γ2 in M pass through p when t = t0, it is not obvious how to find a curve η(t)
such that η(t0) = p and η′(t0) is the sum γ′1(t0) + γ′2(t0) of the tangent vectors.
There is also an ambiguous relationship between curves through p and tangent vec-
tors at p since different curves through p can determine the same classical tangent
vector dγ/dt.

Another approach is already implicit in the previous comments. We could view tangent
vectors γ′(t0) to curves in terms of “directional derivatives” of functions f : M → R

defined near p = γ(t0), obtained by computing the time derivative of the f -values seen
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by the moving point γ(t). From this point of view γ′(t0) becomes a linear operator

⟨γ′(t0), f⟩ =
d

dt
{f(γ(t))}|

t=t0

acting on elements f in the local algebra C∞(p) defined in (3). The objects f, γ(t) and
γ′(t0) are all defined on M without reference to some mythical “surrounding Euclidean
space.”

1.9. Definition. If M is a smooth manifold and p ∈ M a base point, the tangent
vectors at p are regarded as the derivations on the local algebra C∞(p). The tangent
space TMp at p is the set of all such derivations. It is a vectors space because a sum of
derivations on C∞(p) is again a derivation.

The following properties hold for directional derivatives along curves in M and their
associated derivations on the local algebra C∞(p).

1. Directional derivatives γ′(t0) along smooth curves through p are linear maps from
C∞(p) to R – i.e. they are linear functionals in the dual space V ∗ of the ∞-
dimensional vector space V = C∞(p). The classical product formula of Calculus

d

dt
{(f · h)(t)} =

df

dt
· h(t) + f(t) ·

dh

dt

shows that they are also derivations on C∞(p) because we have (f ·h)(γ(t)) =
(f ◦ γ(t)) · (h ◦ γ(t)) for all t, and

⟨γ′(t0), f · h ⟩ =
d

dt
{(f ◦ γ(t)) · (h ◦ γ(t))}|

t=t0

=
d

dt
{f ◦ γ}|

t=t0
· h(p) + f(p) ·

d

dt
{h ◦ γ(t)}|

t=t0

= ⟨γ′(t0), f⟩ · h(p) + f(p) · ⟨γ′(t0), h⟩ !

for all f, h ∈ C∞(p).

2. Sums ℓ1+ℓ2 and scalar multiples λ·ℓ are again derivations on C∞(p), so the tangent
space TMp is a vector space over R.

3. The directional derivative γ′(t0) is a local operator on C∞(p): the outcome ⟨γ′(t0), f⟩
depends only on the behavior of f near p = γ(t0). In particular, if f ≡ h on some
open neighborhood of p then ⟨γ′(t0), f⟩ = ⟨γ′(t0), h⟩, and if f ≡ 0 near p we get
⟨γ′(t0), f⟩ = 0.

Which curves passing through p determine the same operation on C∞(p)? If we describe
curves γ(t), η(t) in local coordinates, say with

x(t) = xα ◦ γ(t) = (x1(t), · · · , xm(t)) and y(t) = xα ◦ η(t) = (y1(t), · · · , ym(t))

then γ′(t0) = η′(t0) as operations on C∞(p) if and only if the “first order terms” agree,
so that

x(t0) = y(t0) and
dx1

dt
(t0) =

dy1
dt

(t0), . . . ,
dxm

dt
(t0) =

dym
dt

(t0) .

This is clear from equation (4), from which it also follows that the higher order derivatives
of x(t) and y(t) are irrelevant.

These definitions are framed in a way that does not favor any single system of local
coordinates near p over any other system in the maximal atlas. In this sense, all defini-
tions so far are coordinate-independent.
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Differential Operators ∂/∂xi Determined by a Chart on M .
Given a chart (xα, Uα) on M we can define derivations on C∞(p) that correspond to the
familiar partial derivatives of Calculus. If p in M corresponds to a point p = xα(p) =
(p1, . . . , pm) ∈ Rm under the chart map xα, we can define parametrized straight lines
γ̃i(t) in Rm such that γ̃i(0) = p.

γ̃i(t) = p+ tei = (p1, · · · , pi + t, · · · , pm) = (x1(t), · · · , xm(t)) 1 ≤ i ≤ m ,

where e1, . . . , em are the standard basis vectors in Rm. These curves in coordinate space
can be transferred to C∞ curves γi(t) = x−1

α ◦ γ̃i(t) in the manifold that pass through
p in M when t = 0. Directional derivatives along these curves are derivations γ′i(0) on
C∞(p), which we denote by

( ∂

∂xi
|
p
) : C∞(p) → R for 1 ≤ i ≤ m .

These operator act on functions that live on the manifold M , while the classical partial
derivativesDxi act on functions that live on coordinate space Rm. The effect of (∂/∂xi|p)
on an element f ∈ C∞(p) is indicated using “bracket notation,” by writing

(5)
∂f

∂xi
(p) = ⟨ ∂

∂xi
|
p
, f ⟩ for f ∈ C∞(Uα) and 1 ≤ i ≤ m.

Note carefully: a chart (xα, Uα) determines correlated tangent vectors Xp = (∂/∂xi|p)
simultaneously at every base point in Uα. The result is a “field of tangent vectors” on
the chart domain Uα.

If we now let the base point p vary within M we obtain new functions ∂f/∂xi(u) =
⟨γ′i(0), f⟩ defined throughout the chart domain Uα. A simplified version of (4) tells us
how to compute these partial derivatives ∂f/∂xi on the manifold.

1.10. Lemma. If (xα, Uα) is a chart on M and f ∈ C∞(Uα), the partial derivatives
∂f/∂xi on the manifold are given by

∂f

∂xi
(p) = (Dxi(f ◦ x−1

α )) ◦ xα(p) 1 ≤ i ≤ n

for all p ∈ Uα. Thus we get ∂f/∂xi on a chart in M in three steps:

• Transfer f(u) in C∞(M) to a C∞ function (f ◦ x−1
α )(x) on Rm.

• Take the classical partial derivative Dxi(f ◦ x−1
α )(x) on Rm.

• Bring the result back to M to get

∂f

∂xi
(u) = (Dxi(f ◦ x−1

α ))(xα(u))

for u ∈ Uα.

Proof of 1.10: Write p = xα(p) and x(t) = xα ◦ γi(t) = (x1(t), . . . , xm(t)). If we factor
f ◦ γi = (f ◦ x−1

α ) ◦ (xα ◦ γi) we get maps R → Rm → R, to which we may apply the
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classical chain rule to get

∂f

∂xi
(p) = ⟨ ∂

∂xi
|
p
, f⟩ = ⟨γ′i(0) , f⟩

=
d

dt
{f ◦ γi(t)}|t=0

=
d

dt
{(f ◦ x−1

α ) ◦ (xα(γi(t)))}|t=0

=
d

dt
{(f ◦ x−1

α )(p1, . . . , pi + t, . . . , pm)}|
t=0

=
m∑

j=1

[ (Dxj(f ◦ x−1
α ))(p1, . . . , pi + t, . . . , pm) ·

dxj

dt
(t) ] |

t=0

= 0 + . . .+ 1 ·Dxi(f ◦ x−1
α )(p) + . . .+ 0 = Dxi(f ◦ x−1

α ) ◦ xα(p)

because xα ◦ γi(t) = (p1, . . . , pi + t, . . . , pm) if p = xα(p) = xα ◦ γ(0). !

We will often invoke the following example.

1.11. Example. If (xα, Uα) is a chart on a differentiable manifold the chart map can
be written as

x = xα(u) = (X1(u), . . . , Xm(u))
whose components Xk(u) are scalar-valued C∞ functions on the chart domain Uα. It is
amusing to compute ∂Xk/∂xj on Uα as an exercise in understanding how the notation
works. We claim that

(6)
∂Xk

∂xj
(u) ≡ δkj for all u ∈ Uα and all j, k

where δkj is the Kronecker delta symbol, equal to 1 if k = j and = 0 when j ̸= k.

Discussion: Since

x = (x1, . . . , xm) = xα(x
−1
α (x)) = (X1(x

−1
α (x)), . . . , Xm(x−1

α (x)))

we have Xk ◦ x−1
α (x) ≡ xk for all x in Vα = xα(Uα) ⊆ Rm. Applying Lemma 1.10 we get

∂Xk

∂xj
(u) = ⟨ ∂

∂xj
|
u
, Xk⟩ = (Dxj (Xk ◦ x

−1
α ))(xα(u))

= Dxj (xk)|
x=xα(u)

= δkj

for all u ∈ Uα. !

If (xα, Uα) is a chart on M and p ∈ M , we can invoke (4) to evaluate the directional
derivative of a function f ∈ C∞(p) along a smooth curve γ(t) through p, by passing
the problem over to coordinate space where the outcome can be determined using the
familiar tools of multivariate Calculus. The final result is a pleasing and easily applied
formula involving the functions ∂f/∂xi on chart domains in M .

1.12. Corollary. Let (xα, Uα) be a chart on M , p a base point in Uα, and f ∈ C∞(p).
If γ(t) is a C∞ curve such that γ(0) = p whose description in local coordinates has the
form

xα(γ(t)) = (xi(t), . . . , xm(t)) with C∞ coefficients xi(t) ,

then the tangent vector Xp = γ′(0) determined by differentiating along γ(t) is given by

⟨Xp, f⟩ = ⟨γ′(0) , f⟩ =
m∑

j=1

dxj

dt
(0) ·

∂f

∂xj
(p)

= ⟨
m∑

j=1

dxj

dt
(0) · ( ∂

∂xj
|
p
) , f ⟩(7)
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for all f ∈ C∞(p).

Proof: After factoring f ◦ γ = (f ◦ x−1
α ) ◦ (xα ◦ γ), apply the chain rule to get

⟨γ′(t), f⟩ =
d

dt
{f ◦ γ(t)} =

d

dt
{f ◦ x−1

α (x1(t), . . . , xm(t))}

=
m∑

j=1

dxj

dt
(t) ·

∂f

∂xj
(γ(t))

Now set t = 0. !

1.13. Corollary. If (xα, Uα) is a chart on M the vectors

X = {( ∂

∂x1
|
p
), . . . , ( ∂

∂xm
|
p
)}

are a basis for the tangent space TMp for every p ∈ Uα. In particular dim(TMp) = m,
so the space of derivations on C∞(p) is finite dimensional even though the local algebra
C∞(p) itself is infinite dimensional.

Proof: As we will show in Appendix XI-A, every derivation D : C∞(p) → R is a di-
rectional derivative γ′(0) along some (not necessarily unique) smooth curve such that
γ(0) = p. The identity (7) shows that the vectors in X span TMp. They are also inde-
pendent, for if there are scalars ci such that 0 =

∑m
j=1 ci(∂/∂xi|u) for all u ∈ Uα, we

may apply this functional on C∞(u) to each of the scalar components Xk(u) of the chart
map xα(u) = (X1(u), . . . , Xm(u)) to get

0 =
m∑

i=1

ci⟨
∂

∂xi
|
u
, Xk⟩ =

m∑

i=1

ci ·δik = ck for k = 1, 2. . . . ,m .

Thus X is a basis for TMp. !

Change of Coordinates. A chart (xα, Uα) determines basis vectors (∂/∂xi|u) and
partial derivatives ∂f/∂xi(u) at each point u in the chart domain Uα. A different chart

(yβ , Uβ) containing p will assign other basis vectors (∂/∂yi|u) and partial derivatives
∂/∂yi(u) at points where the domains overlap. We often need to pass descriptions of
these constructs from one coordinate system to another.

Given overlapping charts (xα, Uα) and (yβ , Uβ) on M , the scalar components in xα =
(X1, . . . , Xm) and yβ = (Y1, . . . , Ym) are C∞ functions on the chart domains. For future
reference we determine the coordinate transition maps xα ◦ y−1

β and yβ ◦ x−1
α , which

are defined on the open sets in Rm that correspond to U = Uα ∩ Uβ in M under the
chart maps xα and yβ. A point x ∈ xα(U) maps to

y = (y1, . . . , yn) = yβ ◦ x−1
α (x) = (Y1 ◦ x

−1
α (x), . . . , Ym ◦ x−1

α (x) )

in yβ(U), so yj = Yj ◦ xα(x). The vector-valued map y = F (x) = yβ ◦ x−1
α (x) from Rm

to Rm is C∞ and its classical Jacobian matrix is

(8) [DF (x)] = [Dxj (yi)] = [Dxj (Yi ◦ x
−1
α )(x) ] for x ∈ xα(U)

In the reverse direction we have

x = (x1, . . . , xm) = G(y) = xα ◦ y−1
β (y) = (X1 ◦ y

−1
β , . . . , Xm ◦ y−1

β )

and this inverse map has Jacobian matrix

(9) [DG(y)] = [Dyj(xi)] = [Dyj (Xi ◦ y
−1
β )(|bfx) ] for y ∈ yβ(U)
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The transformation law below lets us write derivatives ∂f/∂xi computed with respect
to one chart on M in terms of the partial derivatives ∂f/∂yj for another chart. We will
make heavy use of these laws. Note that the resulting formulas are cast entirely in terms
of functions that live on the manifold M .

1.14 Theorem (Change-of-Variable Formula). Let (xα, Uα) and (yβ , Uβ) be over-
lapping charts on a manifold M . For any C∞ function f on M we have

(10)
∂f

∂xi
(u) =

m∑

j=1

∂f

∂yj
(u) ·

∂Yj

∂xi
(u) for all u ∈ Uα ∩ Uβ ,

where Yj ∈ C∞(Uβ) are the scalar components of the chart map yβ = (Y1, . . . , Ym).

Proof: The proof is a mildly strenuous exercise in applying the classical chain rule (and
our definition of the operators ∂/∂xi on the manifold). For u ∈ Uα ∩ Uβ we have

∂f

∂xi
(u) = (Dxi(f ◦ x−1

α )) ◦ xα(u) = [Dxi((f ◦ y−1
β ) ◦ (yβ ◦ x−1

α ))] ◦ xα(u)

This insertion of y−1
β ◦yβ is a crucial step. It makes the map f◦x−1

α : Rm → R a composite

of smooth maps Rm φ
−→ Rm F

→ R between Euclidean spaces, with F = f ◦ y−1
β . The

classical chain rule says:

Dxi(F ◦ φ)(x) =
m∑

j=1

DyjF (φ(x)) ·Dxiyj(x)

where y = φ(x) = (y1(x), . . . , ym(x)) maps Rm → Rm. Now set F = f ◦ y−1
β and

y = φ(x) = yβ ◦ x−1
α (x) = (y1(x), . . . , ym(x)) mapping Rm → Rm to get

∂f

∂xi
(u) =

m∑

j=1

[(Dyj(f ◦ y−1
β )) ◦ (yβ ◦ x−1

α )](xα(u)) · [Dxi((yβ ◦ x−1
α )j)](xα(u))

=
m∑

j=1

[((Dyj (f ◦ y−1
β )) ◦ yβ)(u)] · [Dxi(Yj ◦ x

−1
α )](xα(u))

=
m∑

j=1

∂f

∂yj
(u) ·

∂Yj

∂xi
(u) (definition of ∂f/∂yj and ∂Yj/∂xi) !

1.15 Corollary (Change of Variable Formula for Operators). The operators
∂/∂xi and ∂/∂yj determined by overlapping charts (xα, Uα) and (yβ , Uβ) on a manifold
M transform in the following way

(11)
∂

∂xi
|
u
=

m∑

j=1

∂Yj

∂xi
(u) ·

∂

∂yj
|
u

for all 1 ≤ i, j ≤ m and u ∈ Uα ∩ Uβ .

as linear operators on functions in C∞(Uα ∩ Uβ).

These “change of variable” formulas are easy to remember: the Yj and yj should “cancel”
when the formula is written correctly, leaving only terms that involve ∂/∂xi.

Given overlapping charts (xα, Uα), (yβ, Uβ) on M , entries in the Jacobian matrices
(8) and (9) are C∞ scalar-valued functions on open subsets of coordinate space Rm,

[ ∂yi
∂xj

(x)] = [Dxj(Yi ◦ x
−1
α ) ] at points x ∈ xα(Uα) ⊆ Rm

[ ∂xi

∂yj
(y)] = [Dyj(Xi ◦ y

−1
β ) ] at points y ∈ yβ(Uβ) ⊆ Rm
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These matrices are inverses of each other when evaluated at base points x,y in Rm that
correspond under the transition maps. However, the relation between Jacobian matrices
becomes clearer if we move these matrix-valued functions from coordinate space Rm to
the manifold M itself. The resulting matrix-valued functions defined on M

[ ∂Yi

∂xj
] = [ ∂yi

∂xj
◦ xα] = [ ∂(Yi ◦ x−1

α )

∂xj
◦ xα] (by Lemma 1.10)

[∂Xi

∂yj
] = [ ∂xi

∂yj
◦ yβ] = [

∂(Xi ◦ y
−1
β )

∂yj
◦ yβ] (Lemma 1.10 again)

are then inverses of each other at every base point in Uα ∩ Uβ.

1.16 Exercise. Prove that the transferred Jacobian matrices on M are inverses of each
other at every base point in Uα ∩ Uβ, so

(12) [ ∂Yi

∂xj
(u)] · [∂Xi

∂yj
(u)] = Im×m for all u ∈ Uα ∩ Uβ

Hint: By 1.11, ∂Yi/∂yj = δij ; rewrite ∂/∂yj in terms of the ∂/∂xk as in (11). !

Vector Fields as Differential Operators on M.
On M , or any open subset thereof, a vector field X̃ is a map that assigns a tangent
vector Xp ∈ TMp at each p ∈ M . By Corollary 1.13, on any chart domain Uα there are
uniquely determined coefficients ci(u) such that

X̃u =
m∑

i=1

ci(u) · (
∂

∂xi
|
u
) for u ∈ Uα.

These coefficients will change if we pass to another coordinate chart, but smoothness of
the coefficients is always preserved.

1.17 Lemma. If Xu =
∑

ci(u) · ( ∂
∂xi

|u) for u near base point p ∈ Uα when described in
local coordinates (xα, Uα), then in any other chart (yβ , Uβ) containing p we have

Xu =
m∑

j=1

dj(u) · (
∂

∂yj
|
u
)

with coefficients

dj(u) =
m∑

k=1

ck(u) ·
∂Yj

∂xk
(u) ,

where the Yj are the scalar components of yβ = (Y1(u), . . . , Ym(u)).
Proof: This is immediate from equation (11). !

A smooth vector field X̃ is a field p 1→ Xp of tangent vectors on M whose description
in local coordinates has C∞ coefficients for every chart. It follows from Lemma 1.17
that smoothness of X̃ on M has a coordinate-independent meaning because the scalar
components Yj(u) of yβ and their derivatives ∂Yj/∂xk are smooth functions on M .

1.18 Corollary. If X is a vector field on M whose description in local coordinates is

Xu =
∑

ci(u) · ( ∂
∂xi
|
u
) with coefficients that are C∞ near p, then the same will be true

for any other chart (yβ , Uβ) about p.

The set of smooth vector fields on M is denoted D(1,0)(M). It becomes a vector space
over R if we define

(X + Y )p = Xp + Yp and (λX)p = λ ·Xp for p ∈ M .
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This ∞-dimensional space is also a C∞(M)-module because there is a natural action
C∞(M)×D(1,0)(M) → D(1,0)(M) defined by pointwise multiplication

(f · X̃)p = f(p) ·Xp for all p

There is also an action D(1,0) × C∞(M) → C∞(M), obtained by letting a vector field
X̃ act on functions in the following way

(13) X̃f(u) = ⟨Xu, f ⟩ for all u ∈ M.

When X̃f is described in local chart coordinates X̃ becomes an operator that acts on
smooth functions on coordinate space Rm like a first order partial differential operator
with variable coefficients. In fact, if (xα, Uα) is a chart on M and we describe X̃ in chart
coordinates we get

Xu =
∑

i

ci(u) · (
∂

∂xi
|
u
) with ci(u) ∈ C∞(Uα) ,

so that

X̃f(u) = ⟨Xu, f ⟩ =
m∑

i=1

ci(u) · ⟨
∂

∂xi
|
u
, f ⟩

=
m∑

i=1

ci(u) ·
∂f

∂xi
(u)

is in C∞(Uα). When smooth vector fields on M are regarded as differential operators
on M , we see that vector fields have their own “global derivation” property in addition
to being linear operators X̃ : C∞(M) → C∞(M); they are linear derivations on C∞(M),
with

X̃(f ·h)(u) = X̃f(u) · h(u) + f(u) · X̃h(u) for u ∈ M and f, h ∈ C∞(M) .

This follows directly from definition (13).
Another important property of this action involves the support sets of functions f in

C∞(M),

supp(f) = Closure in M of the set {u ∈ M : f(u) ̸= 0}

= Complement in M of the open set {u ∈ M : f(u) = 0} ,

1.19 Proposition (Reduction of Supports). The action of a smooth vector field X̃
can only decrease the support set supp(f) of a function f ∈ C∞(M), or equivalently

f ≡ 0 on an open set U ⊆ M ⇒ X̃(f) ≡ 0 on U .

Proof: If f ≡ 0 near p, write X̃ in local chart coordinates to see X̃f ≡ 0 near p. !

By looking at differences f − h we get

f ≡ h on an open set U ⊆ M implies X̃ f ≡ X̃ h on U , for all f, h ∈ C∞(M).

This means that smooth vector fields X̃ are local operators on C∞(M): the value of X̃f
at a point p is determined only by the behavior of f in the immediate vicinity of p.

Action of Smooth Maps φ : M → N on Tangent Vectors.
If φ : M → N is a C∞ map, p ∈ M , and q = φ(p) in N , then under the action of φ,
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• Points p ∈ M get moved forward to points q = φ(p) in N .

• Functions f ∈ C∞(N) get “pulled back” to functions φtf = f ◦ φ in C∞(M).

• Tangent vectors Xp in TMp get “pushed forward” to vectors (dφ)p(Xp) in TNq by
the differential of φ at p, the linear map (dφ)p : TMp → TMq defined as follows.

(14)

For Xp ∈ TMp and f ∈ C∞
N (φ(p)), we define the tangent vector (dφ)pXp

in TNφ(p) to be the unique tangent vector at q = φ(p) such that

⟨ (dφ)pXp , f ⟩ = ⟨Xp, (dφ)
t
pf ⟩ = ⟨Xp, f ◦ φ⟩ ,

for all C∞ functions f defined on N near φ(p).

It is obvious that (14) determines a derivation Yq = (dφ)pXp on C∞
N (φ(p)), so it is in

TNq; it is also obvious that (dφ)p is a linear map from TMp → TNφ(p). None of these
definitions refer to coordinates on M or N .

To calculate the effect of (dφ)p we impose local charts (xα, Uα) about p and (yβ, Uβ)
about q = φ(p) which determine bases X = {(∂/∂xi|p)} and Y = {(∂/∂yj|q)} in TMp

and TNq; the action of the linear operator (dφ)p : TMp → TNφ(p) is completely deter-
mined once we know what it does to the basis vectors. This action is described by a law
similar to the Change-of-Coordinates rule in Theorem 1.14.

1.20 Theorem. (Transformation Law for Tangent Vectors). If φ : M → N
is a C∞ map, p ∈ M , and q = φ(p), let (xα, Uα) and (yβ , Uβ) be charts about p
and q respectively. If the scalar components of the chart map yβ on N are given by
yβ(v) = (Y1(v) . . . , Yn(v)) for v ∈ Uβ, then

(15) (dφ)p(
∂

∂xi
|
p
) =

n∑

j=1

∂(Yj ◦ φ)

∂xi
(p) · ( ∂

∂yj
|
q
) for 1 ≤ i ≤ m.

Proof: On any chart (yβ , Uβ) in N the scalar components of yβ have the property
∂Yi/∂yj ≡ δij (Kronecker delta) throughout the chart domain Uβ . For any basis vector
(∂/∂xi|p) in TMp, its image in TNφ(p) can be written

(dφ)p(
∂

∂xi
|
p
) =

n∑

j=1

cj(q) · (
∂

∂yj
|
q
) (q = φ(p))

By (6) the coefficients cj(q) can be recovered by bracketing with the scalar components
Yk of the chart map yβ , so

cj(q) = ⟨ (dφ)p(
∂

∂xi
|
p
) , Yj⟩

= ⟨( ∂

∂xi
|
p
) , Yj ◦ φ⟩ (definition (14) of (dφ)p)

=
∂(Yi ◦ φ)

∂xi
(p)

That proves (15). !

Note the formal cancellation of “yj” and “Yj” when the formula is written correctly.

1.21 Exercise. (Composition of Maps). Let M
ψ
→ N

φ
→ Q be C∞ maps between
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manifolds. If p ∈ M and q = ψ(p) in N , explain why the composite φ ◦ ψ : M → Q is a
C∞ map, and prove that

d(φ ◦ ψ)p = (dφ)ψ(p) ◦ (dψ)p

as maps TMp → TNψ(p) → TQφ(ψ(p)) !.

The next example shows how to calculate the differential (dφ)p : TMp → TNφ(p) of a
smooth mapping between manifolds.

1.22 Example. The complex variable “squaring map” w = φ(z) = z2 takes the form

u+ iv = φ(x, y) = (x + iy)2 = (x2 − y2) + i(2xy) = (x2 − y2, 2xy)

in Cartesian coordinates when we write z = x + iy and w = u + iv. This is a map
φ : M → N between two copies of the complex plane C, each of which can be regarded
as a C∞ manifold whose structure is determined by a single global chart:

• For M take (xα, Uα) with Uα = M and (x, y) = xα(z) = (X(z), Y (z)) ∈ R2, where
X(z) = x and Y (z) = y if z = x+ iy.

• For N take (yβ , Uβ) with Uβ = N and (u, v) = yβ(w) = (U(w), V (w)) ∈ R2, where
U(w) = u and V (w) = v if w = u+ iv.

At a typical point z = x+ iy in M the identity (u, v) = yβ ◦φ◦x−1
α (x, y) forces the scalar

components of the chart maps xα = (X,Y ) and yβ = (U, V ) to satisfy the relations

u = (U ◦ φ)(z) = U(φ(z)) = X2(z)− Y 2(z) = x2 − y2

v = (V ◦ φ)(z) = V (φ(z)) = 2X(z)Y (z) = 2xy

where w = u+ iv = z2. The players involved are shown in the following diagram.

x+ iy = z C
φ

−−−−−−−−−−−→ C w = u+ iv = z2

↓ xα ↓ ↓ yβ ↓

xα(z) = (X(z), Y (z)) = (x, y) R2
Φ=yβ◦φ◦x

−1
α

−−−−−−−−−−−→ R2 (u, v) = (U(w), V (w)) = (x2
− y2, 2xy)

If p ∈ M and q = φ(p) ∈ N the charts xα, yβ determine basis vectors (∂/∂x|p), (∂/∂y|p)
and (∂/∂u|q), (∂/∂v|q) in the tangent spaces TMp,TNq, which have dimension = 2
over R. To compute (dφ)p we describe φ in these local coordinates. The C∞ map
Φ = yβ ◦ φ ◦ x−1

α : R2 → R2 between coordinate spaces is

(u, v) = Φ(x, y) = yβ ◦ φ ◦ x−1
α (x, y) = yβ(φ(x + iy)) = (x2 − y2 , 2xy)

and its Jacobian matrix is

[DΦ(x, y)] =
∂(u, v)

∂(x, y)
=

[
2x −2y
2y 2x

]

If p = x+iy inM , so xα(p) = (X(p), Y (p)) = (x, y), basis vectors in TMp are transformed
to vectors in TNφ(p) via

(dφ)p(
∂

∂x
|
p
) =

∂(U ◦ φ)

∂x
(p) · ( ∂

∂u
|
φ(p)

)+ ∂(V ◦ φ)

∂x
(p) · ( ∂

∂v
|
φ(p)

)

as in (15). But on Uα ⊆ M we have ∂X/∂x ≡ 1, ∂X/∂y ≡ 0, etc (courtesy of Example
1.11), hence

∂(U ◦ φ)

∂x
=

∂

∂x
(X2 − Y 2) = 2X ·

∂X

∂x
− 2Y ·

∂Y

∂x
= 2X

∂(V ◦ φ)

∂x
=

∂

∂x
(2XY ) = 2Y ·

∂X

∂x
+ 2X ·

∂Y

∂x
= 2Y ,
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so at p = x+ iy in M we have

(dφ)p(
∂

∂x
|
p
) = 2X(p) · ( ∂

∂u
|
φ(p)

)+ 2Y (p) · ( ∂
∂v
|
φ(p)

)

= 2x · ( ∂
∂u
|
φ(p)

)+ 2y · ( ∂
∂v
|
φ(p)

)(16)

where φ(p) = p2. As a numerical example, suppose p = 2+ i in M , so φ(p) = (2 + i)2 =
3 + 4i. By (16) we get

(dφ)p(
∂

∂x
|
p
) = 4 · ( ∂

∂u
|
φ(p)

)+ 2 · ( ∂
∂v
|
φ(p)

)

at the base point p = 2 + 1 in M , and a similar calculation yields

(dφ)p(
∂

∂y
|
p
) = −2Y (p) · ( ∂

∂u
|
φ(p)

)+ 2X(p) · ( ∂
∂v
|
φ(p)

)

= −2 · ( ∂
∂u
|
φ(p)

)+ 4 · ( ∂
∂v
|
φ(p)

)

Given the action on basis vectors, the action of (dφ)p : TMp → TNφ(p) on arbitrary
tangent vectors is determined by linearity. !

XI.2 Cotangent Vectors and Differential Forms.

As in Chapter IX, the dual space of a vector space V over R is the set V ∗ of all linear
functionals on V , the linear maps ℓ : V → R. If dim(V ) < ∞ then dim(V ∗) = dim(V ),
and any basis X = {e1, . . . , en} in V induces a dual basis X∗ = {e∗1, . . . , e

∗
n} in V ∗,

determined by the property

⟨ e∗i , ej⟩ = δij (Kronecker delta symbol)

If v =
∑n

i=1 ciei in V the dual functional e∗k reads the kth coefficient ck of v, so ⟨e∗k, v⟩ =
ck, and if ℓ =

∑n
j=1 dje

∗
j in V ∗ its coefficients can be found by bracketing ℓ with the

basis vectors ej to get
dj = ⟨ ℓ, ej⟩ for 1 ≤ j ≤ n .

If M is a differentiable manifold the tangent spaces TMp and their dual spaces TM∗
p both

play crucial roles in differential geometry.

2.1 Definition. The cotangent space at p ∈ M is the dual space TM∗
p to the tangent

space TMp. For reasons that will gradually emerge, this space is often referred to as the

space of 1-forms, or rank-1 differential forms on TMp, and denoted
∧1(TM∗

p). By
definition, the field of scalars R is regarded as the space of rank-0 differential forms
on TMpM , and as such is denoted by

∧0(TM∗
p ).

Given a chart (xα, Uα) on M and a point p ∈ M , we get a basis

Xp = {( ∂

∂xi
|
p
)} for TMp and a dual basis X∗

p = {( ∂

∂xi
|
p
)
∗
} in TM∗

p .

For various reasons these dual vectors have come to be denoted by other symbols that
may seem peculiar at first, but the notation will grow on you as its advantages become
apparent. Hereafter we shall write

(17) (dxi)p ≡ ( ∂

∂xi
|
p
)
∗
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so the dual basis determined by a chart is written

(dx1)p, . . . , (dxm)p instead of the more cumbersome ( ∂

∂x1
|
p
)
∗
, . . . , ( ∂

∂xm
|
p
)
∗

By definition of “dual basis” we then have

(18) ⟨ (dxi)p , (
∂

∂xj
|
p
)⟩ = δij (Kronecker delta)

for 1 ≤ i, j ≤ m.

The Canonical d-Operator on C∞(M).
Each f ∈ C∞(p) determines an element (df)p ∈ TM∗

p, the rank-0 exterior derivative
of f at p. This is given by a construction that makes no mention of local coordinates:

(19) (df)p : TMp → R is obtained by letting ⟨ (df)p, Xp⟩ = ⟨Xp, f ⟩

for all f ∈ C∞(p) and Xp ∈ TMp. On any chart domain Uα the outcome can also be
described in local coordinate to write (df)p as a linear combination of the dual basis
vectors (dx1)p, . . . , (dxm)p determined by the chart (xα, Uα).

2.2 Proposition. Given a chart (xα, Uα) and a function f ∈ C∞(Uα), the rank-0
exterior derivative (df)p ∈ TM∗

p has the following description in local chart cooordinates
at every base point p ∈ Uα.

(20) (df)p =
m∑

i=1

∂f

∂xi
(p) · (dxi)p .

Proof: At each p ∈ Uα there exist unique coefficients such that (df)p =
∑m

i=1 ci(u) (dxi)p
in TM∗

p. To determine the ci simply apply (df)p to the basis vectors (∂/∂xi|p) in TMp;

by (6) we get

ci(p) = ⟨(df)p,
∂

∂xi
|
p
⟩ = ⟨ ∂

∂xi
|
p
, f ⟩ (definition (19) of (df)p)

=
∂f

∂xi
(p) for 1 ≤ i ≤ m !

Observe that (df)p has the same general form in all coordinate systems. For example,
given Cartesian coordinates x = xα(u) = (x, y) and polar coordinates y = yβ(u) = (r, θ)
on an open subset U ⊆ M = R2, we have

(df)u =
∂f

∂x
(u) · (dx)u +

∂f

∂y
(u) · (dy)u =

∂f

∂r
(u) · (dr)u +

∂f

∂θ
(u) · (dθ)u

for all u where the charts overlap. Note the resemblance between the description of
(df)p in (20) and the classical gradient ∇f(p) =

∑n
i=1 Dxif(p) ei of a smooth function

f : Rn → R. This is not an accident. In the theory of manifolds the classical gradient
∇f becomes the rank-0 exterior derivative d : C∞(M) →

∧1(TM∗
p) and ∇f becomes the

1-form df of (19).
Every cotangent vector ωp ∈ TM∗

p is equal to (df)p for some f , but the f is not
unique.

2.3 Lemma. The map d : C∞(p) → TM∗
p that sends f 1→ (df)p is linear and surjective.

but not one-to-one. The nontrival kernel of this map is

ker(d) = {f ∈ C∞(M) :
∂f

∂x1
(p) = . . . =

∂f

∂xm
(p) = 0}
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Thus (df)p = 0 if and only if p is a critical point for f : M → R when f is described in
local coordinates.

Proof: If we have ∂f/∂xi(p) = 0 for 1 ≤ i ≤ m, for one chart (xα, Uα) about p then by
(10) this must be true for every other chart (yβ , Uβ) about p. Thus the property “p is a
critical point for f” is independent of any choice of local coordinates.

Surjectivity follows for an interesting reason. The scalar component functions Xi(u)
of the chart map xα(u) = (X1(u), . . . , Xm(u))) are in C∞(Uα), and by (6) we get

(21) (dXi)u = (dxi)p for 1 ≤ i ≤ m

because when we apply (dXi)p ∈ TM∗
P to a typical basis vector in TMp equation (20)

yields

(dXi)u =
m∑

j=1

∂Xi

∂xj
(u)·(dxj)u =

m∑

j=1

δij ·(dxj)u = (dxi)u .

Thus (dXi)u and the dual vector (dxi)u = (∂/∂xi|u)
∗
determined by the chart (xα, Uα)

are identical elements in TM∗
u for all u ∈ Uα, despite their very different origins. It is

now clear that range(d) contains a basis for TM∗
p, and therefore is surjective. !

Let ω : p → ωp ∈ TM∗
p be a field of 1-forms on M . Given a chart (xα, Uα) there are

unique coefficients cj(p) such that

(22) ωp =
m∑

j=1

cj(p)·(dxj)p in TM∗
p for p ∈ Uα .

By (18) the coefficients can be recovered by bracketing ωp with the basis vectors {(∂/∂xi|p)}
in TMp determined by the chart.

2.4 Definition. We say that ω is a smooth field of 1-forms, or a smooth rank-
1 differential form on M if for every chart (xα, Uα) the coefficient functions ck(u)
are in C∞(Uα). As we will show in Proposition 2.5 below, this definition is coordinate-
independent. The set of such fields on M is denoted by D(0,1)(M), or sometimes by∧1(M) depending on the context. This becomes an infinite-dimensional vector space if
sums and scalar multiples in D(0,1)(M) are given by

(λω)p = λ·ωp and (ω + µ)p = ωp + µp in TM∗
p .

for all p ∈ M , and fields ω, µ ∈ D(0,1)(M). This space of 1-forms is also a C∞(M)-module
under the action C∞(M)×D(0,1)(M) → D(0,1)(M) given by

(f ·ω)p = f(p)·ωp for p ∈ M, f ∈ C∞(M),ω ∈ D(0,1)(M) .

The following Change-of-Variable law for 1-forms justifies our claim that smoothness
is a coordinate-independent property of a field of cotangent vectors. The proof follows
easily from the previously established transformation law (11) for tangent vectors.

2.5 Proposition (Change of Variable for Cotangent Vectors). The cotangent
vectors (dxi)u and (dyj)u determined by charts (xα, Uα) and (yβ , Uβ) on a manifold M
transform in the following way

(dxi)u =
m∑

j=1

∂Yj

∂xi
(u) · (dyj)u 1 ≤ i, j ≤ m

for all base points u ∈ Uα ∩ Uβ. Here the Yi are the scalar components of the chart map
yβ = (Y1, . . . , Ym).
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Proof: There are unique coefficients such that (dyi)u =
∑m

j=1 cj(u)·(dxj)u. If the scalar

components of yβ are yβ(u) = (Y1(u), . . . , Ym(u)), then by (6) and Lemma 2.3, bracketing

with the dual basis vectors (∂/∂xk|u) yields

ck(u) = ⟨ (dyi)u,
∂

∂xk
|
u
⟩ = ⟨ (dYi)u,

∂

∂xk
|
u
⟩

= ⟨ ∂

∂xk
|
u
, Yi⟩ =

∂Yi

∂xk
(u) for 1 ≤ i ≤ m,

proving the formula. !

A law similar to Theorem 1.20 for tangent vectors describes the action by which a C∞

map φ : M → N “pulls back” cotangent vectors from base points in N to base points
in M . We won’t pursue this here since it won’t be needed in later discussion, but it is a
fundamental result in differential geometry – see Appendix XI-B for details.

The Exterior Derivative (an Overview). Equation (19) defines a linear operator
d = d0 :

∧0(M) →
∧1(M) called the rank-0 exterior derivative, where we define the

space of rank-0 differential forms to be
∧0(M) = C∞(M). As in (19) we have

(23) ⟨(df)p, Xp⟩ = ⟨Xp, f ⟩ for all f ∈ C∞(p), p ∈ M .

The rank-0 d-operator has its own derivation property:

(d(fh))u = (df)uh(u) + f(u)(dh)u for all u ∈ M and f, h ∈ C∞(M) .

We will soon define a hierarchy of spaces of smooth tensor fields
∧k(M) = (the rank k-differential forms on M)

and associated rank-k exterior derivatives d = dk :
∧k(M) →

∧k+1(M) such that

(24)
∧0(M)

d=d0

−−−→
∧1(M)

d=d1

−−−→
∧2(M)

d=d2

−−−→ · · ·
d=dm−1

−−−−−→
∧m(M)

d=dm

−−−→ 0

where m = dim(M). In all dimensions these dk play the roles occupied by the vector
operators div, grad, curl in m = 3 dimensions, but a few more ideas must be developed
before that connection can be explained.

Primitives of 1-forms. If ω is a smooth 1-form on an open set U ⊆ M , a primitive
of ω is an f ∈ C∞(U) such that df = ω on U . If f is such a primitive on U , consider
a chart (xα, Uα) about p; replacing Uα → U ∩ Uα we may assume Uα ⊆ U . On Uα we
can describe ω in local coordinates, ωu =

∑m
i=1 wi(u) · (dxi)u with wi ∈ C∞(Uα). By

Proposition 2.2, df = ω on Uα means that

(df)u =
m∑

i=1

∂f

∂xi
(u) (dxi)u is equal to ωu =

m∑

i=1

wi(u) (dxi)u

for all u ∈ Uα. The coefficients must agree, so the wi(u) are related to the partial
derivatives of f via a system of partial differential equations

wi(u) =
∂f

∂xi
(u) for all u ∈ Uα and 1 ≤ i ≤ m .

This system does not always admit solutions, even locally. In fact the coefficients wi(u) of
ω in local coordinates must satisfy the following “consistency condition” if the equation
df = w is to have any local solutions within the chart domain.

(25)
∂wi

∂xj
−
∂wj

∂xi
≡ 0 on Uα for 1 ≤ i < j ≤ m .
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These conditions are necessary because if f is of class at least C(2) its mixed 2nd order
partial derivatives must agree, so the wi(u) satisfy a system of 1

2 (m
2 −m) equations in

the m unknowns u1, . . . , um.

∂wi

∂xj
=

∂

∂xj
( ∂f
∂xi

) =
∂

∂xi
( ∂f
∂xj

) =
∂wj

∂xi
for 1 ≤ i, j ≤ m

We list without proof the following facts about local and global primitives of 1-forms
ω ∈

∧1(M) – see Appendix XI-C for full details.

1. The consistency conditions for ω take the same form (25) in every system of local
coordinates. (This is fairly obvious.)

2. Using line integrals
∫
γ w of 1-forms along C(1) curves one can prove the existence

of local solutions near any base point p ∈ Uα if the conditions (25) are satisfied.

3. Conditions (25) do not by themselves imply the existence of a “global solution” f
in C∞(U) to the identity df = ω. The geometry of U can present obstructions to
existence of solutions for certain forms ω even when (25) holds, as in Example 2.7
below.

4. If ω is a smooth 1-form on a manifold M and the equation df = ω has a C∞ solution
on an open subset U ⊆ M that is connected, all other solutions on U are obtained
by adding an arbitrary constant to f .

2.6 Exercise. If f is a C∞ function defined near p ∈ M , prove that the following
properties are equivalent

(a)
∂f

∂xi
≡ 0 near p for 1 ≤ i ≤ m

(b) f ≡ (constant) on some open set containing p.

Hint: When transferred to coordinate space via a chart about p, this can be proved by
Calculus methods.
Note: It follows from the definition of “connectedness” that f ≡ (constant) on any
connected open set U ⊆ M such that df ≡ 0 throughout U . !

2.7 Example. Let M = R2 ∼ {0} (punctured plane). The angle-variable function

θ(x, y) = arcsin

(
y√

x2 + y2

)

is multiple-valued, but on any open half-plane H bounded by a line through the origin
there is a single-valued C∞ determination of θ, and these can only differ on H by a added
constant of the form 2πn (n ∈ Z). However, all C∞ determinations of θ(x, y), on any
open set in U ⊆ M , have the same single-valued exterior derivative ω = dθ ∈

∧1U such
that

(26) ωx =

(
−y

x2 + y2

)
dx+

(
x

x2 + y2

)
dy for x = (x, y) ∈ M

when ω is described in Euclidean coordinates on M . Thus ω has local primitives near
every p ̸= 0 inM , but the multiple-valued nature of the primitive θ(x, y) on the punctured
plane M may prevent us from pieceing together these local solutions to get a global C∞

function f : M → R such that df = ω throughout M . !
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2.8 Exercise. The punctured plane M = R2 ∼ {0} is covered by the four open half-
planes

H1 = {(x, y) : y > 0} H2 = {(x, y) : x > 0} H3 = {(x, y) : y < 0} H4 = {(x, y) : x < 0}

For each half-plane give an explicit single-valued C∞ determination of the angle variable
θ(x, y). In each case show that the exterior derivative ω = dθ has the form (26).
Hint: You may have to express your answer in terms of the functions arcsin, arctan, or
arccos from Calculus, depending on which Hi you examine. !

2.9 Exercise. The following 1-forms on M2 = R2 ∼ {0} are described with respect
to the standard Euclidean coordinates on these spaces. Identify those that can have
well-defined local primitives.

1. ω = ( y

x2 + y2
) · (dx) + ( x

x2 + y2
) · (dy) 4. ω = ln(x2 + y2) · (dx) + ln(x2 + y2) · (dy)

2. ω = ( x

x2 + y2
) · (dx) + ( y

x2 + y2
) · (dy) 5. ω = (x2 − y2) · (dx) + 2xy · (dy)

3. ω =
x

(x2 + y2)3/2
· (dx) +

y

(x2 + y2)3/2
· (dy) 6. ω = (2xy) · (dx) − (x2 − y2) · (dy)

2.10 Exercise. Verify that following 1-form on M3 = R3 ∼ {0}

ω =
x

(x2 + y2 + z2)3/2
· (dx) +

y

(x2 + y2 + z2)3/2
· (dy) +

z

(x2 + y2 + z2)3/2
· (dz)

has as a primitive the famed “1/r potential”

φ(x) =
1

∥x∥
in which ∥x∥ =

√
x2 + y2 + z2. !

Interpretations of 1-Forms and their Primitives.
In Calculus, “vector fields” on Rn (or open subsets thereof) are represented as F(x) =∑n

i=1 Fi(x) ei where e1, . . . , en are the “standard unit vectors” in Rn, but the nature of
these basis vectors is seldom mentioned. This is a problem because fields appearing in
applications are not all of the same type. For example:

1. Velocity fields X̃ onM = Rn must be regarded as fields of tangent vectors. In fact,
if γ(t) is a curve of class C(1) its vector derivative γ′(t) is the instantaneuous velocity
of the moving point p = γ(t), and this is a tangent vector in TMp. Therefore, at
any p ∈ M the basis vectors ei in the identity γ′(t) =

∑n
i=1 vi ei (vi ∈ R) should

also be interpreted as vectors in TMp. The instantaneous velocities of particles in
a fluid flow at a particular moment in time provide a physical example of a smooth
vector field of tangent vectors on an open subset M ⊆ Rn.

2. Gradient fields∇f determined by a function f : M → R, are classically presented
in the form

∇f(x) = Dx1f(x) e1 + . . .+Dxmf(x) em .

But there are many reasons to interpret every gradient field ∇f as a smoothly
varying field of cotangent vectors, not tangent vectors, and then the basis vectors
ei must also be regarded as cotangent vectors. Formula (20) strongly suggests
the following interpretation: taking global coordinates xα(x) = (x1, . . . , xm) on
Euclidean spaceM (with Uα = Rm) we have a well-defined set of basis vectors X∗

p =
{(dx1)p, . . . , (dxm)p} in TM∗

p for every base point p. If we impose the standard
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chart coordinates on Rm the exterior derivative d :
∧0(M) →

∧1(M) takes the
form (20),

(df)p =
m∑

i=1

∂f

∂xi
(p) · (dxi)p for all p ∈ Rm .

If f ∈ C∞(Rm) and we identify the “standard basis vectors” e1, . . . , em attached
to p ∈ Rm with the basis vectors (dx1)p, . . . , (dxm)p in the cotangent space TM∗

p,
then the exterior derivative (df)p becomes the classical gradient ∇f(p) everywhere
on Rm.

3. Electric fields E(x) = E1(x) e1+ . . .+Em(x) are also fields of cotangent vectors.
It has long been realized by physicists that, at least locally, E fields are gradients
E = ∇φ of scalar “potential functions” φ : M → R. If we identify the ei at a
base point p with the 1-forms (dxi)p determined throughout Rm by the standard
coordinate chart, then the classical statement E = ∇φ becomes a statement about
the exterior derivative of φ,

E(x) = (dφ)x = Dx1φ(x) (dx1)x + . . .+Dxmφ(x) · (dxm)x

for all x ∈ Rm.

4. Magnetic fields are classically described as fields of vectors, but the “vectors” in-
volved are something quite different, neither tangent vectors nor cotangent vectors.
These fields are in fact represented by fields of antisymmetric tensors of rank-2,
which assign at each base point p a nondegenerate antisymmetric bilinear form
Bp on the tangent space TMp. In the next section we will see how these arise
in the scheme (24). Understanding this last statement requires an excursion into
multilinear algebra.

XI.3 Tensor Fields and the Exterior Derivative.

Multilinear forms (tensors) on an arbitrary finite-dimensional vector space V have al-
ready been discussed in Chapter IX of these Notes. The rank-k tensors on V are the
multilinear forms ω : V × . . . × V → R (k factors), which become a vector space V (0,k)

when equipped with the addition and scaling laws operations

(ω1 + ω2)(v1, . . . , vk) = ω1(v1, . . . , vk) + ω2(v1, . . . , vk)

(λ · ω)(v1, . . . vk) = λ · ω(v1, . . . , vk)

Tensors of rank-1 are just vectors in the dual space V ∗ = V (0,1) and the rank-0 tensors
on V are the scalars V (0,0) = R. Tensors of arbitrary mixed type V (r,k) on V can be
defined but we won’t need them in this account; in this notation the space V itself is
denoted by V = V (1,0) and consists of tensors of “type (1,0).”

If X = {ei} is a basis for V and X∗ = {e∗i } is the dual basis in V ∗, then the space V (0,k)

of k-linear forms ω : V × . . . ×V → R is a vector space of dimension dim V (0,k) = mk if
dim(V ) = m. We will see that it is spanned by “monomials,” which are “tensor products”
of vectors in the dual basis X∗: if I = (i1, . . . , ik) is a multi-index with each ij ∈ [ 1,m]
we define the corresponding monomial e∗I ∈ V (0,k) to be the k-linear map

(27) e∗I = e∗i1 ⊗ . . . ⊗ e∗ik : (v1, · · · , vk) 1→
k∏

j=1

⟨e∗ij , vj⟩ where the vj ∈ V

These turn out to be a basis for V (0,k), so every rank-k multi-linear form can be written
uniquely as ω =

∑
I∈[1,m]k cIe

∗
I with cI ∈ R.
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Our main interest in these Notes will be tensors that act on the tangent spaces at base
points on a differentiable manifold M . At a base point p on M we consider tensors that
act on V = TMp. A tensor field of rank-k assigns a k-linear form ωu ∈ TM(0,k)

u at each
base point u ∈ M , but many results are purely algebraic and are true for arbitrary vector
spaces V . Given a chart (xα, Uα) onM and base point u ∈ Uα, we have bases {∂/∂xi|u} in
TMu and dual bases {(dxi)u} in TM∗

u, and then there are uniquely determined coefficient
functions cI(u) on Uα for I ∈ [1,m]k such that

ωu =
∑

I

cI(u) (dxI)u =
∑

I

cI(u) · (dxi1 )u ⊗ . . . ⊗ (dxik )u for all u ∈ Uα

A tensor field ω on M is smooth if the coefficient functions cI(u) are in C∞(Uα) for all
charts on M . It is routine (but messy) to verify that smoothness of ω when described in
one chart implies smoothness with respect to any other chart in the maximal atlas.

The space D(0,k)(M) of smooth rank-k tensor fields is an infinite-dimensional vector
space, and also a C∞(M)-module if we define

(fω)u = f(u) · ωu for u ∈ M and f ∈ C∞(M).

The space D(0,1)(M) is precisely the space
∧1(M) of smooth 1-forms on M , and

D(0,0)(M) =
∧0(M) = C∞(M) by definition. The space D(0,2)(M) of smooth rank-2

tensor fields consists of smoothly varying fields of bilinear forms on the tangent spaces
TMp, etc.

3.1 Example (Riemannian Structure on M). On any vector space V an inner
product g(v1, v2) is a particular type of rank-2 tensor in V (0,2); there are many possible
inner products on V . A Riemannian structure on a manifold M is a smooth field of
inner products p 1→ gp with values gp ∈ TM(0,2)

p . When M is equipped with this extra
structure we can define

• Length ∥Xp∥ =
√
gp(Xp, Xp) of any vector Xp ∈ TMp. This determines a vector

space norm on each tangent space that allows us to speak of the “length” of a
tangent vector.

• Orthogonality of vectors in TMp, which we interpret to mean gp(Xp, Yp) = 0,
and the angle between two nonzero tangent vectors, which is determined by

cos (θ(Xp, Yp)) =
gp(Xp, Yp)

∥Xp∥ ∥Yp∥

Lengths, angles, and orthogonality of tangent vectors cannot be defined in the absence
of a Riemannian structure on M .

In particular it now becomes meaningful to speak of orthonormal bases in each tangent
space TMp, as well as more exotic constructs such as a smooth “field of orthogonal
frames:” a family of smooth vector fields {X̃1, . . . , X̃m} on M such that

(X̃1)p, . . . , (X̃m)p is an orthonormal basis in TMp for each p

(orthonormal with respect to the inner product gp : TMp × TMp → R).
Furthermore, if γ : [a, b] → R is a C∞ curve, or even one of class C(1), its length is

given by the Riemann integral

Arc Length: L(γ) =

∫ b

a
∥γ′(t)∥ dt =

∫ b

a

√
gγ(t)(γ′(t), γ′(t)) dt
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where γ′(t) is the tangent vector to the curve at p = γ(t). The change of variable formula
for Riemann integrals shows that the value of L(γ) is unchanged, with L(η) = L(γ), if η
is any orientation-preserving reparametrization of γ

η = γ ◦ φ where φ : [c, d] → [a, b] is C(1) with
dφ

ds
> 0 for all s.

For orientation-reversing reparametrizations we get L(η) = (−1)·L(γ).
With considerably more effort one can show that if p ∈ M there is an open neigh-

borhood U such that any q ∈ U can be connected to p by a geodesic – a C(1) curve
γ0 : [a, b] → U such that γ0(a) = p, γ0(b) = q, γ0(t) ∈ U for all t, and

L(γ0) ≤ L(γ) for any C(1) curve η in U that connects p to q

These “minimal length” curves in M are the analogs of straight line segments when
Euclidean space Rn is equipped with its “natural” Riemannian structure, obtained
by taking the standard global chart xα(x) = (x1, . . . , xn) on Rn and defining gp =∑n

i=1(dxi)p ⊗ (dxi)p, so that

gp(
∂

∂xi
|
p
,
∂

∂xj
|
p
) = δij (Kronecker)

The bases {(∂/∂xi|p)} induced in TMp by the chart coordinates are then orthonormal
bases with respect to the inner product gp in each tangent space to Rn.

This notion of arc length also induces a natural metric on any Riemannian manifold

dM (p, q) = inf{Lg(γ) : γ any C∞ curve such that γ(a) = p, γ(b) = q }

(However, verifying that dM satisfies the triangle inequality takes considerable effort.)
While inf{. . .} is actually achieved by a unique C∞ curve (a geodesic) for all q sufficiently
close to p, this need not be true for points far from p in the manifold. Even if the minimal
length dM (p, q) is achieved, the geodesic connecting p to q might not be unique if p and
q are widely separated. Think of the north and south poles on the unit sphere S2 ⊆ R3.
The sphere inherits a natural Riemannian structure from the surrounding Euclidean space
and the length-minimizing geodesics in it are segments of great circles (intersections of
the sphere with planes through the origin). Every great circle from N to S is a geodesic
with the same (minimal) length L(γ) = π. !

We won’t have time to explore the geometry of Riemannian manifolds in these Notes,
but we emphasize that there are many examples. An excellent account of this subject
is given in the book Riemannian Geometry, by Manfredo do Carmo. All C∞ manifolds
embedded in a Euclidean space Rn, such as the spheres Sn of various dimensions, or
smooth level hypersurfaces determined via the Implicit Function Theorem, inherit a
natural Riemannian structure induced by the standard Riemannian structure on Rn

described above. This Riemannian structure will, however, depend on how the manifold
is embedded in Rn.

Action of the Permutation Group Sk on Tensors and Tensor Fields.
Permutations σ ∈ Sk act as linear operators on the space of rank-k tensors t ∈ V (0,k) if
we let

σ · t(v1, · · · , vk) = t(vσ(1), · · · , vσ(k)) for vj ∈ V .

Thus in evaluating the action of σ ·t, the inputs v1, · · · , vk are permuted by σ ∈ Sk before
being fed into the tensor t. Then σ : V (0,k) → V (0,k) is a linear map and we obtain a
“left action of Sk on tensors,” which means that

(28) Left Action Law: (στ) · t = σ · (τ · t) for all σ, τ ∈ Sk and t ∈ V (0,k) .
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Proof of (28): Many find the proof of this property confusing. For a straightforward
argument that does the job, observe that

σ ·(τ ·t)(v1, . . . , vk) = (τ ·t)(vσ(1), . . . , vσ(k))

= (τ ·t)(w1, . . . , wk)|w1=vσ(1),...,wk=vσ(k)

= t(wτ(1), . . . , wτ(k))|wi=vσ(i)

= t(vσ(τ(1)), . . . , vσ(τ(k))) (since wτ(i) = vσ(τ(i)))

= t(v(στ)(1), . . . , v(στ)(k)) (by the Group Law (28))

= (στ)·t(v1, . . . , vk)

for all vi ∈ V . !

3.2 Exercise. If ℓ1, . . . , ℓk ∈ V ∗ we have defined their tensor product to be the k-linear
form ℓ1 ⊗ . . . ⊗ ℓk as in (27). Verify that the action of Sk on such monomials is given by

σ ·(ℓ1 ⊗ . . . ⊗ ℓk) = ℓσ−1(1) ⊗ . . . ⊗ ℓσ−1(k)

(Compare with the inital definition.) !

All of this applies to manifolds M if we we take V = TMu at base points u ∈ M . If
ω is a tensor field in D(0,k)(M), so ωu ∈ TM(0,k)

u for all base points in M , we let σ act
independently on each tangent space. Then (σ ·ω)u = σ · (ωu) in TM(0,k)

u for each u ∈ M
and we get a group action of Sk by linear operators

σ : D(0,k)(M) → D(0,k)(M)

on smooth rank-k tensor fields.
Antisymmetric tensors and tensor fields on manifolds are objects of special interest

in Calculus on Manifolds.

3.3 Definition. If V is a finite-dimensional vector space, a tensor ω ∈ V (0,k) is sym-
metric or antisymmetric if

(29) σ · ω = ω for all σ ∈ Sk or σ · ω = sgn(σ) · ω

where sgn(σ) is the signature of the permutation σ ∈ Sk. (Anti-)symmetry of a tensor
field ω ∈ D(0,k)(M) means ωp is an (anti-)symmetric tensor at each base point.

On a manifold M , smooth fields of antisymmetric rank-k tensors are called k-forms,
or differential forms of rank-k, and the space of all such tensor fields is denoted∧k(M). This is a vector subspace of D(0,k)(M); both become C∞(M)-modules if we

define an action C∞(M)×
∧k(M) →

∧k(M), letting

(f · ω)u(v1, · · · , vk) = f(u) · wu(v1, · · · , vk) for v1, · · · vk ∈ TMk, u ∈ M .

The space of symmetric tensor fields of rank-k is denoted Sk(M) and the symmetric
rank-k tensors on TMp are denoted by Sk(TMp).

Antisymmetric tensors on a vector space V can be created by “antisymmetrizing”
arbitrary rank-k tensors in V (0,k) via a surjective linear projection map

Alt : V (0,k) →
∧k(V ) ⊆ V (0,k)

defined as follows.

(30) Alt(ω) =
1

k!

∑

σ∈Sk

sgn(σ) (σ · ω) for all ω ∈ V (0,k) .
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The fudge factor “1/k!” is needed to make Alt a projection, with (Alt)2 = Alt. A similar
symmetrization operator projecting S : V (0,k) → Sk(V )i is obtained by dropping the
factor “sgn(σ)” in Definition (30), but symmetrzation will not play a role in the present
narrative.

On a manifold M , doing this to V = TM(0,k)
u at each base point yields a smooth field

of rank-k antisymmetric tensors; the resulting tensor field Alt(ω) is then given by

(31) (Alt(ω))u = Alt(ωu) for all u ∈ M,ω ∈ D(0,k)(M).

We present the basic facts about antisymmetrization without proof – see Appendix
XI-C for details.

3.4 Theorem. If V is a vector space, Alt : V (0,k) → V (0,k) is a linear map such that

1. (Alt)2 = Alt ◦Alt is equal to Alt, so Alt is a projection onto its range in V (0,k).

2. Alt(V (0,k)) ⊆
∧k(V (0,k)), and if ω was an antisymmetric tensor on V to begin with

then Alt(ω) = ω, so Alt = id on
∧k(V ).

As an operator on tensor fields, Alt maps D(0,k)(M) →
∧k(M) if we take V = TM(0,k)

u

in (31) at every base point.

Tensor Product of Tensors and Tensor Fields.
If ω ∈ V (0,k) and µ ∈ V (0,ℓ) their tensor product ω ⊗ µ is a rank-(k + ℓ) tensor such
that

ω ⊗ µ(v1, · · · , vk, vk+1, · · · , vk+ℓ) = w(v1, · · · , vk) · µ(vk+1, · · · , vk+ℓ)

The (⊗) operation is easily seen to be associative, with

ω ⊗ (µ⊗ τ) = (ω ⊗ µ)⊗ τ in V k+ℓ+m ,

but it is not commutative: ω ⊗ µ and µ⊗ ω are generally different elments of V (0,k+ℓ).
The wedge product ω ∧ µ is a bilinear map of antisymmetric tensors

∧k(V )×
∧ℓ(V ) →

∧k+ℓ(V )

that takes ω ∈
∧k(V ) and µ ∈

∧ℓ(V ) to an antisymmetric tensor of rank k + ℓ on V ,

(32) ω ∧ µ =
(k + ℓ)!

k!ℓ!
Alt(ω ⊗ µ) .

Note that ω ⊗ µ need not be antisymmetric even if both factors were antisymmetric, so
ω ⊗ µ has to be antisymmetrized to end up in

∧k+ℓ(V ). The algebraic properties of the
wedge product are listed below. The purely algebraic proofs (some difficult) are relegated
to Appendix XI-C.

3.5 Theorem. Let V be a finite dimensional vector space with basis X = {ei} and dual
basis X∗ = {e∗i } in V ∗.

1. If A : V → V is a linear operator its transpose At acts on the dual space V ∗, with

⟨Atℓ, v⟩ = ⟨ℓ, Av⟩ for v ∈ V, ℓ ∈ V ∗ .

This construction can be extended to define a transpose At : V (0,k) → V (0,k) that
acts on tensors of rank-k, by letting A act on each input vector vi in (v1, · · · , vk) ,

Atω(v1, · · · , vk) = ω(A(v1), . . . , A(vk))

The operator At leaves the subspace
∧k(V ) invariant, so At acts on the space of

antisymmetric tensors
∧k(V ) as well as the full space V (0,k) of rank-k tensors on

V .
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2. At respects wedge products: At(ω⊗µ) = Atw⊗Atµ and At(ω∧µ) = Atω∧Atµ

for ω ∈
∧k(V ) and µ ∈

∧ℓ(V ).

3. Antisymmetry of wedge: If φ1,φ2 are in V ∗ (rank-1 tensors on V ) their wedge
product is an antisymmetric tensor in V (0,2),

(33) φ1 ∧ φ2 = 1
2 (φ1 ⊗ φ2 − φ2 ⊗ φ1) = (−1)φ2 ∧ φ1 .

In particular φ ∧ φ = 0 in V (0,2) for every rank-1 tensor φ ∈ V ∗. If ω ∈
∧k(V ),

µ ∈
∧ℓ(V ) we have the more general commutation relations

(34) ω ∧ µ = (−1)klµ ∧ ω

4. Associativity of wedge: If ω ∈
∧k(V ), µ ∈

∧ℓ(V ), τ ∈
∧m(V ) then ω∧(µ∧τ) =

(ω∧µ)∧ τ. Associativity means that when we form the wedge product ω1 ∧ . . . ∧ωr

of antisymmetric tensors of various ranks we don’t have to worry about where to
put the parentheses. The proof yields a fact that greatly simplifies many calculations
involving iterated wedge products.

(35) ω ∧ (µ ∧ τ) = (ω ∧ µ) ∧ τ =
(k + ℓ+m)!

k!ℓ!m!
Alt(ω ⊗ µ⊗ τ)

Notice that evaluation of

ω ∧ (µ ∧ τ) =
(k + ℓ+m)!

k!ℓ!m!
Alt(ω ⊗ (Alt(µ⊗ τ))

involves two applications of “Alt” while the last expression in (35) requires only
one.

5. Evaluating Monomial Wedge Products: eJ = ej1 ∧ . . . ∧ejk when J is not an
ordered monomial. If X = {e1, . . . , em} is any basis in V and X∗ = {e∗1, . . . , e

∗
m} ⊆

V ∗ is the dual basis, we can define e∗J = e∗j1 ∧ . . . ∧ e∗jk for any multi-index J =
(j1, . . . , jk). One important computational fact is:

e∗1 ∧ . . . ∧ e∗m(e1, . . . , em) = 1 ,

More generally we can evaluate

e∗j1 ∧ . . . ∧ e∗jk(ei1 , . . . , eik) = e∗J(ei1 , . . . , eik)

for arbitrary multi-indices I, J in [1,m]k (ordered or not). The outcome is zero if
there are any repeated entries in the k-tuple J = (j1, . . . , jk), and if the entries are
distinct there is a unique permutation σ ∈ Sk such that I = σ·J = (jσ(1), . . . , jσ(k))
is in Ek, with xJ = ±xI .

3.6 Theorem (The Basis Theorem). Given a basis X = {ei} in V and dual basis
X∗ = {e∗i } in V ∗ we define the set Ek of ordered k-tuples

I = (i1, . . . , ik) such that 1 ≤ i1 < . . . < ik ≤ m = dim(V ) .

The corresponding “ordered monomials” in
∧k(V )

e∗I = e∗i1 ∧ . . . ∧ e∗ik , (I ∈ Ek)

are a basis for the space of k-forms
∧k(V ). In particular,

dim (
∧k(V )) = (

m

k ) = #(multi-indices in Ek)
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When k = 0 we have dim
∧0(V ) = dimR(R) = 1. Likewise the dimension of the space∧m(V ) of antisymmetric tensors of maximal rank m = dim(V ) is also equal to 1, and∧k(V ) = {0} for all k > m = dim(V ).

3.7 Exercise. If φ1,φ2 ∈ V ∗ verify by example that φ1 ⊗ φ2 need not equal φ2 ⊗ φ1 as
elements of V (0,2). (Equality of tensors means they have the same action on all inputs
(v1, v2). Remember that the inputs are ordered lists, so (v1, v2) ̸= (v2, v1).) !

3.8 Exercise. Let V be a finite-dimensional vector space, let X = {ei} be a basis
and X∗ = {e∗i } the dual basis. In Chapter IX we explained how every bilinear form
B : V × V → R is described by an m×m matrix (m = dim V )

[Bij ]X with entries Bij = B(ei, ej)

Given two vectors φ1 =
∑m

i=1 aie
∗
i , φ2 =

∑m
i=1 bie

∗
i in V ∗ we get the bilinear forms

φ1⊗φ2 and φ2⊗φ1 on V . Compute the associated matrices with respect to X. Are they
equal? !

Many computations involving antisymmetric tensors reduce to working with wedge
products φ1 ∧ . . . ∧ φk of rank-1 tensors φ ∈ V ∗. The following simple formula, easily
derived by induction from the associative law (35), provides an easy way to directly
evaluate such products.

φ1 ∧ . . . ∧ φk =
(1 + . . .+ 1)!

1! · · · 1!
· Alt(φ1 ⊗ . . . ⊗ φk) = k! Alt(φ1 ⊗ . . . ⊗ φk)

Note that the factor out front is now k!, not 1
k! as in (35).

If {ei} is a basis for V and {e∗i } is the dual basis in V ∗ one can evaluate a wedge
product e∗J = e∗j1 ∧ . . . ∧e∗jk for an arbitrary multi-index J = (j1, . . . , jk) of length k with
js ∈ [ 1,m] whose entries need not be increasing or even distinct.

3.9 Lemma. If V is a vector space with basis {e1, . . . , em} and dual basis {e∗1, . . . , e
∗
m}

in V ∗, and if e∗J = e∗j1 ∧ . . . ∧e∗jk is an arbitrary monomial in the dual basis vectors, with
j1, . . . , jk ∈ [1,m], but not necessarily with j1 < . . . < jk, then

(a) If we interchange adjacent factors e∗js ↔ e∗js+1
in the wedge product e∗J we get −e∗J .

(b) The wedge product eJ is zero if there is a repeated vector, say e∗jr = e∗js with r ̸= s.
(This is the real reason

∧r(V ) = (0) when r > m = dim(V ).)

(c) If the indices (j1, . . . , jk) are distinct there is a unique permutation σ ∈ Sk such
that I = σ · J = (jσ(1), . . . , jσ(k)) has the same indices, listed in increasing order.

Then e∗I is one of the standard basis vectors for
∧k(V ) and e∗J = sgn(σ)·e∗I.

In any case, e∗J is either zero or is ±e∗I for a unique standard basis vector e∗I ∈
∧k(V ),

The proof is outlined in the following Exercise.

3.10 Exercise. Use the rules set forth in Theorem 3.5 together with the following Hints
to prove the claims (a) - (c) in Lemma 3.9.
Hints: Part (a) is immediate from antisymmetry of “∧.” If there are identical factors in
e∗J , repeated swapping of adjacent factors will bring the identical factors together, where
they annihilate each other because φ ∧ φ = 0. (Also, tensor products ω ⊗ . . . ⊗ µ (or
ω ∧ . . . ∧ µ for antisymmetric tensors) are zero if any factor is zero.)

If the factors in e∗J are distinct then for some permutation of the entries yields a
multi-indent I in Ek; then J = σ · I for some σ ∈ Sk and then e∗J = sgn(σ)·e∗I . !

Calculating ω ∧ µ on a Chart in M .
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If J = {j1, . . . , jk} is an arbitrary multi-index of length k (entries not necessarily increas-
ing or distinct), we can still form the wedge product (dx)J = (dxj1 ) ∧ . . . ∧ (dxjk ) of
the 1-forms (dxi) on Uα determined by the chart. But in view of the anti-commutation
relations ω ∧ µ = (−1)klµ ∧ ω for wedge products, we have e∗J = 0 unless the entries in
J are distinct, and if they are distinct then e∗J = ±e∗I for a unique standard basis vector
e∗I , I ∈ Ek.

One last thing should be noted. In discussing wedge products ω ∧ µ of differential
forms on M we often encounter “weighted” expressions like f (dxI) ∧ h (dxJ ) involving
C∞ functions f, h. But by definition, (ω ∧ µ)u = ωu ∧ µu at every base point, hence

(36) (fω) ∧ (hµ) = (fh) · (ω ∧ µ)

as differential forms on M .

3.11 Example. Taking M = R2, let Uα be an open set on which Cartesian coordinates
xα(x) = (x, y) and polar coordinates yβ(x) = (r, θ) are defined. The smooth 1-forms

dx ∧ dy and dr ∧ dθ each provide a basis for the 1-dimensional space
∧2(TMp) at each

p ∈ Uα. We shall rewrite the smooth 2-form dx ∧ dy as F (r, θ) · (dr ∧ dθ) using the
properties described in Theorem 3.5 and the change-of-variable formula for cotangent
vectors, Proposition 2.5.

Discussion: The chart maps have scalar components (x, y) = xα(x) = (X(x), Y (x))
and (r, θ) = yβ(x) = (R(x),Θ(x)) for x ∈ M , and the coordinate transition maps are
given by

(37) X = R cos(Θ), Y = R sin(Θ) and R = (X2 + Y 2)1/2, Θ = arctan(Y/X) .

Apply the exterior derivative to the scalar component functions X , Y in (37) to get

dx = dX =
∂X

∂r
· dr +

∂X

∂θ
· dθ

=
∂

∂r
{R cos Θ} · dr +

∂

∂θ
{R sin Θ} · dθ

= [
∂R

∂r
cos(Θ)−R sin(Θ) ·

∂Θ

∂r
] · dr +

+ [
∂R

∂θ
sin(Θ) +R cos(Θ) ·

∂Θ

∂θ
] · dθ ,

where dX = (dx) is the exterior derivative of the scalar component X : Uα → R in the
chart map xα. (By (21), (dx) and dX are the same smooth 1-form on Uα.) By (6) we
have

∂R

∂r
≡ 1,

∂Θ

∂θ
≡ 1,

∂R

∂θ
≡
∂Θ

∂r
≡ 0,

on Uα, so on the chart domain

dx = dX = cos(Θ) · dr −R sin(Θ) · dθ .

The same sort of calculation yields

dy = dY = sin(Θ) · dr +R cos(Θ) · dθ .

Adopting the time-honored abuse of notation that ignores the distinction between a
function R(x) and its values r, etc, we get

dx ∧ dy = [ cos(θ) · dr − r sin(θ) · dθ] ∧ [ sin(θ) · dr + r cos(θ) · dθ ]

= sin(θ) cos(θ) · (dr ∧ dr) − r sin2(θ) · (dθ ∧ dr) +

+ r cos2(θ) · (dr ∧ dθ)− r2 sin(θ) cos(θ) · (dθ ∧ dθ)

= −r sin2(θ) · (dθ ∧ dr) + r cos2(θ) · (dr ∧ dθ)

= r (dr ∧ dθ)
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Indeed, dr ∧ dr = dθ ∧ dθ ≡ 0, and dθ ∧ dr = −dr ∧ dθ by anti-symmetry. !

3.12 Exercise. On R2 compute dr∧dθ in terms of dx∧dy. On R3 compute dx∧dy∧dz in
terms of dρ∧dφ∧dθ (spherical coordinates). Spherical coordinates (ρ, θ,φ) and Cartesian
coordinates (x, y, z) on R3 are related via

z = ρ sin(φ) y = ρ sin(θ) cos(φ) x = ρ cos(θ) cos(φ) ,

see Figure 11.3. !

The General Exterior Derivative dk :
∧k(M) →

∧k+1(M). Smooth rank-k differ-

ential forms ω are tensor fields whose values ωp lie in
∧k(TMp) for each p ∈ M . Given

any chart (xα, Uα), such a field is uniquely described as a sum

ωu =
∑

I∈Ek

cI(u) · (dxi1 )u ∧ . . . ∧ (dxik )u =
∑

I∈Ek

cI(u) · (dxI)u for u ∈ Uα ,

and smoothness means the cI are in C∞(Uα) for all charts. The general exterior deriva-
tives dk

∧0(M)
d=d0

−−−→
∧1(M)

d=d1

−−−→
∧2(M)

d=d2

−−−→ · · ·
d=dm−1

−−−−−→
∧m(M)

d=dm

−−−→ 0

are operations on rank-k differential forms, for k = 0, 1, 2, . . . The rank-0 derivative d0
has been defined in a coordinate-free way on

∧0(M) = C∞(M) in (19): for f ∈ C∞(M),
(df) ∈

∧1(M) is the 1-form such that.

(38) ⟨ (df)p, Xp⟩ = ⟨Xp, f ⟩ for all Xp ∈ TMp .

As in (20), in local chart coordinates df takes the form

(df)p =
n∑

i=1

∂f

∂xi
(p) · (dxi)p for all p ∈ Uα .

Coordinate-free formulas exist describing the action of exterior derivatives dk of all
ranks k = 0, 1, 2, . . . For d0 the formula (given above) is simple, but such descriptions
become quite complicated and unintuitive for k ≥ 1. There is, however, a fairly straight-
forward way to describe dω in local chart coordinates, for ω of any rank k, and this is
the approach we shall pursue. The only problem with this lies in showing that we get
the same element dωp in

∧k+1(TMp) at all base points p ∈ M , no matter which local
chart (xα, Uα) we use to compute it. (The proof that the definition is chart-independent
is fairly arduous, and we won’t have time to prove it in this brief survey.) Here is the
definition of dω in local coordinates.

3.13 Definition. (Exterior Derivative dk). If ω ∈
∧k(M) and (xα, Uα) is any chart,

ω has a unique description on Uα as

ωu =
∑

I∈Ek

cI(u) · (dxI)u =
∑

I∈Ek

cI(u) · (dxi1 ∧ . . . ∧ dxik ) for all u ∈ Uα .

Then the exterior derivative dω ∈
∧k+1(M) is given on Uα by

dω =
∑

I∈Ek

(dcI) ∧ (dxI) =
∑

I∈Ek

(
m∑

j=1

∂cI
∂xj

dxj) ∧ (dxI)

=
∑

I

m∑

j=1

∂cI
∂xj

· (dxj) ∧ (dxi1 ∧ . . . ∧ dxik)(39)
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where dcI is the usual exterior derivative of the scalar function cI(u).

At any base point p ∈ Uα the chart determines a basis X∗
p = {(dx1)p, . . . , (dxm)p} in

TM∗
p for all p ∈ Uα, and “standard” basis vectors in

∧k(TM∗
p),

e∗I = dxI = (dxi1 ∧ . . . ∧ dxik) for I = (i1 < . . . < ik) in Ek .

A monomial dxj ∧ (dxi1 ∧ . . . ∧dxik ) appearing in (39) will be zero in
∧k+1(TM∗

p) if j is

one of the entries in I, and will not be one of the standard basis vectors in
∧k+1(TM∗

u)
unless we happen to have j < i1 < . . . < ik. But it is easy to rewrite any monomial
dxj ∧ (dxi1 ∧ . . . ∧ dxik) appearing (39) as a sum involving ordered monomials using the
rules provided in Theorem 3.5.

Note: An annoying technical issue arises in applying formula (39). This definition
presumes that ω has been presented as a sum of monomials cI e∗I involving standard
basis vectors, with I ∈ Ek. If we wish to compute the exterior derivative of a k-form
ω =

∑
J∈[1,m]k cJ · e∗j1 ∧ . . . ∧ e∗jk involving unordered monomials e∗J , it seems we would

have to rewrite each summand in terms of the standard (ordered) basis monomials e∗I
with I ∈ Ek before applying (39). This could be done by repeated use of the commutation
rule dxi ∧ dxj = −dxj ∧ dxi, transposing adjacent factors to get dxJ = ±dxI for some
I ∈ Ek. That would be a terrible nuisance; the following observation saves the day.

3.13A Lemma (Exterior Derivative dk). Formula (39) remains valid for k-forms on
a chart domain Uα

ω =
∑

J∈[1,m]k

cJ · e∗J (cJ ∈ C∞(Uα))

even if they involve monomials e∗J that are unordered or have repeated indices.

Proof: If an arbitrary multi-index J ∈ [1,m]k has a repeated entry, say jr = js, then
d(fdxJ ) = 0 and does not contribute to the sum (39). Otherwise there is a unique
permutation σ ∈ Sk such that I = σ ·J is an ordered index in Ek, and then for any
f ∈ C∞(Uα) we have

d(f · xJ ) = d(f · sgn(σ) dxI)
= sgn(σ) · (df ∧ dxI) (definition of d-operator)

= df ∧ sgn(σ) · dxI = df ∧ dxJ !

We will take advantage of this very useful fact in proving Lemma 3.15 below.
We now list the basic properties of the operators dk :

∧k(M) →
∧k+1(M). The

proofs are complicated so we defer them to Appendix XI-C in order to press on toward
reinterpreting Multivariate Calculus in terms of differential forms.

3.14 Theorem. (Basic Properties of the d-Operators). Although we have defined
dkω on M using its description on a typical coordinate chart (xα, Uα), the outcome
is the same for all charts, so formula (39) determines a well-defined differential form

dkω ∈
∧k+1(M) for every ω ∈

∧k(M). Furthermore,

1. The rank-0 derivative d0 :
∧0(M) →

∧1(M) is just the d-operator discussed earlier
in (19) and (20), such that ⟨d0f,Xp⟩ = ⟨Xp, f⟩ for Xp ∈ TMp, f ∈ C∞(p).

2. Each dk is a linear operator from
∧k(M) →

∧k+1(M).

3. Generalized Derivation Property: If ω1 ∈
∧k(M) and ω2 ∈

∧ℓ(M) then

dk+ℓ(ω1 ∧ ω2) = dk(ω1) ∧ ω2 + (−1)kω1 ∧ dℓ(ω2)
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in
∧k+ℓ+1(M). This property governs the interaction between exterior derivatives

and wedge products of differential forms on M .

4. By far the most interesting property is d2 = 0, which is a shorthand for

(40) dk+1 ◦ dk(ω) = 0 in
∧k+2(M) for all ω ∈

∧k(M) .

This follows from equality of mixed second-order partial derivatives of class C(2)

functions on Rm.

Here is a proof that d2 = 0.

3.15 Lemma. For each k = 0, 1, 2, . . . we have 0 = d2 = dk+1 ◦ dk.

Proof: It suffices to show d2ω = 0 on a coordinate chart (xα, Uα). In local coordinates

ω ∈
∧k(M) is a sum over I ∈ Ek of terms like f · dxI ; since dk is linear, dkω is a sum of

terms

d(fdxI) =
m∑

i=1

∂f

∂xi
· (dxi ∧ dxI)

and then d2(ω) = dk+1(dkω) consists of terms

d(dω) =
m∑

j=1

m∑

i=1

∂2f

∂xj∂xi
· dxj ∧ (dxi ∧ dxI) with I ∈ Ek .

The monomials (dxi ∧ dxI) appearing in d(fdxi) might not be in standard form, but
formula (39) is still valid, as explained in 3.13A.

Since
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj
, anticommutativity of wedge products makes the terms

∂2f

∂xj∂xi
(dxj ∧ dxi ∧ dxI)

and

∂2f

∂xi∂xj
(dxi ∧ dxj ∧ dxI) = (−1)

∂2f

∂xi∂xj
(dxj ∧ dxi ∧ dxI)

in the double sum cancel in pairs for i ̸= j, and when j = i we have dxj∧dxi = dxi∧dxi ≡
0 on Uα. Thus d(dω) = 0 on any chart. !

The following observation is also useful in calculations involving exterior derivatives.

3.16 Lemma. If f ∈ C∞(M) and ω ∈
∧k(M) has the form ω =

∑
I∈Ek

cI(u) · (dxI) in
local coordinates, then the exterior derivative of the combined k-form fω is described on
the chart domain Uα by

(41) d(fω) =
∑

I∈Ek

cI(u) · (df) ∧ (dxI) + f(u) · (dcI) ∧ (dxI)

in
∧k+1(U).

Proof: The exterior derivative takes the form

d(fω) = d(
∑

I∈Ek

(f · cI)(u) · (dxI))

=
∑

I∈Ek

d((fcI) · (dxI))

=
∑

I∈Ek

d(fcI) ∧ (dxI) (by (39))
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Figure 11.5. Definition of convex and star-shaped open sets in Rn. Here [ p, q ] is the straight
line segment in Rn connecting p and q.

in local coordinates. Since d is a derivation on C∞(Uα) we get (41). !

Primitives of Rank-k Forms. We say that µ ∈
∧k(M) is a primitive for ω in∧k+1(M) if dkµ = ω on M . The condition d2 ≡ 0 imposes a necessary condition for ω

to have a local primitive:
dω = dk+1ω ≡ 0 on M .

In fact if ω = dµ on some open set U ⊆ M then dω = d2µ = 0. For rank-1 forms this
identity is equivalent to the set of “consistency conditions” (25) mentioned earlier. It
suffices to verify this on a typical chart, so suppose d1ω = 0 in

∧2(Uα) for ω =
∑m

i=1 ci·dxi

in
∧1(Uα). Then dxi ∧ dxj = 0 if i = j, so

dω =
m∑

i=1

dci ∧ dxi =
∑

i

∑

j

( ∂ci
∂xj

) · (dxj ∧ dxi)

=
∑

1≤i<j≤m

(∂cj
∂xi

−
∂ci
∂xj

) · (dxi ∧ dxj)

This sum over basis vectors in
∧2(TMp) is zero at each p ∈ Uα if and only if (25) holds.

The higher rank analogs of these consistency conditions assert that if ω = dk−1µ for
some µ ∈

∧k−1(M), then on any chart the coefficients cI ∈ C∞(Uα) in ω =
∑

I∈Ek
cI(u) ·

(dxI) must satisfy a system of partial differential equations embodied in the concise
statement

dkω ≡ 0 in
∧k+1(Uα) .

In local coordinates, this system of differential equations becomes increasingly compli-
cated for k = 2, 3, . . .

3.17 Exercise. Write out the system of partial differential equations satisfied on a chart
(xα, Uα) by the coefficients of ω =

∑
1≤i<j≤m cij(u) · (dxi ∧ dxj) ∈

∧2(Uα) if d2ω ≡ 0 in
∧3(Uα). !

The necessary condition dω = 0 actually insures that solutions of the equation ω = dµ
exist locally near any base point in Uα. There are two fundamental results about solu-
tions of dµ = ω. The first asserts that local solutions exist if dω ≡ 0; it is a consequence
of Poincare’s Lemma, proved below, which also provides information about existence of
global solutions.

3.18 Theorem. (Local Solutions). Local primitives exist for ω ∈
∧k(M) near a point

p ∈ M if and only if the necessary condition dkω ≡ 0 in
∧k+1(M) is satisfied.

Once we know that dω ≡ 0 throughout M , the geometry of the manifold must be taken
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into account in seeking global solutions of dµ ≡ ω on all of M . (There is also the problem
of constructing the desired local and global solutions µ when they exist.)

A set E ⊆ Rn is convex if for any pair of points p,q ∈ E the “line segment”

[p,q ] = {rp+ sq : 0 ≤ r, s ≤ 1 and r + s = 1}

connecting p to q lies entirely within E; more generally, E is star-shaped if there is
some p ∈ E from which every point x ∈ E is “visible,” with [p,x] ⊆ E – see Figure 11.5.

3.19 Lemma (Poincare Lemma). If E is a convex or star-shaped open set in Rn and

ω ∈
∧k(E) satisfies the condition dkω ≡ 0 throughout E, then there is a global solution

µ ∈
∧k−1(E) to the equation dk−1µ ≡ ω, so ω has a global primitive on E.

Discussion: Given a C∞ map φ : M → N between manifolds there is a natural linear
map δφ :

∧k(N) →
∧k(M) that pulls back smooth k-forms on N to smooth k-forms on

M ; furthermore, δφ is a bijective linear isomorphism if φ is a diffeomorphism between M
and N (invertible, with C∞ inverse). Finally, δφ “intertwines” the exterior derivatives
dM and dN , so that δφ(dN (ω)) = dM(δφ(ω)) – i.e. the following diagram is commutative
.

∧k(N)
(δφ)
−−−→

∧k(M)

dN ↓ ↓ dM

∧k+1(N)
(δφ)
−−−→

∧k+1(M)

We will not spell out the details here except to mention that this map δφ of smooth
differential forms is a generalization of a natural linear map (δφ)φ(p) : TN∗

φ(p) → TM∗
p

between cotangent spaces that transfers 1-forms in TN∗
q to 1-forms in TM∗

p. If φ(p) = q,
(δφ)q is given by

(42) ⟨(δφ)qωq , Xp⟩ = ⟨(δφ)φ(p)ωφ(p) , Xp⟩ = ⟨ωφ(p) , (dφ)pXp⟩

for all ωq ∈ TM∗
q and Xp ∈ TMp. Thus (δφ)φ(p) is just the transpose

(δφ)φ(p) = (dφ)tp : TN∗
φ(p) → TM∗

p

of the differential (dφ)p : TMp → TNφ(p) discussed previously. Both (δφ)φ(p) and (dφ)p
are “natural maps,” defined without reference to any particular system of local coordi-
nates.

Transferring Problems from M to Rm.
If (xα, Uα) is a chart on a manifold M , the chart map xα : Uα → Vα = xα(Uα) is a
diffeomorphism between open sets in M and N = Rm (which is also a manifold). We
may therefore use the chart map φ = xα to transfer questions about smooth differential
forms on Uα ⊆ M to the corresponding problems on Vα ⊆ Rm. By commutativity of the
preceding diagram, solutions of dMµ = ω on Uα correspond to solutions of dNµ′ = ω′

for the transferred forms µ′ = δφ(µ) and ω′ = δφ(ω). Likewise, the necessary conditions
dMω = 0 and dNω = 0 match up under this correspondence.

Now observe that if p ∈ M there are always (small) “star-shaped charts” (xα, Uα)
about p such that Vα = xα(Uα) is a star-shaped neighborhood of p = xα(p) in Rm – in
fact, any chart about p contains an open neighborhood U such that p ∈ U ⊆ Uα and
xα(U) is a (convex) open ball in Rn. If we are lucky we can sometimes find quite large
star-shaped charts on M , for instance if M is the punctured plane R2 ∼ (0), the “cut
plane” R2 ∼ (−∞, 0] is star-shaped with respect to any point p on the positive x-axis.
Poincare’s Lemma guarantees existence of global solutions for dµ = ω on any star-shaped
chart domain such that dω ≡ 0.
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Elementary Proof of Poincare Lemma.1 We may obviously assume that the “central
point” p ∈ E is the origin in Rn. If ω =

∑
I∈Ek

wI(u) · (dxI )u on E we will define linear

maps Ik :
∧k(E) →

∧k−1(E) for k = 1, 2, . . . such that

(43) dk−1Ik(ω) + Ik+1dk(ω) = ω on E for ω ∈
∧k(E) .

If dk(ω) = 0 then µ = Ik(ω) ∈
∧k−1(E) is the desired solution of dk−1µ = ω. Since Ik

and dk are linear operators we may restrict attention to weighted monomial k-forms

ω = wI(u) · dxI = wI(u) · (dxi1 ∧ . . . ∧ dxik ) for I ∈ Ek, wI ∈ C∞(E) .

Since primitives of ω resemble antiderivatives of scalar-valued functions, it is not
surprising to find that Ik(ω) can be constructed by taking integrals that involve the
coefficients wI(u) and applying a basic result from Advanced Calculus.

Theorem. (Differentiating Under the Integral). Let B ⊆ Rm be
a closed rectangular set and f : Rm × R → R a function defined on some
open set U ⊇ B × [a, b ]. If the partial derivatives ∂f/∂xi(x, y) exist and are

continuous on U for 1 ≤ i ≤ m, then H(x) =
∫ b
a f(x, t) dt has continuous

partial derivatives
∂H

∂xi
(x) =

∫ b

a

∂f

∂xi
(x, t) dt

on an open neighborhood of B for 1 ≤ i ≤ m.

If the partial derivatives Dα
x
f(x, t) in the x-variables exist and are continuous on U for

multi-indices of degree |α| = α1 + . . .+ αm ≤ k, then repeated differentiation under the
integral shows that H(x) is of class C(k) on an open neighborhood of B, with

Dα
x
H(x) =

∫ b

a
Dα

x
f(x, t) dt

for |α| ≤ k.

For any weighted monomial ω = wI(x) · dxI with I = (i1 < . . . < ir) ∈ Er, r ≥ 1,
we define the “rank-lowering” operator Ir, taking Irω(x) ∈

∧r−1(E) to be the sum of
integrals

(44) Irω(x) =
r∑

ℓ=1

(−1)ℓ−1(xiℓ ·

∫ 1

0
wI(tx) tr−1 dt) · (dxi1 ∧ . . . ∧ d̂xiℓ ∧ . . . ∧ dxir ) ,

where the “hat” over dxℓ indicates an omitted factor. Hereafter we shall simplify notation
by relabeling the variables x1, . . . , xm so dxI = dxi1 ∧ . . . ∧dxir becomes dx1 ∧ . . . ∧dxr

Taking r = k, differentiation under the integral shows that Ikω(x) is a smooth (k−1)-
form on E. To compute the term dk−1Ikω in (43) we find Dxs{Ikω(x)} for 1 ≤ s ≤ m
by first differentiating under the integral to get

Dxs(xℓ ·
∫ 1

0
wI(tx) t

k−1 dt) = xℓ ·

∫ 1

0
Dxs{wI(tx)} t

k−1 dt+ δs,ℓ ·

∫ 1

0
wI(tx) t

k−1 dt .

Here δr,s is the Kronecker delta symbol (= 1 if r = s and zero otherwise). Noting that
dxs ∧ dx1 ∧ . . . ∧ dxk = 0 if s ∈ [ 1, k], the definition (39) of the exterior derivative dk−1

1Adapted (with corrections) from M. Spivak, Calculus on Manifolds, Benjamin, 1965.
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yields

dk−1Ikω(x) =
k∑

ℓ=1

m∑

s=1

Dxs( · · · ) · (−1)ℓ−1dxs ∧ (dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk)

=
k∑

ℓ=1

m∑

s=1

Dxs( · · · ) · (−1)ℓ−1(−1)k−1 (dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk) ∧ dxs(45)

(shifting dxs across k − 1 vectors introduces a factor (−1)k−1). Furthermore,

Dxs( · · · ) = Dxs(xℓ ·
∫ 1

0
wI(tx) t

k−1 dt)

= xℓ ·

∫ 1

0
DxswI(tx) t

k dt+ δℓ,s · (
∫ 1

0
wI(tx) t

k−1 dt)(46)

because Dxs{wI(tx)} = t ·DxswI(tx). When (46) is substituted in (45) the first term in
(46) yields the double sum

k∑

ℓ=1

m∑

s=1

xℓ · (
∫ 1

0
DxswI(tx) t

k dt) · (−1)ℓ−1(−1)k−1(dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk ∧ dxs)

in which the nonzero terms are those with s > k or s = ℓ. Owing to the Kronecker delta
in the second term of (46), substitution of this into (45) yields only k entries (those with
s = ℓ) and we get

k∑

ℓ=1

(
∫ 1

0
wI(tx) t

k−1 dt) · (−1)ℓ−1dxℓ ∧ (dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk)

=
k∑

ℓ=1

(
∫ 1

0
wI(tx) t

k−1 dt) · dxI = k · (
∫ 1

0
wI(tx) t

k−1 dt) dxI .

As for the second term in (43), by our labeling convention we may write

dkω = dk(wI(x) · dxI) =
m∑

s=1

DxswI(x) · dxs ∧ dxI =
m∑

s=1

DxswI(x) · (−1)kdxI ∧ dxs .

In applying Ir when r = k+1 we must set the monomial “dxi1 ∧ . . . ∧dxik+1” appearing
in (44) equal to “dxI ∧ dxs.” Then by definition of Ik+1 we get

Ik+1dk(wI · dxI) = Ik+1(
m∑

s=1

DxswI(x) · (−1)k(dx1 ∧ . . . ∧ dxk) ∧ dxs) =

=
k+1∑

ℓ=1

m∑

s=1

(xℓ ·
∫ 1

0
DxswI(tx) t

(k+1)−1 dt) · (−1)k(−1)ℓ−1(dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk ∧ dxs)

=
k∑

ℓ=1

m∑

s=1

( · · · )+ (terms with ℓ = k + 1)

In the sum of terms with ℓ = k + 1 we have dxk+1 = dxs; the monomial

(dx1 ∧ . . . ∧ d̂xℓ ∧ . . . ∧ dxk ∧ dxs) = (dx1 ∧ . . . ∧ dxk ∧ d̂xk+1)
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common to all these terms becomes dx1 ∧ . . . ∧ dxk = dxI , so this sum becomes

m∑

s=1

(xs ·

∫ 1

0
DxswI(tx) t

k dt) · (−1)k(−1)k(dx1 ∧ . . . ∧ dxk)

=
m∑

s=1

( · · ·) · (dx1 ∧ . . . ∧ dxk) =
m∑

s=1

( · · · ) · dxI

On the other hand, by the chain rule we also have

wI(x) = [wI(tx) t
k|

1

t=0
] =

∫ 1

0

d

dt
{wI(tx) t

k} dt

= (xs ·

∫ 1

0

m∑

s=1

DxswI(tx) t
k dt)+ k · (

∫ 1

0
wI(tx) t

k−1 dt)

Substituting this into the ℓ = k + 1 term we may rewrite

Ik+1dkω =
k∑

ℓ=1

m∑

s=1

( · · · )+ wI(x) dxI − k · (
∫ 1

0
wI(x) t

k−1 dt) .

When this is combined with dk−1Ikω the double sums cancel and so do the intergrals
involving wI , leaving only

Ik+1dkω + dk−1Ikω = ω .

That completes the proof of the Poincare Lemma. !

The identity (43) has a long history, which we can’t spell out here. You might wonder
how anyone deduced that an identity like (43) might hold, and how the definition (44)

of the integral operators Ik :
∧k(E) →

∧k−1(E) was discovered.

XI.4 Div, Grad, Curl and All That.

We now consider what all this means on the Euclidean spaces M = R2 and R3, and its
connection with the traditional vector operators ∇◦ = div, ∇· = grad, and ∇× = curl
of Calculus. When M = R3 the sequence of exterior derivatives terminates

∧0(M)
d0−→
∧1(M)

d1−→
∧2(M)

d2−→
∧3(M)

d3−→ (0)

because dim
∧k(TMp) = (3k) = 0 for k > 3.

Let {ei} be the standard basis vectors in V = R3 and {e∗i } the dual vectors in
V ∗ =

∧1(V ). Fix a base point p in M = R3. If we interpret the ei as tangent vectors at
p, so ei = the directional derivative (∂/∂xi|p) in TMp, then the dual basis vectors are
e∗i = (dxi)p in TM∗

p. We have already seen that

Classical Gradient: ∇f =
3∑

i=1

Dxif(x)·ei

should be interpreted as a rank-1 differential form, the exterior derivative of f ∈
∧0(M) =

C∞(M),

∇f(p) =
3∑

i=1

∂f

∂xi
(p) e∗i =

3∑

i=1

∂f

∂xi
(p) (dxi)p = (df)p in TM∗

p

rather than as a tangent vector

3∑

i=1

∂f

∂xi
(p) ei =

3∑

i=1

∂f

∂xi
(p) ( ∂

∂xi
|
p
) in TMp
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As noted earlier, it is remarkable that the exterior derivative df = ∇f takes the same
general form in all coordinate systems. For instance in spherical coordinates yβ(x) =
(ρ, θ,φ) and Cartesian coordinates xα(x) = (x, y, z) we have

df =
∂f

∂x
dx+ . . .+

∂f

∂z
dz =

∂f

∂ρ
dρ+ . . .+

∂f

∂φ
dφ

Now consider a classical “vector field” on R3 of the sort encountered in Calculus,
which is usually written as

F(x) = F1(x) i + F2(x) j+ F3(x)k

with smooth coefficients Fi : R3 → R. It is not clear how the basis vectors {i, j,k} in
these classical narratives are to be interpreted – are they tangent vectors attached to each
base point p? Cotangent vectors? Or as something else? The answer actually depends
on the physical nature of the “field” being modeled. For instance we have seen that an
electric field E(p), being ∇φ for some scalar potential function, should be regarded as a
field of cotangent vectors and not tangent vectors, etc.

Our interpretation of ∇f as a field of cotangent vectors suggests that, in this case at
least, we might interpret the traditional basis vectors {i, j, k} as i = (dx)p, j = (dy)p,k =
(dz)p as we have for ∇f . On the other hand consider the operator curl = ∇× which
sends a classical vector field F to a new vector field ∇× F given by

∇× F = curl(F) = det

⎡

⎣
i j k

∂/∂x ∂/∂y ∂/∂z
F1 F2 F3

⎤

⎦

= (∂F3

∂y
−
∂F2

∂z
) i+ (∂F1

∂z
−
∂F3

∂x
) j+ (∂F2

∂x
−
∂F1

∂y
)k(47)

Should we still interpret the symbols i, j,k the same way, as dual vectors in TM∗
p? Obvi-

ously not. The proper interpretation will depend on what type of tensor field F represents
– a vector field in D(1,0)(M), a field of cotangent vectors in D(0,1)(M) =

∧1(M), or what-
ever. If F represents a smooth 1-form (say an electric field in space), it turns out that
∇×F should be interpreted as the exterior derivative dF, making ∇×F a smooth 2-form
in
∧2(M), an antisymmetric rank-2 tensor field.
To see why this is the right interpretation write F = F1 dx1+F2 dx2+F3 dx3, regarding

F as a 1-form in
∧1(M). Its exterior derivative would then be

dF =
3∑

i=1

(dFi) ∧ dxi =
3∑

i=1

(
3∑

j=1

∂Fi

∂xj
dxj) ∧ dxi

=
∑

i̸=j

∂Fi

∂xj
· dxj ∧ dxi (since dxi ∧ dxi = 0)

=
∑

1≤i<j≤3

(∂Fj

∂xi
−
∂Fi

∂xj
) · dxi ∧ dxj (since dxj ∧ dxi = −dxi ∧ dxj)

= (∂F2

∂x1
−
∂F1

∂x2
) · dx1 ∧ dx2 + (

∂F3

∂x2
−
∂F2

∂x3
) · dx2 ∧ dx3 + (

∂F3

∂x1
−
∂F1

∂x3
) · dx1 ∧ dx3

We get a perfect match with the classical curl ∇× F if we interpret the “unit vectors”
i, j, k in (44) as

i = dx2 ∧ dx3 j = dx3 ∧ dx1 = −dx1 ∧ dx3 k = dx1 ∧ dx2
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Note the cyclic order dx1 → dx2 → dx3 → dx1 employed here.
Up to a ± sign these are the ordered basis monomials in

∧2(M) when M is equipped
with Cartesian coordinates. However, these “unit vectors” are no longer “vectors” of
the same type as the unit vectors i, j,k in the original field F1 i+ . . .+ F3 k ∈

∧1(TMp)

because they are rank-2 antisymmetric tensors in
∧2(TMp). It is an accident that the

tensor ∇ × F(p) can be mistaken for the same kind of object as F(p). This happens
because

dim
∧1(TMp) = (31) = (32) = dim

∧2(TMp) = 3

on any three-dimensional manifold.
Since vector spaces of the same dimension are “isomorphic” it is tempting to regard

them as being “the same,” but they are not, and there is no natural way to identify
them. While it is often useful to introduce bases and identify both spaces

∧1(TMp)

and
∧2(TMp) with coordinate space R3 in order to perform calculations, this completely

obscures the very different nature of these tensors, which have different ranks and do
not transform the same way when described in different systems of local coordinates.
Moreover, this dodge cannot work in higher dimensions, for if physical space were four-
dimensional we would have

dim
∧1(TMp) = (41) = 4 while dim

∧2(TMp) = (42) = 6

Furthermore, in vector Calculus on R4 a new “vector operator” would appear, the exterior
derivative d2 in

∧0(R4)
d0−→
∧1(R4)

d1−→
∧2(R4)

d2−→
∧3(R4)

d3−→
∧4(R4)

d4−→ (0)

which is not encompassed in the three-dimensional theory of classical Calculus. In con-
trast, the theory of differential forms makes perfect sense for tensors of arbitrary ranks
in all dimensions, and even makes sense on differentiable manifolds such as spheres
Sn ⊆ Rn+1, as well as various other manifolds that have no obvious realizations as
smooth hypersurfaces embedded in Euclidean spaces.

Finally let us consider the divergence operator div = ∇◦ . In Calculus you were told
that div acts on “vector fields” F = F1 i+ F2 j+ F3 k to produce “scalar fields” via the
formula

∇ ◦ F = divF = Trace

⎡

⎢⎣
∂F1/∂x1 . . . ∂F1/∂x3

...
...

∂F3/∂x1 . . . ∂F3/∂x3

⎤

⎥⎦(48)

=
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
(sumofdiagonalentries)

To make sense of this in terms of exterior derivatives let’s interpret F as an antisymmetric
rank-2 tensor field with i, j,k the basis vectors for the three-dimensional space

∧2(TMp),

i = dx2 ∧ dx3 j = dx3 ∧ dx1 = −dx1 ∧ dx3 k = dx1 ∧ dx2
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Applying the exterior derivative d2 :
∧2(R3) →

∧3(R3) to F =
∑

I∈E2
FI dxI we get

dF =
∑

I∈E2

(dFI) ∧ dxI

= (
3∑

i=1

∂F1

∂xi
dxi) ∧ (dx2 ∧ dx3)− (

3∑

i=1

∂F2

∂xi
dxi) ∧ (dx1 ∧ dx3) +

+ (
3∑

i=1

∂F3

∂xi
dxi) ∧ (dx1 ∧ dx2)

= (∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
) · dx1 ∧ dx2 ∧ dx3 in

∧3(R3)

because dxi ∧ dxj ∧ dxk = 0 if any two of the indices i, j, k are equal. As an example,
magnetic fieldsB(x) are represented by rank-2 antisymmetric tensor fields. An important
physical law asserts that dB = ∇◦B is identically zero in any region of space (“magnetic
monopoles do not exist”).

Since dim
∧3(TMp) = 1 on M = R3, all elements of

∧3(TMp) are scalar multiples
of the single basis vector (dx1 ∧ dx2 ∧ dx3)p, and therefore might easily be confused

with actual scalars (which are elements of the one-dimensional space
∧0(TMp) = R).

But they are not scalars. In fact if we take a different Euclidean coordinate system on
M = R3, say (y1, y2, y3) = yβ(x) = (x2, x1, x3) with reversed orientation, we find that

dyI = dy1 ∧ dy2 ∧ dy3 = dx2 ∧ dx1 ∧ dx3 = − dx1 ∧ dx2 ∧ dx3 = −dxI

for all I ∈ E3, reversing the sign on the basis vector. That never happens for a true scalar
field f ∈

∧0(R3) = C∞(R3).
Summarizing these remarks, we have found that

• Gradient: grad = ∇· acting on scalar fields should be interpreted as the exterior
derivative d0 :

∧0(R3) →
∧1(R3). The result is a smooth 1-form.

• Curl: curl = ∇× acts on smooth 1-forms and should be interpreted as the exterior
derivative d1 :

∧1(R3) →
∧2(R3). The result is a smooth 2-form.

• Divergence: div = ∇◦ acts on smooth 2-forms and should be interpreted as the
exterior derivative d2 :

∧2(R3) →
∧3(R3). The resulting smooth 3-form can be

written as φ(x) dx1 ∧ dx2 ∧ dx3 for some C∞ scalar function φ : R3 → R.

At the next level we have d3 :
∧3(R3) →

∧4(R3) = (0). Interpreting the classical vector
operators in this manner we immediately obtain two classic vector identities

(49) ∇× (∇f) = d1 ◦ d0(f) = 0 and ∇ ◦ (∇× F) = d2 ◦ d1(F) = 0

from the fundamental property d2 = dk+1 ◦ dk = 0 of exterior derivatives.
The two-dimensional case M = R2 is similar, but simpler.

4.1 Example. (The 2-Dimensional Case). In M = R2 there are just two nontrivial
vector operators

∧0(R2)
d0−→
∧1(R2)

d1−→
∧2(R2)

d2−→ (0)

because
∧k(R2) = (0) for k ≥ 3.

• grad maps f ∈
∧0(R2) = C∞(R2) to

∇f = df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 in

∧1(R2)

116



• curl maps ω = F1 dx1 + F2 dx2 in
∧1(R2) to

dω = (∂F1

∂x1
dx1 +

∂F1

∂x2
dx2 ) ∧ dx1 + (

∂F2

∂x1
dx1 +

∂F2

∂x2
dx2 ) ∧ dx2

= (∂F2

∂x1
−
∂F1

∂x2
) · dx1 ∧ dx2 in

∧2(R2)

There is no two-dimensional analog of the divergence operator div since dω = 0 for every
2-form on R2. (Likewise on any 2-dimensional differentiable manifold.) !

It is now clear that the d-operators on the manifold M = Rm

∧0(M)
d0−→
∧1(M)

d1−→
∧2(M)

d2−→ . . .
dm−1

−−−−→
∧m(M)

dm−→
∧m+1(M) = (0) ,

with d ◦ d = 0 at every stage, are the natural higher-dimensional analogs of div, grad,
curl in three dimensions.

In dealing with three dimensional space physicists and mathematicians have adopted
notation devised (circa 1890) by J. Willard Gibbs, who exploited the coincidence

dim
∧0 = dim

∧3 = 1 and dim
∧1 = dim

∧2 = 3

to identify these spaces with the usual coordinate spaces R1 and R3. He also exploited
the fact that the manifold structure of M = R3 is determined by a single chart xα(x) =
(x1, x2, x3). This provides us with globally defined smooth k-forms

For k = 1: dx1 dx2 dx3

For k = 2: dx1 ∧ dx2 dx2 ∧ dx3 dx3 ∧ dx1 = − dx1 ∧ dx3

For k = 3: dx1 ∧ dx2 ∧ dx3

that determine correlated basis vectors at all base points. This allows us to compare the
spaces

∧k(TMp) and
∧k(TMq) at different base points. Thus we can in a uniform way

identify spaces having the same dimension:
∧0(TMp) ∼=

∧3(TMp) ∼= R and
∧1(TMp) ∼=∧2(TMp) ∼= R3, for all base points. This is really convenient in doing calculations,

but obscures the distinction between various kinds of “vectors” in R2 and “scalars” in
R. Most physicists and mathematicians voted for convenience, although most were well
aware that these identifications are only a shorthand description of what is actually going
on.

Differential Forms and the Cross-Product a× b in R3.
Gibbs also introduced the cross product v ×w of vectors in R3, as a simplified proxy
for the wedge product of cotangent vectors. If we write the basis vectors in

∧1(TMp) as

i = (dx1)p j = (dx2)p k = (dx3)p

and those in
∧2(TMp) as

i′ = j ∧ k = (dx2 ∧ dx3)p

j′ = k ∧ i = (dx3 ∧ dx1)p = − (dx1 ∧ dx3)p(50)

k′ = i ∧ j = (dx1 ∧ dx2)p ,

and if we now identify basis vectors i′ ∼ i, j′ ∼ j, k′ ∼ k in these three-dimensional
spaces, then the identities (47) take the form

(51) i ∧ j = k′ ∼ k j ∧ k = i′ ∼ i k ∧ i = j′ ∼ j
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These should look familiar since the Calculus cross product of vectors v = v1i+v2j+v3k
and w = w1i+ w2j+ w3k in R3 is defined to be

v ×w = det

⎡

⎣
i j k
v1 v2 v3
w1 w2 w3)

⎤

⎦(52)

= (v2w3 − v3w2) i+ (v3w1 − v1w3) j+ (v1w2 − v2w1)k

In particular,

(53) i× j = k j× k = i k× i = j

Under these identifications the classical cross product becomes the wedge product.
If we regard v,w as cotangent vectors in

∧1(TMp), then v ×w is the 2-form v ∧w in∧2(TMp), which we then identify with a vector back in
∧1(TMp) ∼=

∧2(TMp) to get
the classical cross product v×w in (52). Antisymmetry of the wedge product yields the
familiar Calculus identities

w × v = −v ×w v × v = 0 for all v

which also follow from the Calculus-style definition (52). But beware: xitThe identifi-
cations that underlie this interpretation of v ×w are only possible in three dimensional
space, while the wedge product on

∧k(Rn) makes sense in all dimensions.

4.2 Exercise. For k = 2, 3, 4 compute components of the wedge product v ∧ w of
v =

∑l
i=1 viei and w =

∑k
j=1 wjej , interpreting ei = (dxi) in

∧2(Rk). !

Figure 11.6. Geometric interpretation of the cross product a × b of two vectors in R3. The
product is always perpendicular to the plane in R3 determined by the two vectors, and the
length of the cross product is the area of the parallelogram R determined by the two vectors,
∥a × b∥ = Area(R).

The geometric interpretation of the cross product a × b in R3 is shown in Figure
11.6. It is always perpendicular to the plane spanned by the two vectors and its length
∥a × b∥ is the area of the parallelogram R determined by a and b. The meaning of
the vector triple product (a × b) • c of vectors in R3 is discussed in Exercises 4.3 -
4.4. Its numerical value (with sign) is the oriented 3-dimensional volume Vol(P ) of the
parallelopiped P whose edges are the vectors a,b, c. The signed volume of P is (+) if
the vectors form a “right-handed system” – i.e. if you wrap your fingers around the axis
perpendicular to a and b with your index finger pointing in the same direction as a and
middle finger aligned with b, your thumb should be pointing in the same direction as c;
otherwise the signed volume is (−).

4.3 Exercise. Prove that
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(a) If a and b are nonzero then a× b = 0 ⇔ the vectors are collinear. Furthermore,

(a × b) • a = 0 and (a× b) • b = 0 ,

so a× b is orthogonal to a every vector in the plane Ra+ Rb.

(b) a • (b× c) = (a× b) • c

(c) ∥a × b∥2 = ∥a∥2∥b∥2 · (1 − cos2 θ) = ∥a∥2∥b∥2 · sin2(θ) for the angle θ shown in
Figure 11.6.

Hint: Show that the identity in (c) is equivalent to ∥a × b∥2 + |a • b|2, which can be
verified directly. !

4.4 Example. If a,b, c are in R3, verify that the vector triple product (a × b) • c,
in which (•) is the usual inner product on R3, is just

(a × b) • c = det

⎛

⎝
a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞

⎠ ,

Explain why this is precisely the (oriented) volume of the parallelopiped P determined
by the three vectors. (This will be zero (P is degenerate) ⇔ the vectors are linearly
dependent.) !

4.5 Example. The triple product λ = (a×b) • c of vectors in R3 is a scalar. The space∧3(R3) is one-dimensional. If we interpret vectors as 1-forms in
∧1(R3) as in Exercise

4.4, prove that
a ∧ b ∧ c = λ · (dx1) ∧ (dx2) ∧ (dx3) !
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