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Chapter 0. A Few Preliminaries.

Course texts:

1. Linear Algebra, by S. Friedberg, A. Insel, L. Spence (latest edition). This will be
the main backup text to accompany the present Class Notes . Various assignments
will be taken from it.

2. Schaum’s Outline Series: Linear Algebra, by Seymour Lipschutz, for a review of
matrix algebra, row operations, and solution of linear systems (roughly the first
3-4 chapters). K is a field (see Appendix C of [F/I/S] text; read it). For us,
K =C,R,Q, and occasionally the finite field K = Z, = Z/pZ, for a prime p > 1.

Recall that the finite field Z, is modeled as S = {0,1,2,...,p — 1}, interpreting a + b and
ab (mod p). For example: if p = 7 then

5¢06=11=4 (mod 7) and 506 ©® 17 =6 (mod 7).

Elements of Z,, are the (mod p) congruence classes [k] = k+pZ = {{ : { = k (mod p)}.
Using this notation the operations in Z, take the form

[a] ® [b] = [a + D] [a] © [b] = [ab] (add or multiply class representatives)

The system (Z,, @, ®) is a finite number field with additive zero element [0] and multi-
plicative identity element [1]. All nonzero elements [k] # [0] have multiplicative inverses
(reciprocals), but it may not be so easy to find the class [k]™! = [{], 0 < £ < p such that
[k] - [€) = [1]. If p =7 we have [3]7! = [5] because 305 =15=14+1 =1 (mod 7).
Notice that in Z, the sum [1] @ [1] & .... @ [1] with p terms is equal to the zero element
[0].
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Chapter 1

Section I.1. Vector Spaces over a Field K

The objects of interest in this chapter will be vector spaces over arbitrary fields.

1.1 Definition. A vector space over a field K is a set V' equipped with two operations
(4+) and () from V xV =V and K x V — V having the following properties.

1. Axioms for (+):
COMMUTATIVE LAW: z4+y=y+=x
ASSOCIATIVE LAw: z+y)+z=a+(y+2)
ZERO ELEMENT: There exists an element “0” in V' such that 0+v = v

for all v.
ADDITIVE INVERSE: For every v € V there is an element —v € V, such

that v 4+ (—v) = 0.
2. Axioms for (-):

IDENTITY LAW: 1-v =wv (1 = the identity in K)
ASsSOCIATIVE Law:  (ab)-v=a-(b-v) fora,beK, veV
DISTRIBUTIVE LAw:  a-(z +y) = (a-xz) + (b-y)
DISTRIBUTIVE Law:  (a+b)-z=(a-x)+ (b- )

As a consequence,

1.2. Lemma. The zero element is unique: if 0,0' € V are elements such that 0+v = v
and 0/ +v =, for allv €V, then 0/ = 0.

Proof: 0+0 =0 and 0+0' =0,s0 0 =0. O

1.3. Lemma. The additive inverse is unique. That is, given v € V there is just one
element uw € V' such that u+v = 0.

Proof: Suppose v € V and we are given v and v’ with u +v = 0 and v’ + v = 0. Look

at the combination u + v + u; by associativity we get
W=0+4+u=@w+v)+v=u+(w+u)=u+0=u |,

so that v/ =w. O

1.4. Exercise. From the axioms and previous results prove:
(i)0-v=0y (@{)A-0p=0y (i) A-v=vandv#0y=A=1.

1.5. Exercise. Prove that —v = (—1) - v where —1 is the negative of 1 € K.

Hint: 1+ (—1)=01in K and 0-v = 0y. Remember: “—v” is the unique element that
added to v is Oy; prove that (—1) - v has this property and conclude by uniqueness of
additive inverse.

1.6. Exercise. Prove that —(—v) = v, for allv € V.
Hint: Same as the previous exercise.

1.7. Exercise (Cancellation Laws). If a+v = a+w for a,v, w € V prove that v = w.
Then use this to prove

(i) A-v =0y and v # Oy implies that A =0in K
(ii) - v = v and v # Oy implies A = 1.

1.8. Example. “Coordinate space’ over the field K consists of all ordered n-tuples
K" = {x = (21, ..., Zn) : % € K}, equipped with the usual (+) and (-) operations:



(1) (Ila ,In) + (ylv 7yn) = (Il +y15 sy Ty +yn)
(i) A (21, e, zn) = A2, o Arzy) for Ne Ko O

1.9. Exercise. Explain why (+) in R? is described geometrically by the “parallelogram
law” for vector addition shown in Figure 1.1.

Figure 1.1. The Parallelogram Law for vector addition, illustrated in R2.

1.10. Example (Matrix Space). The space M(n x m,K) of n x m matrices with
entries in K becomes a vector space when equipped with the operations

ADDITION OPERATION: (A + B);; = Aij + Byj
SCALING OPERATION: (A A);; = AA,;;

The space of square matrices, with m = n, is denoted M(n, K).
Notation: Matrix entry A;; is the one in the it" row and j* column. The pair (4, 7) is
referred to as its “address.” [

Figure 1.2. The entry in a matrix array with “address” (¢, ) is the one in Row ¢ and Column j.

There is also a matrix multiplication that makes M(n,K) an associative algebra with
identity, but the matrix product AB can be defined more generally for non-square ma-
trices as long as they are “compatible,” with the number of columns in A equal to the
number of rows in B. Thus if A is m X ¢ and B is ¢ X n we get an m X n matrix AB
with entries

q
(AB)ij = AuBu
k=1

The algebra M(n,K) of square matrices is not commutative unless n = 1. O

1.11. Example (Polynomial Ring K]z]). The set K[z] consists of all finite “formal
sums” ag + a1 + ... + apx”™ + ... = Zk>0 arz® with a; € K, and a; = 0 for all but
a finite number of indices. These sums can have arbitrary length. They include the
“constant polynomials” which have form c-t with ¢ € K, where t is the particular
constant polynomial 1+ 0-z 4 0-z2 + .. .; the zero polynomial 0-1 is written as “0”, which
might get confusing.

The algebraic operations in K[z] are



L. ADDITION: (3,50 axt®) + (3450 bra®) = Yoo (an + by)z*

2. SCALING: A~ (3,50 anz®) = 30,50 (Aag)z".

There is also a multiplication operation, obtained by multiplying terms in the formal
sums and gathering together those of the same degree

3. ProbucT: (Zakxk) X (mel) = Z apby Tt = Z( Z akbl) -z

k>0 1>0 k,1>0 r>0  kI>0k+l=r

(the sum being finite for each r). This makes K[z] into a commutative associative algebra
over K with t as its multiplicative identity.

All information about a polynomial resides in the symbol string (ao,as,as,...) of
coefficients, and the algebraic operations on K[z] can be performed as operations on
symbol strings; the zero polynomial is represented by (0,0, ...), the identity by t =
(1,0,...,0), and z by x = (0,1,0,....), etc. O
1.12. Exercise. If f(r) = 3 + 3z + 22 and g(x) = 422 — 22® + 2%, compute the sum
f + g and product f - g.

The degree deg(f) of f =3, apz® is n if a, # 0 and ap = 0 for all k& > n. The degree

of a constant polynomial ct is zero, except that no “degree” can be assigned to the zero
polynomial 0. (For various reasons, the only possible assignment would be “—o00”).

1.13. Exercise. If f,g # 0 in K[z] prove that fg # 0 and deg(fg) = deg(f) + deg(g).
1.14. Exercise. If f,g # 0 in K[z], what (if anything) can you say about deg(f + g)?

1.15. Example (Polynomials in Several Unknowns). The polynomial ring K[x]| =
K[z1, ..., x,] is handled using very efficient “multi-index notation.” A multi-index is an
element o = (a1, ...ay) of the Cartesian product set Z7} = Zy x ... x Z; (n factors).
Each multi-index determines a monomial z® = z{* - ... - 2%, in which we interpret

29 = 1. Elements of K[z1,...,x,] are finite formal linear combinations of monomials
flx1,.. 2n) = Z cax®  (cq € K)
Q€LY

0)

The monomial 2 is the constant polynomial t in K[z, ..., z,]. With these ideas in

mind,

1. The total degree of a multi-index is |a] = a3 + ... + a, and the degree of the
corresponding monomial is deg(z®) = |a|. Note that many monomials can have
same total degree, for example 2%y and zy?.

2. The degree of a polynomial f € K[x] is

deg(f) = max{ [al : ¢ # 0}

Nonzero constant polynomials ¢t have degree zero: if f is the zero polynomial (all
coefficients ¢, = 0) deg(f) cannot be defined. The generators f;(x) = z of the
polynomial ring all have degree 1.

The following operations make V' = K[x] a vector space and a commutative associative
algebra with identity t = z(©0).

1. Sum: f+g=>(aq+by)z®
2. SCALING: - f =3 (Aaq)z®



3. ProbucT OPERATION:

f-g

(D aar®) - (Y bsa?)
o 3
= Z aabsr® P

a,ﬁEZi

Z ( Z aa-bg)-ﬁ

YELY  atPB=vy

where we define a “sum of exponents” to be a« + 5 = (a1 + f1, ..., an + Bn)-

As an example, the monomials of degree 2 in K[z1, 22, 23] are

multi-index | monomial
(0,0,2) :1:%
(Oa 17 1) T23
(0,2,0) 3
(1, O, 1) T1X3
(1, 1, 0) T1X9
(2,0,0) :v%

Y

Here we have lined up the monomials in “lexicographic”’or “dictionary” order (taking
A=0,B=1,C=2,...), which is a useful way to manage them. This is a strict linear
ordering of monomials; they are only partially ordered by their “total degree” deg(z®) =
|a|. The system K[z, ..., z,] is a commutative associative algebra with identity element
t. Tts properties are quite a bit more complicated than those of polynomials K[x] in one
unknown, but they do share two crucial algebraic properties. [J

1.16. Exercise. (Hard, but try it) If f, g # 0 in K[z, ..., x,] prove that
1. DEGREE FORMULA: deg(f - g) = deg(f) + deg(g) for all f,g # 0 in K[, ..., z,].

2. No ZERO D1visors: f,g # 0 in Klz1,...,2,] = f-g # 0. This implies we can
perform “cancellation” —if f # 0 and f-hy = f-hg then hy = hs.

Hint: Try it first for n = 1. For n = 2 try lexicographic ordering of monomials in
K[z, y].

Note: The maximum possible degree for a nonzero monomial in the product fg is
obviously d = deg(f)+deg(g). The problem is that the coefficient ¢, of such a monomial
will be a sum of products (ZOZJFB:AY aqbg), and not a simple product as it is when there
is just one variable. Such sums could equal zero even if all terms are nonzero, so why
couldn’t these coefficients (sums) be zero for all monomials with the maximum possible
degree d, making deg(fg) < deg(f) + deg(g)? O

A more complete discussion of the Degree Formula for n > 2, and especially its proof
using lexicographic ordering of monomials, is provided in Appendix A of this chapter.

1.17. Example (Function Spaces). If S is a set, C(S) = all scalar-valued functions
f S — K become a vector space under the usual operations

(f +9)(z) = f(z) + g(=), M- f)(@) = Mf(z), Ve e S

There is also a pointwise multiplication operation

(f-9)(x) = f(x)-g(x),



which makes C(S) a commutative associative algebra over K with identity element
t(x) =1 for all z, and zero element 0(z) =0, for z € S. O

1.18. Example (Polynomial Functions vs Formal Sums). The polynomial func-
tions Px with values in K are the functions ¢y : K — K of the form

¢r(t) = [f(@)|emt ] =D _artt  (t€K)

k>0

for some f € K[z]. (Thus, ¢(t) = sin(t) is not a polynomial function on K). Note
carefully that the elements of Pk are functions while K[z] is made up of symbol strings
or formal sums. They are not the same thing, though there is a close relation between
them implemented by the surjective (=“onto”) mapping ® : K[z] — Pk such that

f(t)=> artt  (te€K)

k>0

if f(z) =Y 4>oaxe”® in K[z]. This surjective map is a homomorphism: it preserves, or
“intertwines,” the algebraic operations in K[z] and in the “target space” Pk, so that

DA f)=A-0(f) S(f+g)=2()+2(9) O(f-9)=2(f) 2(9) O

1.19. Exercise. If K = R or C explain why @ is a bijection, hence an “isomorphism”

between commutative associative algebras. In fact, prove that this is so for polynomials
over any infinite field K.
Hint: ® is linear, hence being one-to-one is equivalent to saying that ®(f) =0= f =0
in K[z]. If f is nonzero in K[z] the corresponding polynomial function ®(f) : K — K can
take on the value zero at no more than n = deg(f) points — i.e. the number of roots in K
cannot exceed deg(f). Since R and C (and even Q) are infinite we cannot have ®(f) =0
on these fields unless f is the zero polynomial. [

The finite fields Z, (p a prime) are widely used in number theory, cryptography, image
processing, etc. This one-to-one correspondence breaks down for these fields. For example
if K = Z,, the nonzero polynomial f = P — z has value zero for every choice of x € Z,
and there are precisely p = deg(f) roots.

A theorem of Fermat says: if p is a prime then *~! =1 for all nonzero ¢ in Z,, but
then tP —t =t is zero at every ¢ € Z, and ®(f) = 0 (the zero function in Pk).

1.20. Exercise. For p = 3, verify that t3 — ¢ = 0 for the three elements t = [0], [1], [2]
in Z3. But the corresponding element of Zs[z] is f = 2% — x, whose symbol string
(0,—1,0,1,0,0,...) differs from that of the zero polynomial in Z3|[x].

I.2. Vector Subspaces

2.1. Definition. A nonempty subset W of a vector space V is a vector subspace if
1. Wis closed under (+): W+ W C W, so wy,ws € W = wy +we € W.
2. W is closed under (-): K-WCW,so e KiweW=X\-weW.

The vector 0 then lies in W, for if w € W then —w = (—1) - w is also in W and then
0 =w+ (—w) € W. Thus W becomes a vector space over K in its own right under the
(4) and (-) operations applied to elements of W.

Subspaces of V include the trivial examples W = (0) and W = V; all others are
“proper” subspaces of V.

2.2. Definition. Given a non empty set S of vectors in V, its linear span (S) =



K-span(S) is the smallest subspace W C V' such that W contains S.
It is easy to verify that:

2.3. Exercise. If {W, : o € I} is any family of subspaces in V, prove that their

intersection W =", .; W, is also a subspace.

Thus Definition 2.2 makes sense: Given S there is at least one subspace containing .S,
namely V. If E = intersection of all subspace Wthat contain S, then E is a subspace
and is obviously the smallest subspace containing S. Thus K-span(S) exists, even if V'
is “infinite dimensional,” for instance V' = K][z].

This “top down” definition has its uses, but an equivalent “bottom-up” version is
often more informative.

2.4. Lemma. If S # () in V, its linear span K-span(S) is the set of finite sums

n
{Zaivi:aiEK,viGS,n<oo}

i=1

Proof: Let E = {Zf\il civ; : N < o0, ¢; € K, v; € S}. Since S C K-span(S), every
finite sum lies this span, proving E C K-span(S). For (D), it is clear that the family
E of finite linear combination is closed under (+) and (-) operations because a linear
combination of linear combinations is just one big linear combination of elements of S.
It is a subspace of V, and contains S because 1-s = s is a (trivial) linear combination. On
the other hand every subspace W 2 S must contain all these linear sums, so S C E C W.
Hences F is the smallest subspace containing S and F = K-span(S). O

2.5. Exercise. If K =R, V = R? show that W = {z € R : 321 + 222 —23 =0} is a
subspace and W’ = {z € R? : 3z1 + 2x5 — x3 = 1} is not a subspace.

Hint: For one thing the zero vector 0 = (0,0, 0) is not in W’. The situation is shown in
Figure 1.3.

Figure 1.3. The subspace W in Exercise 2.5 and a translate W/ = xo + W by some
xp € V such that 3m(1) + 2m(2) — xg = 1, for instance xo = (0,1,1). The set W’ is not a
subspace.

System of Linear Equations. Systems of n linear equations in m unknowns are
of two general types

Homogeneous
a11x1 + ... + a1;xym =0

Ap1x1 + ... + @y =0



Inhomogeneous
a1121 + ... + A1mTm = bl

Ap1T1 + oo + QT = by,

with a;; and by in K. O

2.6. Exercise. Verify that the solutions x = (21,...,z,,) of the homogeneous system
form a vector subspace of K. Explain why the solution set of an inhomogeneous system
cannot be a vector subspace unless b = (b1,...,b,) = 0 in K".

If we regard vectors x = (21, ..., Ty, ) € K™ as the entries in an m x 1 column matrix,
T

x =col(x1,...,Tm) = ,

Tm

you will recognize that the solutions x € K™ of the homogeneous system of equations
are precisely the solutions of the matrix equations

0
Ax =0 where the zero vector is 0=
0/ x1
and for inhomogeneous systems we must solve
by
Ax =B where B= :
bn nx1

for B € K™

The homogeneous system always has the zero vector 0 € K™ as a solution, and the
solution set {x € K™ : Ax = 0} is a vector subspace in K”. If K = R or C then the
number of solutions is either 1 or oo for this system. An inhomogeneous system might
not have any solutions at all; otherwise, it has just one solution or infinitely many.

If A is an n X m matrix with entries in K we will find it useful to let A act by left
multiplication as an operator L, : K™ — K" on column vectors

y=La(x)=A-x (an (n x m)-(m x 1) matrix product)
for x € K™. This is a linear operator in the sense that
La(x+y)=1La(x)+Laly) and  La(A-x)=A-La(x)

for x,y € K™ and A € K. Solving a system of linear equations is then equivalent to
finding solutions of La(x) = 0 or La(x) = B for x € K™. From this point of view,
Ax = B has solutions if and only if B lies in the range R(L4) = {Ax : x € K™} (a
vector subspace in K™). If B = 0 the “homogeneous” equation Ax = 0 always has the
trivial solution x = 0. O

2.7. Exercise. If A is an n x m matrix and L4; K" — K" is defined as above, verify
that

1. The range R(La) = La(K™) = {A-x: 2 € K™} is a vector subspace in K".



2. The kernel K(La) = ker(La) = {z € K™ : L4(x) = A-x = 0 in K"} is a vector
subspace in K.

2.8. Example. Given a particular solution xg of Ax = B, the full solution set of this
equation consists of the vectors Wg = xo+ W, where W = {x € K™ : Ax = 0} is a vector
subspace of K™ because Ax;, Axs = 0 implies A(x; +x2) = Ax; + Ax2 =040 =0 and
AX-x)=X-Ax=X-0=0.

Note: The converse is also true: in K™ every vector subspace is the solution set of some
homogeneous system of linear equation Ax = 0, but we are not ready to prove that yet.
The situation is shown in Figure 1.4. [

Figure 1.4. The subspace Wy is the solution set for a homogeneous equation Ax = 0.
If the inhomogeneous equation Ax =y has solutions and if xg is a particular solution, so
Axo = y, the full solution set W = {x : Ax = B} is the translate W/ = xo + W of Wp.

This of course presumes that Ax = B has any solutions at all; if it does not, we say
that the system is inconsistent. Geometrically, that means B does not lie in the range
R(LA). Here is an example of an inconsistent inhomogeneous system.

10 (0
2 0 )"\ 1
The corresponding system of linear equations

r1+0-20 = 0
2{E1—|—0'I2 = 1

implies that 1 = 0 and 2x; = 1, an obvious impossibility.

We will continue discussion of linear systems and their solutions via elementary row
operations on A, or on the augmented matrix [A : B], but first a few more examples of
vector spaces we will encounter from time to time.

2.9. Example (Sequence Space (). Let ¢>° = all sequences a = (a1, as,...) with
a+b= (a1 +b1,a2 + ba,...) and A -a = (Aay, \ag,...). This infinite dimensional space
has the following subspaces:

1. Wy = {sequences such that a,, — 0 as n — oc};
2. W, = all sequences of the form (a1, ..., ay,0,0,...);
3. 00 ={a: 3207 |an| < o0}
2.10. Example. In M (n,K) we have various significant subspaces

1. SYMMETRIC MATRICES: A' = A where A' = (transpose of A).



2. DIAGONAL MATRICES: D =

3. BLOCK DIAGONAL MATRICES: Dmy,ocoomy =

,,,,,

0 |

for fixed indices myq, ...,m, > 1. (The “blocks” are allowed to have arbitrary entries
and all other entries are zero; my + ... +m, = n.)

4. UPPER TRIANGULAR and STRICTLY UPPER TRIANGULAR MATRICES.

* * 0 *
and
0 . * 0 . 0
2.11. Exercise. Which of these four subspaces, if any, are closed under matrix multi-

plication as well as (+) ?

2.12. Exercise. Show that the vector subspace of upper triangular and strictly upper
triangular matrices are closed under formation of matrix product AB.

2.13. Exercise. Show that the vector subspaces of upper triangular (or strictly up-
per triangular) matrices are Lie algebras: all commutators [A, B] = AB — BA are
(strictly) upper triangular if A, B are.

2.14. Exercise. If an n x n matrix A has the strictly upper triangular form shown in
(a), prove that A% has the form in (b).

O O * *
0 = 0 0 * *
(a) A= (b) A% = '
0 = *
0 0

Note: Further computations show that A3 has three diagonal files of zeros, etc so that
A is a nilpotent operator, with A™ = 0, x4,-

I.3. Determining Linear Span: A Case Study

Given vectors {vy,...,0.} €V and b € V, the basic problem is to decide whether there
exist x1, .., z, € K such that b = )", _; ;v; (and if so, for which choices of coefficients
Z1, .., ). Row operations on matrices are the main tool for resolving such questions.

3.1. Example. Consider the vectors in K3

1 —2 0 2 -3
u; = 2 , U = —4 , U3z = 2 , Uy = 0 , U5 = 8
1 -2 3 -3 16



and let A be the matrix with these vectors as its columns
1 -2 0 2 -3

A=|2 -4 2 0 8
1 -2 3 -3 16

2
If B =col(2,6,8) = ( 6 ) , determine all column vectors
8
x1
T2
X = xrs3
T4

T3

such that Y, z;u; = 0 or Y, z;u; = B in K3. (In the second case we are determining
whether B lies in the linear span of {uy,...,us}.) Then do this for an arbitrary column
vector B = col(by, ba, b3) to to get all solutions of Ax = B.

Discussion: A solution x = col(z1,...,25) of Ax = B statisfies the matrix equation
5 1 -2 0 2 -3
B = inuile 2 + X2 —4 + x3 2 + x4 0 + x5 8
i=1 1 -2 3 -3 16
T1
1 -2 0 2 -3 T2
= 2 -4 2 0 8 T3 = Ax .
1 -2 3 -3 16 T4
zs5

We shall determine the full solution sets of the systems Ax = 0 or Ax = B for the 3 x 5
matrix A = [ug; ug; us; uy; us).

Before analyzing this problem we recall a few basic facts about solving matrix equa-
tions using elementary row operations. These methods are based on the following obser-
vations with which you should already be familiar: see the early chapters of Schaum’s
Outline. The simple (but important) verification is left as an exercise.

3.2. Proposition. The following elementary row operations on a matriz A do not
change the set of solutions x of Ax = 0.

1. R; < Rj: switch two rows;
2. R; — AR;: scale (row i) by some A # 0 in K;

3. R, — R; + AR;: for i # j add any scalar multiple of (row j) to (row i), leaving
(row j) unaltered.

Applied to the “augmented matrix” [A : B] associated with an inhomogeneous system
Ax = B, the system A’x = B’ associated with the modified matrix [A’ : B’] has the
same solution set as Ax = B.

The reason is that each of the moves 1.-3. is reversible, with R; — R; — AR; the
inverse of R; — R; + AR;. Although row operations do not change the solution set they
can greatly simplify the system of equations to be solved, leading to easy systematic
solution of matrix equations. For instance, when K = Q, R, C it is always possible to find
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a sequence of row operations that put A into upper triangular echelon form:

(1) ECHELON FORM: A= 0 *

The same moves put the augmented matrix [A : B] into similar form

>s< x| b
0 nEn

’
r+1

@ A B =

b

Solutions of the systems A’x = 0, A’x = B’ are quickly found by “backsolving” (illus-
trated bellow). One could go further, forcing A into even simpler form by knocking out
all terms * above the “step corners.” These additional operations would of course affect
B’ in the augmented matrix yielding the reduced echelon form.

x . 0 x 0 x| bf
* 0 .0 %
0 - x ..o x| b

"
r+1

H

[A/I . BI/] _

/!
bm

The “step corners” appearing in these echelon displays are often referred to as “pivots,”
and the columns in which they occur are the “pivot columns.”

Notice that Ax = B has the same solutions as A’x = B’ where [A" : B'] is the echelon
form of [A : B]. Solutions exist if and only if we have b).,; = ... = b, = 0 (the terms
in B’ below the row containing the last “step corner”) because the last equations in the
new linear system A'x = B’ read 0 = )4, ..., 0 = b}, (the variables x1,..., ,, don’t
appear!) These are inconsistent unless b}, = ... = b;, = 0.

Columns C;(A) that do not pass though a step corner correspond to “free variables”
z; in the solutions of the equation A’x = 0; they are also free variables in solutions of
A'x = B’ if the consistency conditions o], ; = ... = b}, = 0 have been met (without
which there are no solutions at all.) If T = {1 < i3 < ... < 4, < m} are the indices
labeling the pivot columns, the remaining indices correspond to free variables z (k ¢ I)
in the solution. Once the values of the free variables have been specified, backsolving
yields the values of the remaining “dependent” variables z; (k € I). We get a unique
solution A’x = 0 for every choice of the free variables (k ¢ I); different choices yield
different solutions and all solutions are accounted for. By Proposition 3.2 these are also
the solutions of the original equation Ax = 0.

Example 3.1 (Resumed). Returning to our discussion, we put the original system

11



into echelon form by applying row operations to

1 -2 0 2 -=-3]|0
2 -4 2 0 8 10
1 -2 3 -3 160

Applying, Ry «— Ry — 2R; and R3 «+ R3 — R; this becomes
-2 0 2 -3]|0

0 0 2 -4 1410
0 0 3 -5 1910

Now apply R3 <+ R3 — %RQ, Ry «— %RQ, and then R3 «+— R3 — 3Rs to get

(1] -2 0o 2 -3]|o0
o o [1] -2 70
0o 0 o [1] —2]o0

This is the desired echelon form. Some additional work, needless for most purposes,
would yield the reduced echelon form,

(1] 2 0 0o =« |0
0

* |0
0 0 0 2|0
Recursively backsolving the corresponding system of linear equations, we see that
1. xo, x5 are free variables;
2. x4 —2x5 =0 = x4 =2x5;
3. 23 —2x4+ Ty =0 = x3=—Txs5 + 2(225) = —3xs;
4. 21 — 229+ 2x4 — 325 =0 = 21 = 209 — 2(225) + 325 = 229 — 5.

The solutions of A’x = 0 (which are also the solutions of Ax = 0) form a vector
subspace in K°, each of whose points is uniquely labeled (parametrized) by the choice of
the free variables x5, x5. Setting 20 = s, 25 = ¢ (s,¢ € K) we find that the solution set
W={xeK>: Ax =0} = {x € K®: A’x =0} is equal to

25 —t 2x2 — T5
S T2
W = -3t :s,teK 3 = —3xs tx2,x5 € K
2t 2$5
t Ts5

These homogeneous solutions can be rewritten in a more instructive form

2s —t 2 -1
s 1 0
X = —3t =s| 0 +t -3 = swi+twg ,
2t 0 2
t 0 1

which shows that every solution of Ax = 0 is a linear combination of two basic solutions

2 -1
1 0
w1 = 0 and Wo = -3
0 2
0 1
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This approach describes the solution set W of Ax = 0 as linear span K-span{w, wa} of
a set of generators {wy,wy}. We will later observe that these vectors are a “basis” for
the solution set W.

Solving the Inhomogeneous Equation Ax = B. The same elementary row opera-
tions that put A into echelon form may be applied to the augmented matrix [A : B].
We already know what happens to A; applying the same moves to the column vector
B = col(by, b, b3) with undetermined coefficients, the operations Ry «— Rs — 2R; and
R3 +— R3 — R; transform

b1 b1
B = bo — by — 2by
bs3 bs — by

Then Ry < Rs — 2Ry; Ry « 3Ro, and Rs « Ry — 3R, yield

bl bl
- Sba — by - b2 — by
by — by — 3(by — 2b1) bs — 3by + 20y

The augmented matrix becomes

-2 0 2 -3 by
[A:Bl—| 0 0 -2 7 by — by
0 0 0 ~2| by — 2by + 20y

Again 25 and x5 are free variables and the general solution x = col(z1, 22, 23,24, 5) of
Ax = B can be found by backsolving. Since we have already found the general solutions
of Ax =0, all we need is one particular solution xg. The simplest way to find one is to
set 9 = x5 = 0 and backsolve to get

To, x5 =0

w4 = by — 3by + 20y

w3 — 204 = 3by — by = 13 = 2(b3 — Sby + 2b1) + $bo — by = 2bg — by + 3by

w1 —2 040+ 214 +0=by = z1 = by — 2x4 = ~2(b3 — 3by + 2b1) + by = —2b5 + 3by — 3b1.
Soxp = col( —2b3+3bs — 3b1, 0, 2b3 — gbg +3b1, b3 — %bg + 2bq, O) is a particular solution
and the full solution set is

—2b3 + 3b2 — 3by

0
5
Wg={zr:Ax =B} = 2b3 — b2 + 3b1 + Kwy + Kws
by — 2by + 2by
0

where wy and wo are the basis vectors for the space W = {x : Ax = 0} of homogeneous
solutions determined previously. Writing s = x9, t = x5 for the variable attached to wy,
wo we obtain a parametric description of the solution set, with each point in Wg tagged
by a unique pair (s,t) in the parameter space K2.

In the problem originally posed we had B = col(2, 6,8). Then the particular solution
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is xg = col(—4,0,7,3,0) and the solution set is

—4425—t
S
WB: 7T—3t :X0+KW1—|—KW2
3+ 2t
t

That concludes our discussion of the Case Study 3.1. [

Further Remarks about Elementary Row Operations. Row operations can also
be used to determine the subspace spanned by any finite set of vectors in K™. If these
have the form Ry = (a11, .., @1m)s---, Rn = (@n1, ..., Gpm) we may regard them as the rows
of an n X m matrix

Rl ail . . . A1m
a1 . . . a2m,

A = =
R, ap1 - - - Qpm

The linear span Row(A) = K-span{Ry, ..., R,} C K™ is called the row space of A; the
linear span of its columns C1, .. ., Cy, is the column space Col(A) = K-span{C, .., Cy,, }
in K”. One can show that:

3.3. Lemma. Elementary row operations on a matrizx A do not change the linear span
of its rows.

We leave the proof as a routine exercise. Note, however, that row operations will mess
up column space!
As for columns, there is an obvious family of elementary column operations on A.

2. C; = MC; for A £ 0 in K;
3. C; — C; + ACy, for i # j where A is any element in K.

These do not change the linear span Col(A4). This can be verified by direct calculation,
but it also follows by observing that row and column operations are related via a natural
symmetry A — A" = the transpose of A, given by (A");; = Aj; (see Figure 1.5). Note
that (A%)* = A.

Figure 1.5. A matrix A and its transpose A' are related by a reflection that sends rows
in A to columns in A%, and columns to rows.
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The transpose operation takes rows of A to columns of A* and vice-versa; elementary
row operations on A become the corresponding elementary operations on the columns
of A'. Tt should also be evident that under the transpose operation the row space
Row(A) = (span of the rows, regarded as vectors in K™) becomes the column space
Col(A') = (columns in A®, regarded as vectors in K") of A*. Invariance of Col(A) under
column operations follows from invariance of Row(A") under row operations, discussed
earlier.

3.4. Example. Let vy,..,v, € K™. To find a basis for W = K-span{vy, .., v, }, view the
v; as 1 X m row vectors and assemble them as the n x m matrix
v1
A =

V.
n nxm

If we perform row operations to put A in echelon form, this does not change row space
Row(A) = K-span{vy, .., v, }, but it is now easy to pick out a minimal set of vectors with
the same linear span, namely the rows R/, ..., R} that meet the step corners in the array.

. % ok k% *
g} * % *
2 * * *

A=

0 0
We will say more about this in the next section. [

3.5. Exercise. By invariance of row space Row(A) under row operations, the rows
Yy, R}, also span Row(A). They are a basis for row space if they are also linearly
independent in the following sense.

LINEAR INDEPENDENCE: If >0 ¢;R;, =0 in K™ for coefficients c1, .., cx in
K, we must have ¢ = ... = ¢ = 0 in K.

Explain why the row vectors Rj,..., R}, in the previous example must have this indepen-
dence property.

Hint: If Y R, = (0,...,0) in K™, what conclusion can you draw about the first
coefficient ¢17 Etc.

A set of vectors {v1,...,v,} C V is a basis for V if they span V and are linearly
independent. We will now show that this happens if and only if every v € V has a
unique expansion v = Y ., ¢;v; with ¢; € K. Independence simply says that the zero
vector v = 0 in V has the unique expansion 0 = 0-v; + .. + 0-v,,. But if some vector had
two expansions v = ). ¢;v; =y, d;jv; then 0 = v —v = ) (¢; — d;)v;, so independence
of the v; implies ¢; = d;, and v has a unique expansion.

I.4. Linear Span, Independence and Bases
We now explain how to solve arbitrary systems of linear equations.
4.1. Definition. A set of vectors S = {v1,..,v.} in a vector space V spans a subspace
W if
K
W = K-span{S} = {Zcivi 1¢i € K}

i=1
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The vectors are linearly independent if the only linear combination ), c;v; = 0 adding
up to zero in 'V is the trivial combination with ¢y = ... = ¢, = 0. The vectors are a basis
for W if they span W and are independent, so every w € W has a unique representation
as Z?:l AiV; ()\z S K)

4.2. Exercise. If X = {v1,...,v,} span V and are independent, explain why every
v € V has a unique representation as Y. ; \iv; (A; € K), so X is a basis for V.

The next result exhibits two ways to construct a basis in a vector space. One starts
with a spanning set and “prunes” it, deleting redundant vectors until we arrive at an
independent subset with the same span as the original vectors. This yields a basis for
V. The other constructs a basis recursively by adjoining “outside vectors” to an initial
family of independent vectors in V. The initial family might consist of a single nonzero
vector (obviously an independent set).

4.3. Proposition. Every finite spanning set {v1,...,v,} in a vector space can be made
into a basis by deleting suitably chosen entries from the list.

Proof: We argue by induction on n = #(vectors in list). There is nothing to prove if
n =1; then V = K- v; and {v;} is already a basis. The induction hypotheses (one for
each index n =1,2,....) are:

HYPOTHESIS P(n): For any vector space V' containing a spanning set of n
vectors, we can delete vectors from the list to get a basis for V.

We have proved this for n = 1. It is true for all n if we can prove P(n + 1) is true, using
only the information that P(n) is true — i.e. if we can verify that

P(n) true = P(n+ 1) true

(Remember: This is a conditional statement owing to the presence of the word “If...”
It does not assert that P(n) is actually true.)

So, assuming P(n) true consider a spanning set X = {v1, ..., v, Up41} in V. If these
vectors are already independent (which could be checked using row operations if V' =
K™), we already have a basis for V' without deleting any vectors. If X is not independent

there must be coefficients ¢y, ..., c¢p+1 € K (not all equal to 0) such that E;jll civ; = 0.
Relabeling, we may assume ¢, 11 # 0, and then (K being a field)

n

n
—Cni1n1 = 3 _cv; and  vnpy = —(ci/cng1)-vi
i=1 =1

Thus vy,+1 € K-span{vy, ..., v,} and K-span{vy, ..., vp41} = K-span{vy, ..., v, } isall of V.
By the induction hypotheses we may thin out {v1,..,v,} to get a basis for V. O

4.4. Proposition. If {v1,...,v,} are independent in a vector space V, and vp41 1S a
vector not in Wy = K-span{vy, ...., v, } then

1. {v1,..s; Un, Uny1} are independent,

C
2. Wy z Wy = K-span{vy, ..., U, Un41};
3. {v1, e, Uy Uny1} @8 a basis for Wi.

Proof: If v; ...,v,41 are not independent there would be ¢; € K (not all zero) such
that Z?;Lll civ; = 0. We can’t have ¢,41 = 0, otherwise Y, ¢;v; = O contrary to
assumed independence of {v1,...,v,}. Thus v,11 = E?:l —(Ci/cn+1) -v; 18 in Wy, which
contradicts the assumption v,11 ¢ Wy. Conclusion: vy, ....,v,+1 are independent. It
follows immediately that {v1,...,v,41} is a basis for W7 = K-span{v1, ..., Uny1}.
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Note: This is an example of a “proof by contradiction,” in which the assumption that

V1, ..., Uy are not independent leads to an impossible conclusion. Therefore the statement
“v1, ..., vy are independent” must be true. [

Important Remark: This process of “adjoining an outside vector” can be iterated to
construct larger and larger independent sets and subspaces

Wo = K-span{vy, ..., v, } S W1 = K-span{vy, ..., U, Un41}
¢ .. W, = K-span{v1, ..., Ut
Since {v1,...,v,} are independent they are a basis for the initial space Wy, and by
Lemma 4.4 v1,...,vp,...,0n4, will be a basis for W,.. If this process stops in finitely

many steps (because W,. = V and we can no longer find a vector outside W,.), we have
produced a basis for V. If the process never stops, no finite subset of vectors can span
V and in this case we say V is infinite dimensional. To begin the process we need
an initial set of independent vectors, but if V' # (0) we could start with any v; # 0 and
Wy = K-v1. Then apply Lemma 4.4 recursively as above. [l

4.5. Definition. A wvector space V is finite dimensional if there is a finite set of
vectors S = {v1,...,vn} that span V. Otherwise V is said to be infinite dimensional,
which we indicate by writing dim(V') = co.

Coordinate space K™ and matrix spaces M(m x n,K) are finite dimensional; the spaces
of polynomials K[z] and K[z, ..., ;] are infinite dimensional.

4.6. Example. Coordinate space K" is finite dimensional and is spanned by the stan-
dard basis vectors X = {ey,...,e,}

e; = (1,0,...,0), ey =1(0,1,0,...,0), ... ,en =(0,...,0,1)

In fact X is a basis for K".

Discussion: Obviously v = (ay,...,a,) = aje1 + ...+ ape, so the e; span K". But if
>, ciei =0=(0,...,0), that means (ci,...,cn) = (0,...,0) and ¢; = 0 for all i. O

4.7. Example. Polynomial space K[z] is infinite dimensional. Given any finite set
of nonzero vectors X = {f1,..., fr}, let d; = deg(f;). All coeflicients of f; are zero if
i > N = max{dy, ...,d,}, and the same is true for all linear combinations 22:1 ¢ fi- But
then X cannot span K[z] because 2V is not in K-span{fi, ..., f,}.

Actually the vectors fo = t, fi = z, fo = 22, ... are a basis for K[z]. This (infinite) set
of vectors clearly spans K[z], but it is also independent, for if Y., ¢;f; = 0 that means
co + 1z + ...+ ¢.x2” = 0 as a polynomial, so the symbol string (co, ..., ¢, 0,0, ...) is equal
to (0,0,0,....). O
4.8. Corollary. Every finite dimensional vector space has a basis.

Proof: If {vy,...,v,} span V, hen by Proposition 4.3 we may delete some of the vectors

to get an independent set with the same linear span. [

4.9. Lemma. If S C V is an independent set of vectors in V and T a finite set of
vectors that span V, we can adjoin certain vectors from T to S to get a basis for V
containing the original set of independent vectors S.

Proof: Let W = K-span{S}. If W = V, S is already a basis. If W # V|, there exists
some v1 € T such that v; ¢ W and then S U {v;} is an independent set, a basis for
the larger space Wy = K-span{S U {v1}} 2 W. Continuing, we get vectors vi, ..., v, in
T such that W & Wi S Wy S .S W, for 0 < i < r, where W; = K-span{vy, ..., v;}.
The process must terminate when no vector v,41 € T can be found outside of W,.. Then
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T CW,, so K-span{T} =V C W,. and W,. = V. Therefore S U {v1,...,v,} is a basis for
V =W, (and SU{vy,...,vx} is a basis for W foreach 1 <k <r). O

4.10. Theorem (Dimension Defined). All bases in a finite dimensional vector space
have the same cardinality. More generally, if V is finite dimensional, and S is a finite
spanning set (with |S| = n), every independent set of vectors L C V has cardinality
|L| <|S|. In other words, the size of any independent set is always less than or equal to
that of any spanning set.

Proof: We can eliminate vectors from S to get an independent spanning set S’ C S,
Wthh is then a basis for V. We will show that |L| < |S’| < |S]. Let S = {uq, ..., u,} and

= {v1,..., um}. Every v; € L can be written v; = > I, aj;u; since the u; € S are a
ba31s for V. On the other hand, if ¢y, ..., ¢, are scalars such that 0 = 2]21 ¢jv;, we must
have ¢; = ... = ¢,, = 0 because the v; are independent. But the identity ZT:l cjv; =0
can be written another way, as

m

0= e S o) = 3 (> aper) u,

i=1 j=1 j=1 i=1

Since the u; € S’ span V and are independent each expression (...) is = 0 so the
coefficients ¢, ..., ¢, satisfy the system of n equations in m unknowns

(3) Zajici =0, for1<j<n

(a solution C = col(cl, cee cm) of the matrix equation AC = 0).

A linear system such as (3) always has nontrivial solutions if the number of unknowns
m = |L| exceeds the number of equations n = |S’|; it follows that |L| < |S’|, as claimed.
In fact, row operations on the coefficient matrix A yield an echelon form shown below.
There are at most n step corners and if M > n there must be at least one column that
fails to meet one of these pivots.

0o . . . .. 0

nxm

Hence there is at least one free variable and the system AC = 0 has nontrivial solutions.
But we showed above that C' = 0 is the only solution, so we obtain a contradiction unless
|L| <|S’| <|S]. The theorem is proved. O

4.11. Corollary. In a finite dimensional vector space all bases have the same cardinal-
ity, which we refer to hereafter as the dimension dimg (V).

Notation: We will often simplify notation when the underlying ground field K is un-
derstood, by writing dim(V') or even |V| for the dimension of V. O

4.12. Example. We have already seen that dimg(K™) = n, with the standard basis
vectors e; = (1,0, ...,0), ..., e, = (0,..,0,1). We may view C" (or any vector space over
C) as a vector space over R by restricting scalars in A - v to be real. As a vector space
over C we have dimc (V) = n, but as a vector space over R we have dimg (V') = 2n.
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Discussion: In fact, any v € C™ can be written as a complex sum v = Z?:l zje;, and
if z; = x; +4y; we may write

v==x1€e1+ ...+ xne, +yi(ier) + ...+ yn(ie,) with z;,y; € R.

Thus the vectors {ey,...,en,ie1,...,ie,} C C™ span C™ as a vector space over R. They
are also independent over R, for if

0= Z a;e; + ij(iej) = Z(aj +ibj)e; ,

we must have a; +ib; = 0 and a; = b; = 0 because {e,} is a basis over C. 0O

4.13. Exercise. If V is a finite dimensional vector space and W C V a subspace,
explain why W must also be finite dimensional.

4.14. Exercise. If V7, V5 are finite dimensional vector spaces prove that
1. If Vi C V5 then dim(V;) < dim(Va);
2. If dim(V;7) = dim(V2) and V; C Vi, then V; = V5 as sets.

4.15. Exercise. Explain why W C V = dim(WW) < dim(V), even if one or both of
these spaces is infinite dimensional.

Describing Subspaces. How can a subspace W in a vector space be specified?
Every V of dimension n can be identified in a natural way with K™ once a basis { f1, ..., fn}
in V' has been determined, so we may as well restrict attention to describing subspaces
W of coordinate space K”. (Given a basis X = {f;} in V the map jx : K® — V given by

X = (21, n) = jx(x) = Y @ifi
i=1

is a bijection that respects all vector space operations in the sense that
Je(A-x) = A-jz(x)  and  jx(x+y) =jx(x) +jz(y)

It is an isomorphism between K™ and V', by which properties of one space can be matched
with those of the other.
Subspaces W C K™ can be described in two ways.

1. By exhibiting a basis X = { f1, ..., fr} in W, so W = K-span{X} and dimg (W) = r.
This is a “parametric description” of W since each w € W is labeled by a
coordinate r-tuple ¢ = (¢, ..., ¢).

2. By finding a set of linear equations

a1121 + ... + a1mxy, = 0

aAp1T1 + .. + QpmTm = 0

described by a matrix equation Ax =0 (A=nxm,0=nx1,x =m x 1) whose
solution set {x € K™ : Ax = 0} is equal to W. Such an “implicit description”
may include redundant equations. When there are no redundant equations we will
see that W = {x € K" : Ax = 0} has dimension m —n = dim(V') — #(equations).
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We illustrate this with some computational examples.

4.16. Example. Determine the dimension of the subspace W = R-span{u;, us,us} in

R3 if
1 2 3
u; = 2 U = 3 us = 4
3 4 5
Find a basis for W. Then describe W as the solution set of a system of linear equations:

a1171 + apxre +azrs = 0

171 + ap2®2 + anzrs = 0

where x = (71,72, 73) € R3.

Solution: We write the vectors as the rows of the 3 x 3 matrix
1 2 3
A= us = 2 3 4
3 4 5

Row space W = Row(A), the span of the rows, is unaffected by elementary row opera-
tions. These yield the echelon form

1 2 3 2 3
A—-| 0 -1 -2 | — 0 92
0

0 -2 —4 0 0

Therefore wy = (1,2,3) and wo = (0,1,2) span W; they are also independent because
0 =c1wy + cawsa = (c1, 2¢1 + ¢, 3¢1 + 2¢2) implies

01:0
2c1+c2=0 = cp=cy=c3=0 .
3c1 +2c0=0

Thus {wi,wsy} is a basis and dim(W) = 2. A typical vector in W can be written
(uniquely) as

swi+tws = (s,2s+t, 3s+ 2t) = (x1, x2, T3) with s,t € R

To describe W as the solution set of a system of equations in z1, z2, z3 we need to
“eliminate” s,t from this parametric description of W. This can be done by writing

1 =S = S=21
To =25+t =x3=25+t=2x1+t=>t=2x9— 221
T3 = 3s+ 2t

The last equation yields the “constraint” identity that determines W,
x3 = 3s + 2t = 3x1 + 2(x2 — 221) = —x1 + X2

or 1 — 22 + 23 = 0 (1 equation in 3 unknows). Thus W = {x € R3 : 1 — 225 + 23 = 0},
which has dimension dim(R3) —1=2. [0

4.17. Example. Let W C R* be the solution set for the system of linear equations:

1 +x9—x3+224 = 0
3xv1 —xa+x4 = 0
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so Ax =0 (x € R*) where

11 -1 2
4= )
3 -1 .0 1),.,
Find a basis for W and determine dimg (7). Do the answers change if we replace R by

Q or C?

Solution: Elementary row operations yield

11 -1 2 1 -1 2
1= )= )
0 -4 3 =2 0 _% %

and for any solution of Ax = 0, x = col(x1,x9,x3,24) has x5, x4 as free variables.
Backsolving yields the dependent variables
3 1
T2 = 11'3 — 5&[]4
_ _ 3 1 _ 1 3
r1 = —T2+a3— 214 = (=3T3 + 574) + T3 — 274 = JT3 — 574
Thus solutions have the form
1 3
4T3~ gt

+ x4 - = z3f;) 4+ zaf>
0

1

N = Nw

_| 3. _1 _
X = 273 — 54 = x3
x3
T4

i N N

for every x3, x4 € K. The solution set is equal to the R-span{(1,3,4,0), (3,1,0,—2)} =
R-span{f;,fo}. The vectors f1, f> span the solution set W, but are also independent
because

01(1, 3,4, 0) + 02(3, 1,0, —2) = (Cl + 3¢a, 3¢1 + co, 4eq —202) = (O, 0,0, 0)
implies that ¢; = ¢a = 0. Thus {f;,f} is a basis and dimg(W) = 2. The result is the
same if we replace the ground field R with Q or C. 0O

As a “rule of thumb,” each constraint equation a;1z1 + ... + a¢jmzm = 0 on K™ reduces
the dimension of the solution set W = {x € K™ : Ax = 0} by 1, but this is not always
the case.

4.18. Exercise. Consider the special case of one constraint equation

W:{X:Zcixi:()} with ¢q,...,¢, € K

i=1
1. Under what condition on {cy, ..., ¢, } do we have dimg(W) =n — 17
2. Explain why dim(W) < n — 1 is impossible.
4.19. Exercise. Same question but now with two constraint equations
a11r1 + ... + a1mxm = 0
asnx1 + ... + oy, = 0
(or Ax =0 with A=2xm,x=mx1,0=2x 1.) Now what condition on A make

1. dimg (W) =0
2. dimg (W) = 1,
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for the subspace W = {x € K: Ax = 0 in K?}?

4.20. Example (Lagrange Interpolation Formula). For any infinite field such
as K = Q,R,C, the problem of finding a polynomial f € K|[z] having specified values
f(pj) = Aj at a given set of distinct points pr, ..., p, in K always has a solution. The
solution is nonunique (the problem is underdetermined) unless we require that deg(f) =
n — 1; there may be no solution if deg(f) < n — 1.

Discussion: The product h(z) = H?:l (x — pj) has degree equal to n and is zero at
each p; (and zero nowhere else), so the solution to the interpolation problem cannot be
unique without restrictions on f(z): one can add h (or any scalar multiple thereof) to
any proposed solution f. It is reasonable to ask for a solution f(z) of minimal degree to

reduce the ambiguity. The polynomial

N [T —»)

(4) fla) =3 n
i=1 H(pz —1j)
J#i

has nonzero denominator, is equal to A; at p; for each ¢, and has deg(f) =n — 1.

This is the Lagrange Interpolation Formula, determined by direct methods. It is
a bit complicated to rewrite this sum of products in the form f = co+ciz+...4cp_12" L.
But the coefficients ¢y, . .., c,—1 can also be found directly as the solution of a system of
linear equations

n—1
Njo=fp) =Y piex  for1<j<n—1,
k=0

which is equivalent to the matrix equation Ac = A in which

0 n—1
pi . . . Di co Ao
A= . . and c= . A=
0 n—1
Pn - - - Pn nxn Cn-1 nx1 /\nfl nx1

I.5 Quotient Spaces V/W.

If V is a vector space and W a subspace, the additive cosets of W are the translates
of W by various vectors in V. They are the subsets x + W = {z + w : w € W} for
some x € V, which we shall often denote by [x] when the subspace W is understood. In
particular, W itself is the “zero coset”: [0] = 0+ W = W. The key observation is that
the whole space V' gets partitioned into disjoint cosets that fill V. The collection of all
cosets [z] is the quotient space V/W. Observe that points in the space V/W are at the
same time subsetsin V.

5.1. Lemma. If W is a subspace in V and z,y € V,

1. Two cosets x + W and y + W either coincide or are disjoint, hence the distinct
cosets of W partition the space V.

2. An additive coset can have various representatives r € V. We have y+ W =
x+ W & there is some w € W such that y = x +w (ory —xz € W).

3. Ifyexc+W theny+W =x+W.

Proof: We start with an observation about sums A+ B ={a+b:a € A,b € B} of sets
A, B C V that will be invoked repeatedly in what follows.
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5.2. Exercise. If W is a subspace of a vector space V and w € W, prove that

1. w+ W =W, for all we W;
2. WH+W ={w +wsy:wy,wy € W} is equal to W;
3. W-W=W.
Resuming the proof of Lemma 5.1, if cosets  +W and y 4+ W have a point p in common

there are wy,ws € W such that * + w; = p = y + wa, hence y = = + (w1 — wsz). By
Exercise 5.2 the cosets are equal:

y+W=(z+ (w; —w)) + W =+ ((w; —wa) + W) =z +W
For (2.), 2+ W =y+W =y =y+0 =z + w for some w € W. Conversely, if

y=x+wforwe W, then y+ W =z + (w+ W) =z + W again by the Exercise. For
(3.), it follows from (1.) that y ez + W = (y+W)N(x+W) #0=>y+W =x+ W.

R_oset Yo = Prw

=2+ W ‘K/Su&r;paf;a W

>

Rew =Jrw

Figure 1.6. Additive cosets x+ W of a subspace W are a family of parallel “hyperplanes”
in a vector space V. When V = R2? and W a line through the origin, all lines parallel
to W are cosets. Two vectors X,y in the same coset yield the same translate of W:
x+ W =y + W because y — x is parallel to the subspace W.

As an example, if V = R? and W = {(x,y) : © = y} the cosets of W are precisely the
distinct lines in the plane that make an angle of 45° with the positive z-axis. These lines
are the “points” in the quotient space V/W, see Figure 1.6.

5.3. Definition. There is a natural surjective quotient map 7 : V — V/W | such that
(5) m(x)=[z| =+ W

If C is a coset, any point v € C such that C = [v] = v+ W is called a representative
of the coset. Part (2.) of Lemma 5.1 tells us when two vectors x,y represent the same
coset.

Algebraic Structure in V/WW. There are natural sum and scalar multiplication
operations in V/W | inherited from the overlying vector space V.

5.4. Definition. For any z,y € V and A € K we define operations in V/W
1. ADDITION: [2] & [y] = [z + y];
2. SCALAR MULTIPLICATION: A ® [z] = [\-x]

To spell out what is involved, this definition tells us how to form the sum X @Y of two
cosets X, Y € V/W via the following algorithm:

1. Pick representatives z,y € V such that X = [z],Y = [y].
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2. Add the representatives to get z +y € V.
3. Form the coset [z + y] = (z + y) + W and report the output: X &Y = [z + 3]

But why should this make sense? The outcome depends on a choice of representatives for
each coset X,Y and if different choices yield different outputs, everything written above
is nonsense. Fortuately the outcome is independent of the choice of representatives and
the operation (@) is well-defined. In fact, if [z] = [2/] and [y] = [¢/] there must exist
wi,we € W such that 2’ = x + w1, vy = y + we, and

' +y] =@ +y)+W=(@+y) + (Wi +w) + W)= (z+y)+ W = [z+y]

Similarly, the scaling operation is well-defined: if [z'] = [x] we have 2’ = x + w for some
w € W, and then

A2 ]=\2)+W=Nz)+Aw+W)=(A\z)+ W =[\z

Once we know the operations (¢) and (©®) make sense, direct calculations involving
representatives show that all vector space axioms are satisfied by the system (V/W, @, ©®).
For instance,

1. Associativity of @ on V/W follows from associativity of (+) on V: since z+(y+z) =
(x4+y)+2zinV we get

lo(yak) = loy+z] =+ y+-2)
(z+y)+2] =[z+yl@z] = (2] @ [y]) ®[2]

2. The zero element is [0] = 0+ W = W because [0] & [z] = [0 + z] = [z]

3. The additive inverse —[z] of [x] = z + W is [—z] = (—z) + W since [z] & [—z] =
[z + (=) = [0].

5.5. Exercise. Verify the remaining vector space axioms for (V/W, @, ®). Then show
that the quotient map 7 : V- — V/W with n(x) = [z] = -+ W “intertwines’ the algebraic
operations in (V,+,-) with those in (V/W,®,®) in the sense that: for any vi,ve € V
and A € K we have

1. w(v1 +v2) = 7(v1) ® 7(v2)
2. 7T()\"U1) = )\@ﬂ'(’l}l)
Thus 7 : V — V/W is a linear operator between these vector spaces. O

When W = (0) the quotient space consists of single points [v] = v+ W = {v}, and V/W
has a natural identification with V' under the quotient map which is now a bijection.
When W = V| there is just one coset, v+ W = v + V = V; the quotient space reduces
to a single point, the zero element 0] =04+V = V.

5.6. Exercise. Let V = R3 and W = {(z1,22,73) : 23 = 0} = the z, y-plane in 3-
dimensional space. The cosets in V/W are the distinct planes parallel to the x, y-plane:
if v = (v1, v2,v3) then

v+ W = {v+w:weW}
{(v1,v2,v3) + (w1, ws,0) : w1, ws € R}
{(v1 + s,v2 +t,v3) : s,t € R}

= {(z1,22,23) 1 1,22 € R, z3 = v3}

(the plane parallel to W passing through (0,0, v3)). Each value of vg € R gives a different
coset.
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Figure 1.7. Additive cosets of W = {v € R3 : v3 = 0} are planes parallel to W in R3. A
typical coset vg + W is shown.

One important viewpoint is to think of the quotient map 7 : v — V/W as “erasing”
inessential aspects of the original vector space, retaining only those relevant to the prob-
lem at hand. Whole “bunches” of vectors in V', the cosets v+ W, collapse to single points
in the target space V/W (the planes in the last example become points in V/W). A lot
of detail is lost in this collapse, but if W is suitably chosen the quotient map space will
retain information that is buried in a lot of superfluous detail when we look at what is
happening in the larger space V. We will soon give many examples of this, once we start
looking at the structure of “linear operators” between vector spaces. For the moment we
assemble a few more basic facts about quotients of vector spaces.

5.7. Theorem (Dimension Theorem for Quotients). If V is finite dimensional
and W is a subspace. Then:

1. dim(V/W) < dim(V) < o0;
2. dim(W) < dim(V) < oo;
and
(6) dim(V) = dim(W) + dim(V/W)
By our notational conventions this identity can also be written in the abbreviated form
VI=[Wl+|V/w]|.

Proof: The quotient map 7 : V' — V/W preserves linear combinations in the sense that

7T( ZAZU!) = Z/\Zﬂ'(vz)

(recall Exercise 5.5), so if vectors {v;} span V their images 7; = 7(v;) span V/W. That
proves
dim(V/W) < #{7,;} < #{v;} =dim(V) < o

as claimed in (1.).

As for item (2.), we know dim(V) < oo but have no a priori information about W,
but we showed earlier that no independent set in V' can have more than dim(V') elements,
and a basis for W would be such a set.

The identity (6) is proved by constructing a basis in V/W aligned with a specially
chosen basis in V. Since dim(W) < oo there is a basis {w1, ..., wy, } in W. If W =V then
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V/W is trivial and there is nothing more to do, but otherwise we can find an “outside
vector” vy, 41 ¢ W such that the larger set {w1, ..., Wi, Um41} is independent, and hence
a basis for

W1 = K-span{w1, ..., Wy, Um41 } 2 Wo = W.

If W1 # V, we can adjoin one more vector v, 12 ¢ Wi to get an independent set
{wi, o, Wi, Vg1, Vg2t With

c c
Wo 2 Wy 7 Wy = K-span{wi, ..., W, Um+1, Um+2 }

This process must terminate, otherwise we would have arbitrary large independent sets in
the finite dimensional space V. When the construction terminates we get an independent
spanning set {wi, ..., W, Vg1, o, Umtk } in Wi, = V. This is a basis for V so dim(V) =
m+ k= dim(W) + k.

To conclude the proof we demonstrate that the & = dim(V/W) by showing that the

m-1mages Upm+1, - - - Um4k € V/W of the “outside vectors” are a basis for V/W. Since 7
is surjective the images w(wy), ..., m(Um4x) span V/W. But « “kills” all vectors in W,
S0

m(wy) =...=7(wy)=1[0] inV/W,

and the remaining images Ug4; = 7(V;m+;) span V/W. They are also linearly independent.
In fact, if some linear combination Zle Cm+iUm+i = [0] in V/W, then by linearity of
the quotient map 7 we get

k k
0] = empsm(vmsy) = ( > Crt Vi )
j=1 J=1

But 7(v) = [0] for a vector v € V < [v] = v+ W is equal to the zero coset [0] = W.
Furthermore v+ W =W < v € W, so we can find coefficients ¢y, . .., ¢, such that

m k
E Ciw; = UV = E Cm+jVUm+j
i=1 Jj=1

or
m k
0= Z c;w; + Z (—1)CmtjVm+j in V.
i=1 j=1
Since w1, ..., W, Um41, - - - Umtk 1S a basis for V' this can only happen if all coefficients in
this sum are zero, and in particular ¢;,41, ..., ¢mir = 0. Thus the {7;} are independent

and a basis for V/W, and dim(V/W) = k = dim(V) — dim(W). O

Remark: The construction developed in proving Theorem 5.7 shows how to find bases
in a quotient space V/W, and perform effective calculations with them. The key was to
find representatives v; back in V' so we can transfer calculations involving cosets in V/W
to calculations in V' involving actual vectors v;. The proof of Theorem 5.7 describes
an explicit procedure for finding independent vectors {v;} outside of W, whose images
m(v;) = U; are the desired basis in the quotient space.

5.8. Exercise. Find explicit bases for the following quotient spaces
1. V=R3 W = Re; + Rex.
2. V=R W = R-span{w; = (1,2,3), wy = (0,1, —1)};
3. V=C* W==C-span{z; = (1, 1+i,3—2i, —i), zo=(4—1i,0, =1, 1+1i)};
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4. V=RY W ={x:21+ 25 — 23+ 14 =0 and 4z — 329 + 223 + 74 = 0}.

Here is a simple example involving bases in a quotient space V/W.

5.9. Example. Let V =R* and W = {zx € R:2x1 — 29 + x4 = 0}. The subspace W is
the solution set of the matrix equation

Ax =0 where A =1[2,-1,0,1]1x4

that imposes a single linear constraint on R*. Find a basis for V/W

Solution: Row operations yleld
1 1
A A/ = [ ) 5 ,O ) 5

The free variable are xo, x3, v4 and 21 = %:vg — %:104, so the solutions have the form

1 1 1 _1
5.%'2 — 5&64 2 0 2
0
X = T2 =z | 1 | 43 1| T 0
L3 0 0
Tq O O 1

for xo,x3,24 € R. Thus the solution set for Ax = 0 is the linear span of the column
vectors

u; = col(1,2,0,0) uy = c0l(0,0,1,0) u; = col(—1,0,0,2)

These are a basis for W since they are easily seen to be linearly independent. Just row
reduce the 3 x 4 matrix M that has these vectors as its rows

1 2
M = 0 01 0

-1 0 0 2
and see if you get a row of zeros; you do not. Therefore dim(Row(M)) = 3 and the
vectors are independent.

Since dim(V) = dim(W) + dim(V/W) and dim(W) = 3, we need only find one
“outside” vector ugs ¢ W to complete a basis for V. = R?*; then 7(uy) = uy + W
will be nonzero, and a basis vector for the 1-dimensional quotient space. The vector
uy = e4 = (0,0,0,1) is not in W because it fails to satisfy the constraint equation
2x1 — x9 + x4 = 0. Thus the single vector [e4] = m(e4) = e4 + W is a basis for V/W, and
dim(V/W)=1. O

5.10. Exercise (Another Dimension Formula). If E, F are subspaces in a finite-
dimensional vector space V and E+ F ={e+ f : e € E, f € F} is their linear span,
prove that

dim(E + F) = dim(F) + dim(F) — dim(E N F)

Hint: Choose appropriate bases related to E, F and EN F.
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Appendix A: The Degree Formula for K[z,...xy].

Let K[x] = K[z1, ..., znN] be the unital ring of polynomials with coefficients in an integral
domain. Using the multi-index notation introduced in Section 10.1 we can write any such
polynomial as a finite sum (finitely many nonzero coefficients)

(7) f(x)= Z Ao T (=27 -...- 2}, ca €R)
acZy
The degree of a monomial % is |a| = ag + ... + an and if f € K[x] is not the zero

polynomial (all a, = 0) its degree is

m = deg(f) = max{|al : ca # 0}

When N > 1 there may be several different monomials % of the same total degree
|a| = m with nonzero coefficients.
Let f,g # 0 in K[x]| with degrees m = deg(f),n = deg(g). Their product is

F9x) = (Yaaz®)- (Y bsa?) =3 aabsa?
« B a,B
(8) = Z( Z aabg) R 207 x”
7 atB=y v

where o+ 3 = (a1 + B1,...,an + Bn). If anbsz®™? # 0 in (36) we must have |a| < m
and || < n, so that |a+ 3| < m + n; consequently deg(f-g) < deg(f) + deg(g).
Let us split off the monomials of maximum degree, writing

flx) = Zaaxo‘+(...)

laj=m
gx) = Y bpa+ ()
|Bl=n
(f9)x) = D> @ +()
B ———

where (---) are terms of lower degree. To prove the degree formula
(9) DEeGREE FORMULA:  deg(f-g) = deg(f) + deg(g) for f,g # 0 in K[x]

it suffice to show there is at least one monomial 7 of maximal degree m + n such that
the coefficient

(10) Cyp = Z aqnbg  is nonzero.
a+B=vo

This is trivial for N = 1, but problematic when N > 2 because this sum of products can
be zero if there is more than one term, even if the individual terms are nonzero. On the
other hand the degree formula (37) follows immediately if we can prove

(11) There exists some monomial 7 of maximal degree m +n for which the sum
(38) consists of a single nonzero term.

The key to proving (39) is to introduce a ranking of the monomials z7, v € Z¥, more

refined than ranking by total degree deg(zY) = ||, which cannot distinguish between

the various monomials of the same degree. The tool for doing this is “lexicographic,”
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or “lexical,” ordering of the indices in Zf , an idea that has proved useful in many parts
of mathematics.

A.1. Definition (Lexicographic Order). For a,f € Zf we define the relation a > f3
to mean

a; > [ at the first index i =1,2,..., N at which «; differs from (;
Thus
a1 = B1,...,05-1 = Bi_1 and o; > [3; (other entries in a, 3 are irrelevant)

This is a linear ordering of multi-indices: given «, 3 exactly one of the possibilities

a0 a=0 0=«

holds. We write o = 3 when the possibility o = 3 is allowed. O

Obviously a = (0,...,0) is the lowest multi-index in lexicographic order, and any finite
set of multi-indices has a unique highest element. Note carefully that a > 3 does not
imply that |a| > |3]. For instance we have

a=(1,0,0) = 5 =(0,2,2) in lexicographic order, but |3| =4 > |a| =1.

Other elementary properties of lexicographic order are easily verified once you understand
the definitions.

A.2. Exercise. For lexicographic order in Zf verify that

1. LINEAR ORDERING. For any pair a, (3 we have exactly one of the possibilities
asf,a=p,0- .

2. TRANSITIVITY OF ORDER. If a >  and 8 > 7 then a > 7.
3. If a > o then a+ @ = o + 3 for all indices 3.
4. fa-o and =3 thena+ (=o' + 3.

HiNnT: It might help to make diagrams showing how the various N-tuples are related.
You will have to do some “casework” in (3.) O

We now outline how the crucial fact (39) might be proved, leaving the final details
as an exercise for the reader. If f # 0 with m = deg(f), so f = Z\a|§m Gq %, there
may be several monomials having maximal degree m with a, # 0, but just one of these
is maximal with respect to lexicographic order, namely

ap = m&x{a : la] = m and a, # 0}

Likewise there is a unique index
Bo = m&x{ﬁ |8l =n and bg # 0}

The multi-index v9 = a + Hp has || = m +n, and is a likely candidate for the solution
to (39); note that an,bg, # 0 by definition. We leave the reader to verify a few simple
properties of this particular multi-index.

A.3. Exercise. Explain why oy = m&x{a : la| = m and an # 0} might not be the

same as o, = max{a : ao # 0}. Is there any reason to expect oy, to have maximal degree
-
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lagl =m? O
A.4. Exercise. In v9 = a9 + [y we have |ag] = m and || = n, and aq,bs, # 0, by
definition. If o, 8 are any indices such that

la+ 8] =lao+fol=m+n  and  anbg#0

prove that we must have |a| = |ag] = m and |3| = |Bo| =n. O

Defining «y, Bo, 70 = o + [y as above, we make the following claim:

Cram: If o+ 8 = ap + Bo and anbg # 0 then o = ap and 5 = (y. Hence
the sum
(A1) Co = Y Gabg
a+B=v0
reduces to the single nonzero term a-,bg,
A.5. Exercise. Prove the claim made in (A.1) using the facts assembled in the preceding
discussion. [
That will complete the proof of the Degree Formula.
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Chapter 1I. Linear Operators T :V — W.

I1.1 Generalities. A map T : V — W between vector spaces is a linear
operator if for any v,v1,v3 € V and A € K

1. Scaling operations are preserved: T'(A-v) = A-T'(v)
2. Sums are preserved: T(vy + v2) = T'(v1) + T(v2)

This is equivalent to saying
T(Y awi) = SSATw) W

for all finite linear combinations of vectors in V. A trivial example is the zero operator
T(v) = Ow, for every v € V. If W =V the identity operator, idy : V — V is given by
id(v) = v for all vectors. Some basic properties of any linear operator T : V. — W are:

1. T(0y) = Ow. [PROOF: T(0y) =T(0-0y)=0-T(0y) = 0w ]
2. T(—v) = =T(v). [PrROOF: T(—v) =T((-1)-v) = (-1)-T(0y) = Ow .

3. A linear operator is determined by its action on any set S of vectors that span V.
If 71,75 : V — W are linear operators and

Ti(s) =Ta(s) forall seS,

then Ty = T, everywhere on V. [PROOF: Any v € V is a finite linear combination
v =7, ¢s;; then T (v) =3, ¢;Ti(s;) = Ta(v).]
1.1. Exercise. If SCV and T : V — W is a linear operator prove that
T(K—span{S}) is equal to K-span{T(S)}.

1.2. Definition. We write Homg (V, W) for the space of linear operators T : V. — W.
This becomes a vector space over K if we define

1. (Th 4+ To)(v) = T1(v) + Ta(v);
2. AT)(v) = X (T(v)).

for anyv eV, A€ K. The vector space axioms are easily verified. The zero element in
Hom(V, W) is the zero operator: 0(v) = Ow for everyv € V.. The additive inverse —T is
is the operator —T'(v) = (=1)T(v) = T(—v), which is also a scalar multiple =T = (—=1)T
of T. O

If V =W we can also define the composition product S o T of two operators,
(SoT)(v)=8(T(v)) forallveV
This makes Homg (V') = Homg(V, V) a noncommutative associative algebra with iden-

tity I = idv.

A linear operator T': V. — W over K determines two important vector subspaces,
the kernel K (T') = ker(T) in the initial space V' and the range R(T') = range(7') in the
target space W.
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Figure 2.1. A linear map T : V — W sends all points in a coset « + K (T') of the kernel
to a single point T'(z) in W. Different cosets map to different points, and all images land
within the range R(T). The zero coset Oy + K (T) collapses to the origin Oy in W.

1. K(T) = ker(T) = {v € V : T(v) = Ow}. The dimension of this space is often
referred to as Nullity (7).

2. R(T) = range(T) is the image set T (V) = {T'(v) : v € V}. Its dimension is the
rank
rank(T) = dimg (range(T)) ,

which is often abbreviated as rk(T).

1.3. Exercise. Show that ker(7T") and range(T") are vector subspaces of V' and W re-
spectively.

We often have to decide whether a linear map is one-to-one, onto, or a bijection. For
surjectivity, we must compute the range R(T); determining whether T is one-to-one is
easier, and amounts to computing the kernel K (7). The diagram Figure 2.1 illustrates
the general behavior of any linear operator. Each coset v + K(T) of the kernel gets
mapped to a single point in W because

T(v+ K(T)) = T(v) + T(K(T)) = T(v) + O = T(v) |

and distinct cosets go to different points in W. All points in V map into the range
R(T)CW.

1.4. Lemma. A linear operator T : V. — W is one-to-one if and only if ker(T) = 0.
Proof: («). If T(v1) = T(ve) for v1 # v, then 0 = T(v1) — T'(v2) = T(v1 — v2),
so v2 —v1 # 0 is in ker(7T) and the kernel is nontrivial. We have just proved the
“contrapositive” —(T is one-to-one) = —(K(T) = {0}) of the statment (<) we want,
but the two are logically equivalent.

Moral: If you want to prove (P = Q) it is sometimes easier to prove the equivalent
contrapositive statement (—Q = —P), as was the case here.

Proof: (=-). Suppose T is one-to-one. If v # 0y then Tv # T(0y) = Ow so v ¢ K(T)
and K(T') reduces to {0}. O

The following important result is closely related to Theorem 5.7 (Chapter I) for quotient
spaces.

1.5. Theorem (The Dimension Theorem). If T : V — W is a linear operator and
V is finite dimensional, the range R(T) is finite dimensional and is related to the kernel
K(T) via

(7) dim(R(T)) + dim(K(T)) = dim(V)
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In words, “rank + nullity = dimension of the initial space V'.” This can also be expressed
in short form by writing |R(T)| + |K(T)| = |V|.
Proof: The kernel is finite dimensional because K(T) C V = dim(K(T)) < dim(V) <
oo. The range R(T) is also finite dimensional. In fact, if {v,...,v,} is a basis for V
every w € R(T) has the form w = T'(v) = >, ¢;T(v;), so the vectors T(v1),...., T (vy,)
span R(T). Therefore dim(R(T")) < n = dim(V).

Now let {wy, ..., wn} be abasis for K(T'). By adjoining additional vectors from V we
can obtain a basis {wi, ...., Wm, Um+1, ..oy Umk } for V. Obviously, m = dim(K (T")) and
m+ k = dim(V). To prove k = dim(R(T)) we show the vectors T (vim+41);-eers T(Umtk)
are a basis for R(T"). They certainly span R(T) because w € R(T) = w = T'(v) for some
v € V, which can be written

V=W + oo F CpWim + Cnt1Vmt1 + - -+ CtkUmak (¢ € K)

Since w; € K(T') and T(w;) = Ow we see that

k
w = T(’U) =0w + ...+ 0w+ Zcm—i-jT('Um—i-j)
j=1
so v € K-span{T'(vy41),...,T(vr4+x)}. These vectors are also independent, for if
k k
Ow = Z Cmtil (Vi) = T( Z Cm-l—ivm—i-i)
i=1 i=1"

that means >, ¢yy1iUm+i € K(T') and there are coefficients c1, ..., ¢, such that Y 0" | c;w; =

k
Zj:l Cm+jUm+j, OF
Oy = —crw1 — ... — CmWm + Cm41Vm+1 + .- + CrntkUm—+k

Because {w1, ..., 0m1k} is a basis for V' we must have ¢; = ... = ¢;qx = 0, proving
independence of T'(Um+1), ..oy T(Um4k). Thus dim(R(T)) = k as claimed. O

1.6. Corollary. Let T : V — W be a linear operator between finite dimensional vector
spaces such that dim(V') = dim(W), which certainly holds if V.= W . Then the following

assertions are equivalent:
(i) T is one-to-one (ii) T is surjective (iii) T is bijective.

Proof: By the Dimension Theorem we have |K(T')| + |R(T)| = |V|. If T is one-to-one
then K(T) = (0), so by (7) |R(T)| = |V| = |W]|. Since R(T) C W the only way that this
can happen is to have R(T) = W — i.e. T is surjective. Finally, if T is surjective then
|R(T)| = [W| = |V| by hypothesis. Invoking (7) we see that |K(T)| = 0, the kernel is
trivial, and T is one-to-one.

We just proved that T is one-to-one if and only if T is surjective, so either condition
implies 7" is bijective. [

1.7. Exercise. Explain why a spanning set X = {v1,...,v,} is a basis for a finite
dimensional space if and only the vectors in X are independent (Z?:l civ; =0y = ¢ =
c.=c¢, =0).

1.8. Proposition. Let V be a finite dimensional vector space and {v1,...,v,} a basis.
Select any n vectors wi, ..., w, in some other vector space W. Then, there is a unique
linear operator T : V. — W such that T(v;) = w; for 1 <i < mn.

Proof: Uniqueness of T' (if it exists) was proved in our initial comments about linear
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operators. To construct such a T define T(3>"1 ; Ajv;) = iy Aw; for all choices of
A1y -y A € K. This is obviously well-defined since {v;} is a basis, and is easily seen to
be a linear operator from V — W. 0O

One prolific source of linear operators is the correspondence between n X m matrices
A with entries in K and the linear operators Ly : K™ — K" determined by matrix
multiplication

Lav)y=A-v (matrix product (n x m)-(m x 1) = (n x 1)) ,

if we regard v € K™ as an m x 1 column vector.

1.9. Example. Let L4 : R3 — R* (or C3 — C*, same discussion) be the linear operator
associated with the 4 x 3 matrix

— N =
— = O N
— =N W

Describe ker(L4) and range(L 4) by finding explicit basis vectors in these spaces.

Solution: The range R(L,) of Ly is determined by finding all y for which there is an
x € K2 such that Ax = y. Row reduction of the augmented matrix [A : y] yields

1 2 3|y 1 2 3 Y1 23 Y
1 O 2 yQ N O —2 —1 y2 — yl N O 1 2 yl — y4
2 1 1]|wys 0 -3 —5]|y3—2y 0 2 1| y1—ue
11 1]y, 0 -1 2| ys—wmn 0 3 5]|2y1—ys

12 3 Y1 2 3 v

- 01 2 Y1 — Ya - 0 2 Y1 — Ya
0 0 =3[ y1—y2—2(1 —va) 0 0 Y1 + Y3 — 3y
0 0 —1|2y1—y3—3(y1—ya) 0 0 0 |2y1—y2+3ys— Tya

There are no solutions x € K? unless y € K* lies the 3-dimensional solution set of the
equation

2y1 — Y2 + 3y3 — 7y4 =0.
When this constraint is satisfied, backsolving yields exactly one solution for each such y;

there are no free variables.
Thus R(L4) is the solution set of equation

291 —y2 +3ys —Tya =0

When this is written as a matrix equation By = 0 (B = the 1 x4 matrix [2,-1,3,-7]),
Y2, Y3, Ya are free variables and then y; = %(yz —3ys+ Tya), so a typical vector in R(L4)
has the form

1 1 3 7

3 (y2 = 3ys + Tya) 2 -3 2

y = Y2 = yo - 1 + ys - 0 + Yy - 0
va 0 1 0

Y4 0 0 1

with y1, 92, ys € K. The re-scaled column vectors us = col(1,2,0,0), us = col(—3,0,2,0),
uy = ¢0l(7,0,0,2) obviously span R(L,4) and are easily seen to be linearly independent,
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so they are a basis for the range, which has dimension |R(L4)| = 3.

The kernel: Now we want to find all solutions x € K3 of the homogeneous equation
Ax = 0. The same row operations used above transform [A : 0] to:

2
0
0

o O O O

3

2

0
Then x = col(x1, 2, x3) has entries 1 = x5 = x3 = 0. Therefore

K(La) ={x € K®: La(x) = Ax = 0} is the trivial subspace {0}

and there is no basis to be found.
Note that |[R(La)| + |K(La)| = 3+ 0 = dimension of the initial space K3, while the
target space W = K* has dimension = 4. [

1.10. Example. Let L, : R* — R?* be the linear operator associated with the 4 x 4
matrix

0
-1

2

1

A:

— N =
— = O N
— =N W

Describe the kernel K (L) and range R(L4) by finding basis vectors.

Solution: The range of L4 is determined by finding all y such that y = Ax for some
x € R*. Row reduction of [A : y] yields

1 2 3 0 |wn 1 2 3 0 n 1 2 3 0 n
1 0 2 —1]uy - 0 -2 -1 —-1| y2—wm - 0 1 2 -1 y1—ya
2 1 1 Y3 0 -3 -5 2 Yys — 2y1 0 2 1 1 Yi — Y2
111 1 |y 0 -1 -2 1 | ya—mw 0 3 5 —2|2y —ys
1 2 3 0 n 2 3 0 Y1
o1 2 -1 Y1 — Ya 0 2 -1 Y1 — Ya
0 0 =3 3 | y1—y2—2(y1—ya) 0 0 -1 Y1+ ys — 3ya
0 0 -1 1 | 2y1 —ys—3 —
yi = ys =3y — ) 0 0 0 0 |2y —yz+3ys— Ty

There are no solutions x in R* unless y lies the 3-dimensional solution set of the linear
equation
2y1 —y2+3ys —Tya =0

—i.e. y is a solution of the matrix equation

Cy=0 where 02[27_1737_7]1><4

Then there exist multiple solutions, and R(L4) = {y € R* : Cy = 0} is nontrivial.
Multiplying C' by % puts it in echelon form, so y2, ys, y4 are free variables in solving

Cy=0and y; = %(yg — 3y + Tys). Thus a vector y € R?* is in the range R(LA) <

1 1 3 7

5(y2 — 3ys + Tya) ) ) )

y= Y2 =y-| L | +uys- 0 +ya- | O
Y3 0 1 0

Ya 0 0 1
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with y1, 92,73 € R3. The column vectors uy = col(1,2,0,0), uz = col(—3,0,2,0), ugs =
c0l(7,0,0,2), obviously span R(L 4) and are easily seen to be linearly independent, so they
are a basis for the range and dim(R(L4)) = 3. (Hence also |K(La)| =|V|—|R(La)| =1
by the Dimension Theorem.)

The kernel: K(L,) can be found by setting y = 0 in the preceding echelon form of
[A : y], which becomes

2 3 010
0 2 —11]0
0 0 ~10
0 0 0 010
Now 24 is the free variable and
r3 = T4
To = —2x3+T4 = —I4
T = —2172 - 3{E3 = —T4 ,
hence,
—1
—1
K(La) =K )
1

is one dimensional as expected.
Given a vector y in the range R(L4) we can find a particular solution xp of Ax =y
by setting the free variable x4 = 0. Then

x3 Ty +y1+ys —3ys = y1 +ys — 3y,

o = —2x3+T4+y1—yYa = —Y1 — 2y3 + Sya,

r1 = —2mo—3x3+y1 = y1+ (2y1 + 4ys — 10ys) + (—3y1 — 3ys + Yya)

= Y3 — Y4
and
Y3z — Ya
xo= | VT 2y3 + 5y
Y1+ Y3 — 3ys
0

is a particular solution for Ax = y. The full set of solutions is the additive coset
xo + K (L4) of the kernel of L4. O

1.11. Exercise. If A € M(n x m,K) prove that

1. Range(L4) is equal to column space Col(A4) = K-span{C,...,C,,}, the subspace
of K™ spanned by the columns of A.

dim (Range(L4)) = dim (Col(4)) = 3

II1.2. Invariant Subspaces.

IfT:V —V (V=W)is a linear operator, a subspace W is T-invariant if T(W) C W.
Invariant subspaces are important in determining the structure of 7', as we shall see.
Note that the subspaces (0), R(T") = range(T) = T(V), K(T') = ker(T), and V are all
T-invariant. Structural analysis of 1" proceeds initially by searching for eigenvectors:
nonzero vectors v € V such that T'(v) is a scalar multiple T'(v) = A-v, for some \ € K.
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These are precisely the vectors in ker(T — AI) where I : V' — V is the identity operator
on V. Eigenvectors may or may not exist; when they do they have a story to tell.

2.1. Definition. Fiz a linear map T : V — V and scalar A € K. The A-eigenspace is
ExXT)={veV:Tw) =Av}={veV:(T-\)@)=0}=ker(T — \I)

We say that A € K is an eigenvalue for T if the eigenspace is nontrivial, Ex(T) # (0).

If V is finite dimensional we will eventually see that the number of eigenvalues is < n
(possibly zero) because it is the set of roots in K of the “characteristic polynomial”

pr(z) = det(T — zI) € K[z] ,

which has degree n = dimg (V). The set of DISTINCT eigenvalues in K is called the
spectrum of 7T and is denoted

spr(T) = {X€K: such that T'(v) = A-v for some v # 0}
{ANeK: E\#(0)}

Depending on the nature of the ground field, spg(7T) may be the empty set; it is always
nonempty if K = C, because every nonconstant polynomial has at least one root in C
(Fundamental Theorem of Algebra). The point is that all eigenspaces Ey are T-invariant
subspaces because T and (T' — AI) “commute,” hence

(T = XI)(Tv) =T((T = X)v) =T(0)=0 if wveE),

The E) are also “essentially disjoint” from each other in the sense that E, N Ey = (0) if
u# A (You can’t have A-v = p-v (or (A — p)-v = 0) for nonzero v if u # X.) Note that
ker(T') is the eigenspace corresponding to A = 0 since

Ex—o={v:(T=0-I)(v) =T () =0} = ker(T) ,

and A = 0 is an eigenvalue in spg(7") < this kernel is nontrivial. When A = 1, E_; is
the set of “fixed points” under the action of T.

Ey_1 =Fix(T) ={v:T(v) =v} (the fixed points in V)

Decomposition of Operators. We now show that if W C V is an invariant

subspace, so T (W) C W, then T induces linear operators in W and in the quotient
space V/W:

1. RESTRICTION: Ty : W — W is the restriction of T to W, so (T|w ) (w) = T(w),
for all w € W.

2. QUOTIENT OPERATOR: The operator 7T : V/W — V/W, sometimes denoted Ty,
is induced by the action of T" on additive cosets:

() Tyyw(x+W)=T(x)+W for all cosets in V/W .

The outcome is determined using a representative x for the coset, but as shown
below different representatives yield the same result, so Ty is well defined.

2.2. Theorem. Gien a linear operator T : V. — V and an invariant subspace W,
there is a unique linear operator T : V/W — V/W that makes the following diagram
“commute” in the sense that moT =T ow, where w: V — V/W is the quotient map.

v v
T Il

viw 5 vyw
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Note: We have already shown that the quotient map 7 : V' — V/W is a linear operator
between vector spaces.

Proof: Existence. The restriction T|w is clearly a linear operator on W. As for the
induced map T on V/W, the fact that T(W) C W implies

Tx+W)=T@)+T(W)CT(x)+ W forx eV

This suggests that (8) is the right definition. It automatically insures that Tor=moT;
the problem is to show the outcome T'(x + W) = T'(z) + W is independent of the choice
of coset representative x € V. But if 2/ + W =2z + W we have 2/ =2/ + 0 = 2 + wq for
some wy € W and

T(@')+W =T(z+wy) + W =T(x) + (T (wp) + W)

Since W is invariant T'(wo) € W and T'(wo) + W = W by Exercise 5.2 of Chapter 1.
Hence T'(v') + W = T(v) + W and the induced operator in (8) is well-defined. Linearity
of T is easily checked. Once we know 7' is well-defined we get:

T((v1 + W)@ (va +W)) = T(vi+va+W) (definition of(®) in V/W)
= Twi4wv)+W =T(v1)+T(v2) + W
= (T(v1)+ W)+ (T(v2) + W)  (since W+ W =W)
= T(o+W)@®T(va+W)

and similarly ~ ~ ~
TAO@W+W))=TAv+W)=A0T(v+W)

Uniqueness. If Tl, TQ both satisfy the commutation relation TZ om =moT;, then

Ti(w+W) =T on(v) = n(T(v)) = Ta(n(v)) = To(v+ W)

so Ty =Ty on v/w. O

A Look Ahead. If T : V — V is a linear operator on a finite dimensional space, we
will explain in Section I1.4 how a matrix [T]x is associated with T once a basis X in V
has been specified. If W is a T-invariant subspace we will see that much of the structural
information about T resides in the induced operators T'|yw and Ty, and that in some
sense (to be made precise) T is assembled by “joining together” these smaller pieces.
This is a big help in trying to understand the action of 7" on V', but it does depend on
being able to find invariant subspaces — the more the better! To illustrate: if a basis
X ={wi,...,w,} in W is augmented to get a basis for V,

3I={wi,. ., W, Umi1,-- - Umtk} (m+k=n=dim(V))

we have seen that the image vectors v,,+; = T(Vm+4) are a basis 9) in the quotient space
V/W. In Section I1.4 we will show that the matrix [T']3 assumes a special “block-upper
triangular form” with respect to such a basis.

m><m m><k
0xm k><k

where A = [T|w]x and B = [Ty,w]y. Clearly, much of the information about 7' is
encoded in the two diagonal blocks A, B; but some information is lost in passing from T’
to T'lw and Ty y — the “cross-terms” in the upper right block cannot be determined
if we only know the two induced operators. Additional information is needed to piece

T3 =
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them together to recover 7', and there may be more than one operator T yielding a
particular pair of induced operators (T|W, TV/W). O

Isomorphisms of Vector Spaces. A linear map 7 : V — W is an isomorphism
between vector spaces if it is a bijection. Since T is a bijection there is a well-defined
“set-theoretic” inverse map in the opposite direction 7' : W — V

T~ w) = (the unique v € V such that T(v) = w)

for any w € W. In general it might not be easy to describe the inverse of a bijection
f X — Y between two point sets in closed form

I Hy) = (some explicit formula)

(Try finding = f~*(y) where f : R — Ris y = f(z) = 2> + x + 1, which is a bijection
because df /dz > 0 for all z.) But the inverse of a linear map is automatically linear, if
it exists. We write V' = W if there is an isomorphism between them.

2.3. Exercise. Suppose T : V — W is linear and a bijection. Prove that the set-
theoretic inverse map T~ : W — V must be linear, so

T 'w) = AT Hw) and T wy +w2) =T H(wy) + T~ H(wg)

Thus 7 and T~! are both isomorphisms between V and W.
Hint: 77! reverses the action of T and vice-versa, so ToT ! =idy and T 1o T = idy.

We now observe that an isomorphisms between vector spaces V' and W identifies impor-
tant features of V' with those of W. It maps

independent sets independent sets
spanning sets mV —7—— spanning sets in W
bases bases

To illustrate, if {v1, ..., v, } are independent in V', then

n n
Ow = ZCiT(’Ui) = T(Zcivi) = 0y = Zcivi mV = c¢=..=¢,=0inkK
i=1 i i=1
because T'(0y) = Ow and T is one-to-one. Thus the vectors {7 (v1), ..., T(v,)} are inde-
pendent in W. Similar arguments yield the other two assertions.
2.4. Exercise. If T : V — W is an isomorphism of vector spaces, verify that:
1. K-span{v;} =V = K-span{T(v;)} = W;
2. {v;i}isabasisin V = {T(v;)} is a basis in W.
In particular, isomorphic vector spaces V, W are either both infinite dimensional, or
both finite dimensional with dimg (V') = dimg (W).
The following result which relates linear operators, quotient spaces, and isomorphisms

will be cited often in analyzing the structure of linear operators. It is even valid for infinite
dimensional spaces.

2.5. Theorem (First Isomorphism Theorem). Let T : V — R(T) C W be a
linear map with range R(T). If K(T) = ker(T), T induces a unique bijective linear map
T:V/K(T) — R(T) that makes the following diagram “commute” (T om =T).

1% L RT)CW
L /

V/K(T)
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where w: V — V/K is the quotient map. Furthermore R(T) = R(T),

Hints: Try defining T'(v + K(T)) = T(v). Your first task is to show that the outcome
is independent of the particular coset representative —i.e. v + K(T) = v + K(T) =
T(') = T(v), so T is well-defined. Next show T is linear, referring to the operations @
and © in the quotient space V/K(T'). The commutation property Tonm =T is built into
the definition of 7. For uniqueness, you must show that if S : V/K(T) — W is any other
linear map such that S om = T, then S = T} this is trivial once you clearly understand
the question. [

Note that range(7") = range(7") because the quotient map 7 : V' — V/K is surjective:
w € R(T) < there is a coset v + K (T') such that T'(v + K(T')) = w; but then T'(v) = w
and w € R(T). Since T is an isomorphism between V/K(T) and R(T), dim(V/K(T)) =
dim (V') — dim(K (T)) is equal to dim(R(T)).
I1.3. (Internal) Direct Sum of Vector Spaces.
A vector space V is an (internal) direct sum of subspaces Vi, ... ,V,,, indicated by
writing V=V & ... @V, if

1. The linear span » . Vi ={>°1" v; :v; € V}isall of V;

2. Every v € V has a unique representation as a sum v = Z?:l v; with v; € V.

Once we know that the V; span V, condition (2.) is equivalent to saying
n
2% Zvi:() with v; € V; — wv; =0 for all i.
i=1

n "

In fact, if a vector v has two different representations v = Y. v; = Y v} then 0 = >"" | v]

with v) = (v} —v;) € V;. Then (2*.) implies v;' = 0 and v, = v; for all i. Conversely, if
we can write 0 = > w; with w; € V; not all zero, then the representation of a vector as
v=7_,v; (v; €V;) cannot be unique, since we could also write

O:Zwi with w; # 0 for some i ,

and then v = v +0 = )", (v; + w;) in which v; +w; € V; is # v;. Thus the condition (2.)
is equivalent to (2*.)

3.1. Example. We note the following examples of direct sum decompositions.
1. K" =V @& W where
V = {(z1,22,0,...,0) : 21,22 € K} and W = {(0,0, 3, ..., x,) : x € K};
More generally, in an obvious sense we have K"™" = K™ ¢ K.
2. The space of polynomials K[z] = V @ W is a direct sum of the subspaces

e EVEN PoryNoMmIALS: V = {77 a;z" : a; = 0 for odd indices}
e OpD PorLyNoMIALS: W = {372 a;a’ : a; = 0 for even indices }

3. For K = Q,R, C, matrix space M(n,K) is a direct sum A& S of

e ANTISYMMETRIC MATRICES: A = {A: A" = —A}
e SYMMETRIC MATRICES: & = {A: A* = A}.

37



In fact, since (A')' = A we can write any matrix as

A=At a)+ a4
The first term is symmetric and the second antisymmetric, so M(n,K) = A+ S,
(linear span).

If Be ANS then B' = —B and also B' = B, hence B= —B and B = 0 (the
zero matrix). Thus ANS = (0) and Exercise 3.2 (below) implies that M(n,K) =
AdS.

Note: This actually works for any field K in which 2 =1+ 1 # 0 because the “%”

in the formulas involves division by 2. In particular it works for the finite fields
Zy, = ZL/pZ except for Zo = Z/27Z, in which [1] @ 1] =[1+1]=[2]=[0] O

If subspaces Vi, ..., V, span V it can be tricky to verify that V is a direct sum when
n > 3, but if there are just two summands V; and V, (the case most often encountered)
there is a simple and extremely useful criterion for deciding whether V =V; & Va.

3.2. Exercise. If F, F are subspaces of V show that V is the direct sum F & F if and
only if

1. Theyspan V: E4+ F ={a+b:a€ E,bec F} is all of V;

2. Trivial intersection: E N F = {0}.

It is important to note that this is NOT true when n > 3. If """ | V; = V and the spaces
are only “pairwise disjoint,”

VinV; =(0) for i # j,
this is not enough to insure that V' is a direct sum of the given subspaces (see the following
exercise).

3.3. Exercise. Find three distinct 1-dimensional subspaces V; in the two dimensional
space R? such that

1. V;nV; =(0) for i # j;
3
2. Y Vi=R?
Explain why R? is not a direct sum Vi @ Va @ Vi of these subspaces.

3.4. Exercise. f V=V, ® ... &V, and V is finite dimensional, we have seen that
each V; must be finite-dimensional with dim(V;) < dim(V').

1. Given bases X7 C V1, ... , X, C V,,, explain how to create a basis for all of V;

2. Prove

9) DIMENSION FORMULA FOR SuMs: dimg(Vi & ... ®V,) = ZdimK(Vi)
=1

Direct sum decompositions play a large role in understanding the structure of linear
operators. Suppose T : V — V and V = V) & Vs, and that both subspaces are T-invariant.
We get restricted operators Ty = T'|y, : Vi — Vi and To = Ty, : Vo — Vo, but because
both subspaces are T-invariant we can fully reconstruct the original operator 7" in V from
its “components” Ty and Ts. In fact, every v € V has a unique decomposition v = vy +ve
(v; € V;) and then

T(v) =T(v1) + T(v2) = Ti(v1) + To(v2)
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We often indicate this decomposition by writing T = T1 & Ts.

This does not work if only one subspace is invariant. But when both are invariant
and we take bases X1 = {v1,...,0m}, X2 = {Um+1, .., Umik } for V1, Vo, we will soon see
that the combined basis 9 = {v1,..., Um, Um+1, .-, Umikt for all of V' yields a matriix
of particularly simple “block-diagonal” form

me 0 mxk
Ty =
kam kxk

where A, B are the matrices of T3, Ty with respect to the bases X1 C Vi and X, C V5.

Projections and Direct Sums. If V=V, @ ... @V, then for each i there is a
natural projection operator P; : V — V; C V, the “projection of V onto V; along the
complementary subspace @ ki V;.” By definition we have

n
(10) Pi(v) =v; ifv= Z v; is the unique decomposition with v; € Vj.
j=1

Note that ker(F;) 2 all V; with j # 4, so K(F;) 2 @,,; V;. A number of properties of
these projection operators are easily verified.

3.5. Exercise. Show that the projections P; associated with a direct sum decomposition
V=WVi1& ... ®»V, have the following properties.

1. LINEARITY: Each P; : V — V is a linear operator;

2. IDEMPOTENT PROPERTY: Pf = P, o P, = P; for all 4;
3. PoP;j=0ifi#7j;

4. Range(P;) = V; and ker(F) is the linear span -, Vj;
5. P + ...+ P, = I (identity operator on V).

If we represent vectors v € V' as ordered n-tuples (v1, ..., v,,) in the Cartesian product set
Vi X ... x V,,, the i*" projection takes the form

Pi(vl, ...,’Un) = (O, .., 0,04, 0, ,O) eV, CV.

Don’t be misled by this notation into thinking that we are speaking of orthogonal projec-
tions (onto orthogonal subspaces in R™). The following example and exercises illustrate
what’s really happening.

Note: A vector space must be equipped with additional structure such as an inner prod-
uct if we want to speak of “orthogonality of vectors,” or their “lengths.” Such notions
are meaningless in an unadorned vector space. Nevertheless, inner product spaces are
important and will be fully discussed in Chapter VI.

3.6. Example. The plane R? is a direct sum of the subspaces V; = Re; and V5 =
R(e1 +e2), where X = {e3, €2} are the standard basis vectors e; = (1,0) and e3 = (0,1)
in R2. The maps

e P projecting V onto V; along V5,

e P, projecting V onto V5, along V3
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Figure 2.2. Projections P, P> determined by a direct sum decomposition V = V; @ V5.
Here V = R2, Vi = Rey, Vo = R(e1 + e2); P1 projects vectors v € V onto Vi along Va,
and likewise for Ps.

are oblique projections, not the familiar orthogonal projections sending x = (x1,xz3) to
(21,0) and to (0, x2) respectively, see Figure 2.1. Find an explicit formula for P;(v1,v2)
in R?, for arbitrary pairs (v, ve) in R2.

Discussion: To calculate these projections we must write an arbitrary vector v =
(’Ul, 1)2) = v1e1 + veeq in the form a + b € V; & V5 where Vi, = Re; and Vs, = R(el + eg).
The vectors 9 = {f1, 2}

(11) fi=e; and f =e; + e

that determine the 1-dimensional spaces Vi, Va are easily seen to be a new basis for R2.
If v = c1f; + cofy in the new basis, the action of the projections P;, P> can be written
immediately based on the definitions:

(12) Py(c1fy + cofs) cify ( = clel)
Py(cifi + cofy) = cofo ( =co(er +e2) )

Now v = (v1,v2) is v1e] + veey in terms of the standard basis X in R2 and we want to
describe the outcomes P (v), P2(v) in terms of the same basis.

First observe that the action of P; is known as soon as we know the action of P;: by
the Parallelogram Law for vector addition (see Figure 2.2) we have P, + P, = I, so

Py(v) =T - P1)(v) =v— P1(v) for all v € R?

Second, the projections P; are linear so their action is known once we determine the
images P;(eg) of the basis vectors ey because

P;(v) = Pi(vi,v2) = Pi(vier + voe2) = vi-Pi(er) + va-P(e2) (vi,v2 € R)

The last step is to use the vector equations (11) to write the standard basis vectors
{e1,e2} in terms of the new basis {f1, f2}; then the action of P; in the standard basis is
easily evaluated by applying (12). From (11) we get

e = fl and €y = f2 — fl
and then from (12),
Pi(e) = Pi(fi)=1fi = e
Pi(e;) = Pi(fy—1f) = —f1 = —e;
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and similarly

Pg(el) = Pg(fl) =0
Py(es) = Po(fa—f)) =fs = e +e

The projections P; can now be re-written in terms of the Cartesian coordinates in R? as

Pi(vi,v2) = wviPi(e1)+vaPi(e2)
= vi-e; —vy-e; = (v1 —v2,0)
Pr(vi,v2) = vi1Pa(e1) +vaPa(er)

= 1)1'0—|—’L)2'(91+92) = (1)2,1)2)
It is interesting to calculate P2, PZ and Pj o P, using the preceding formulas to verify

the properties listed in Exercise 3.5 [

The “idempotent property” P2 = P for a linear operator is characteristic of projec-
tions associated with a direct sum decomposition V' = V; @ V5. We have already seen
that if P,Q = (I — P) are the projections associated with such a decomposition, then

(i) PP=Pand Q*=Q (ii) PQ=QP =0 (iii) P+ Q = I (identity operator)

But the converse is also true.

3.7. Proposition. If P: V — V is any linear operator such that P> = P, then V is a
direct sum V = R(P) ® K(P) and P is the projection of V' onto the range R(P), along
the kernel K(P). The operator Q = I — P is also idempotent, with

(13) R(Q)=R(I — P) = K(P) and K(Q)=K( - P)=R(P),
and projects V onto R(Q) = K(P) along K(Q) = R(P).
Proof: First observe that @ = (I — P) is also idempotent since
(I-P?=1-2P+P*=1-2P+P=(I-P).
Next, note that
veK(Q) & Q)=(I—-Plv=0 < Pv)=v & veR(P).

[Implication (=) in the last step is obvious. Conversely, if v € R(P) then v = P(w) for
some w and then P(v) = P?(w) = P(w) = v, proving (<).] Thus

1. K(Q)= K(I — P) is equal to R(P)
2. R(Q) = R(I — P) is equal to K(P) ,

proving (13).

Obviously P + @ = I because v = P(v) + (I — P)(v) implies P(v) € R(P), while
(I — P)(v) € R(Q) = K(P) by (13); thus the span R(P) + K(P) = R(P) + R(Q)
is all of V. Furthermore K(P) N R(P) = (0), for if v is in the intersection we have
v € K(P) = P(v) = 0. But we also have v € R(P), so v = P(w) for some w, and then

0= P(v) = P*(w) = P(w) =v .

By Exercise 3.2 we conclude that V = R(P) ® K(P).
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Finally, let P be the projection onto R(P) along K (P) associated with this decom-
position; we claim that P = P. By definition P maps v = r + k € R(P) ® K(P) to r;
that, however, is exactly what our original operator P does:

Pir+k)=P(r)+Pk)=r+0=r.

Therefore P = P as operatorson V. [

Direct Sums and Eigenspaces. Let T : V — V be a linear operator on a
finite dimensional space V. As above, the spectrum of 7' is the set of distinct eigenvalues
sp(T) = {A € K: Ej # 0}, where E), is the (nontrivial) A-eigenspace

Eyx={veV:T{w) = v}=ker(T — ) (I =idy)

3.8. Definition. A linear operator T : V — V is diagonalizable if V' is the direct sum
of the nontrivial eigenspaces,

V= E\D)

Aesp(T)

We will see below that this happens if and only if V has a basis f1, . .., £, of eigenvectors,
TE) = wi-tf; for some u; € K

for1<i<n.

Our next result shows that 7' is actually diagonalizable if we only know that the
eigenspaces span V| with

V = Z E\(T) = K-span{E) : A € spg(T)}
Xesp(T)

(a property much easier to verify).

3.9. Proposition. If T : V — V is a linear operator on a finite dimensional space, let
W be the span ZAespK(T) E\(T) of the eigenspaces. This space is T-invariant and is in
fact a direct sum W = @, Ex of the eigenspaces.

Proof: Since each F) is invariant their span W is also T-invariant. The E) span W
by hypothesis, so each w € W has some decomposition w = >, wx with wy € Ey. For
uniqueness of this decomposition it suffices to show that

0= Z wy with wy € £y, = eachw),=0.
Aesp(T)

The operators T, (T' — AI), and (T' — pI) commute for all u, A € K since the identity
element I and its scalar multiples commute with everybody. Let us fix an eigenvalue \g;
we will show wy, = 0. With this ¢ in mind we define the product

A= II @-xp.
A# X0, Esp(T)

Then
0=4(0) =AY wr) =Y A(wy) = Aws,) + D Alwy)
A

A A#£Xo
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If A # Ao we have

Awy) = | [[ @=pD) | ws=| J[ @=nl)| (T=A)wy=0
H#No [IE2 I

because wy € Ex. On the other hand, by writing (T'— AoI) + (Ao — )I we find that

A(wko) = H (T_MI) Wxo = H (T_/\OI)+(/\0_M)I Wxg
u#No HFAo

When we expand this product of sums, every term but one includes a factor (T — A\oI)
that kills wy,:

(Term) = (product of operators) - (T — AoI)wy, = 0

The one exception is the product

H (Ao — 1) | - wx,-

HF#Xo
The scalar out front cannot be zero because each u # Ag, so
Awxy) = T Co—=p)-wx, #0
H#EXo

But we already observed that

0= A(Zuu) =0+ A(wy,)
A

so we get a contradiction unless wy, = 0. Thus each term in ), wy is zero and W is the
direct sum of the eigenspaces F). [0

If W SV this result tells us nothing about the behavior of T" off of the subspace W,
but if we list the distinct eigenvalues as A1, ..., A, we can construct a basis for W that
runs first through E),, then through F),, etc to get a basis for W,

1 1 2 2 T T
=0 D iy

where d; = dim(Ey,) and ), d; = m = dim(W). The corresponding matrix describing
T|w is diagonal, so T|w is a diagonalizable operator on W even if T is not diagonalizable
on all of V.

A1 0

A1
(14) Tlwlxx =

0 Ar
where sp(T') = {1, ..., A}

3.10. Exercise. If a linear operator 7' : V' — V acts on a finite dimensional space,
prove that the following statements are equivalent.

43



1. T is diagonalizable: V = @ E\(T)
Aesp(T)

2. There is a basis f1,..., fn for V such that each f; is an eigenvector, with T'f; = p; f;
for some u; € K.

I1.4. Representing Linear Operators as Matrices.
Let T : V — W be a linear operator between finite dimensional vector spaces with
dim(V) = m, dim(W) = n. An ordered basis in V is an ordered list X = {e1,...,e,}
of vectors that are independent and span V; let 9 = {f1, ..., fn} be an ordered basis for
the target space W.

The behavior of a linear map T : V' — W is completely determined by what it does
to the basis vectors in V because every v =Y " | ¢;e; (uniquely) and

n

T( Z cl-el-) = Z cl-T(el-)

i=1 i=1
Each image T'(e;) can be expressed uniquely as a linear combination of vectors in the )

basis,

T(ez) = thifj for 1<i<m
j=1

yielding a system of m = dim(V') vector equations that tell us how to rewrite vectors in
the X-basis in terms of vectors in the )-basis

T(e1) = bufi+...+binfn
(15) :

We define the matrix of 7" with respect to the bases X, 2) to be the n x m matrix
[T)yx = [tij] (the transpose of the array of coefficients B = [b;;] in (15))

Since (B*)k¢ = By, that means t;; = bj;; to put it differently, the entries t;; in [T]yx
satisfy the following identities derived from (15)

(16) T(ei) = Zt_jifj orl<i<m
Jj=1

Note carefully: the basis vector f; in (16) is paired with ¢;; and not t;;.

The matrix description of T' : V' — W changes if we take different bases; nevertheless,
the same operator T (which has a coordinate-independent existence) underlies all of
these descriptions. One objective in analyzing T is to find bases that yield the simplest
matrix descriptions. When V' = W the best possible outcome is of course a basis that
diagonalizes T as in (14), but alas, not all operators are diagonalizable.

Another issue worth considering is the following: If T" is the identity operator I = id
on a vector space V, and we compute [id]xx, the outcome is the same for all bases X,

lidlxx = Lnxn (the n x n identity matrix)
But there is no reason why we couldn’t take different bases in the initial and final spaces

(even if they are the same space), regarding T' = idy as a map from (V,X) to (V,9).
Then there are some surprises when you compute [T]xy.
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4.1. Exercise. Let V be 2-dimensional coordinate space R2. Let I : V — V be identity
map I = idy, but take different bases X = {e;, ez} and 9 = {fi1,f2} in the initial and
final spaces. Letting e1, es be the standard basis vectors in R? and f; = (1,0), f, = (1,2),
compute the matrices

() Hxx () [px  (2) [yy () [zxy

4.2. Exercise. If VW are finite dimensional and T : V' — W is linear, prove that
there are always bases X,9) and X’,2)" in V, W such that

W = ;0 ) 6 mew=( "5 )

where 7 = rk(T') = dim(range(7")) is the rank and I, is the r x r identity matrix.
Hint: Finding a basis that produces (i) is fairly easy; part (ii) requires some thought
about the order in which basis vectors are listed. Both matrices represent the same
operator T : V — W.

The matrix description of T could hardly be simpler than those in Exercise 4.2, but at
the same time much information about 7" has been lost in allowing arbitrary unrelated
bases in V and W. Most operators encode far more information than can be captured
by the single number rk(T").

In addition to our description of a linear operator T': V' — W as a matrix, we can also
describe vectors v € V, w € W as column matrices once bases X = {e;} and 9 = {f;}
are specified. The correspondence ¢x : V' — K™ is a linear bijection (an isomorphism of
vector spaces) defined by letting

dx(v) = [v]x = if v=>""", vie; (unique expansion)

Similarly ¢g : W — K" is given by

w1
oy (w) = [w]y = if w=3"7_, w;f; (unique expansion)

Wn,

These coordinate descriptions of linear operators and vectors are closely related.

4.3. Proposition. If T : V — W is a linear operator and X, ) are bases in V., W then
forallveV:

¢ (Tv) = [Tyx - ¢z (v)

or equivalently,

[Ty = Tlyx - [v]x (an (n x m)-(m x 1) matriz product)

Thus the i component (T); of dg(Tw) is given by the familiar formula
(Tw); = Z tikvk for1<i<n
k=1

ifv="> 1, vkex and [T)yx = [ti;].
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Proof: If T'(e;) = Z?:l tjif; and v = >"}" | vgek, then

n

= T(ivkek) = iva(ek) = ivk<ztjkfj) = Z(; tjkvk) g

k=1 k=1 k=1 J=1

So, the i*" component (T'(v)); of ¢ (T(v)) is > v, tikvk, as claimed. [

The natural linear maps ¢x : V — K", m = dim(V), and ¢g : W — K", n = dim(W),
are bijective isomorphisms. Therefore a unique linear map 7' = ¢g o T o gb;l is induced
from K™ — K" that makes the following diagram commute.

(17) 14 I w Figure 2.3. The diagram commutes,
ox | 1 99 with ¢g o T =T o .

K™ T, K
It follows from Proposition 4.3 that the map 7' we get when T : V — W is transferred
over to a map between coordinate spaces is precisely the multiplication operator L4 :
K™ — K", where
A=[T]yx

is the coordinate matrix that describes T' as in (15) and (16); see also Exercise 4.13
below.

Once bases X, %) are specified there is also a natural linear isomorphism between the
space of linear operators Homg (V, W) and the space of matrices M(n x m, K)

4.4. Lemma. If X, 9 are bases for finite dimensional vector spaces V,W the map ¢
from Homg (V, W) — M(n x m,K) given by

is a linear bijection, so these vector spaces are isomorphic, and
dimg (HomK(V, W)) = dimg (M(n X m, K)) =m-n

Proof: Linearity of ¢ follows because if X = {e;} and 9 = {f;} we have
(A-T)(ei) = A-(T(eq)) = A-( Ztﬂfj =Y (i) f
- j=1

for i <14 < m, which means that [AT];; = X-[T];;. Similarly, if we write [T}]yx = [tgf)]
for k =1,2 we get

(Ty + To)(e;) = Ti(e;) + Tale;) = Zt(l £+ Zt(2 =3 (£

J

So [Th +T5]i; = [T1]i; + [T2)i5, proving linearity of ¢ as a map from operators to matrices.
One-to-One: The map ¢ is one-to-one if ker(¢) = (0) —i.e. if §(T) = [T]yx = [0] then T’
is the zero operator on V. This is clear: If t;; = 0 for all ¢, j then T'(e;) = Z;n:l tjie; =0
for all ¢, and T'(v) = 0 for all v because {e;} is a basis.

Surjective: To prove ¢ surjective: given an n x m matrix A = [a;;] we must produce a
linear operator T' : V' — W and bases X, %) such that [T]yx = [ai;]. This can done by

working the definition of [T]yx backward: we saw earlier that there is a unique linear
operator T : V — W such that T'(e;) = > 7_, a;if;, because {e;} = X is a basis in V.
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Then, by definition of [T]yx as in (15) - (16) we have t;; = a;;. O

When V = W composition of operators S o T" makes sense and the space of linear
operators Homg (V, V') becomes a (noncommutative) associative algebra, with the identity
operator I = idy as the multiplicative identity element. The set of matrices M(n, K)
is also an associative algebra, under matrix multiplication; its identity element is the
n x n diagonal identity matrix I,,x, = diag(1,1,...,1). These systems are “isomorphic”
as associative algebras, as well as vector spaces, because the bijection ¢ : Hom(V, V) —
M(n,K) intertertwines the multiplication operations (o) and (-).

4.5. Proposition. The bijective linear map ¢ : Homg (V, V) — M(n, K) intertwines the
product operations in these algebras:

(18) d(SoT)=¢(S) (T for all S, T € Hom(V,V)

Under the correspondence between operators and their matriz representations, this is
equivalent to saying that

[SoT]xx = [Slxx - [T]xx
for every basis X in V', where we take matriz product on the right.

This is a special case of a much more general result.

4.6. Proposition. Let U —— V S W be linear maps and let X = {u;}, P = {v;},
3 = {w;} be bases in U, V, W. Then the correspondence between operators and their
matriz realizations s “covariant” in the sense that

[SoT)3x = [Sl3y - [T]yx

(a matriz product of compatible non-square matrices).

Proof: We have S o T'(u;) = >, (S o T)pwy by definition, and also
SOT(’U,l) = S(T(ul)) = S(thﬂ)j) = thiS(’Uj)
J J
S swwe) tie = D0 (D sugtsn) wn
k k J

J

= Z ([S] [T])mwk (definition of matrix product)
k

Thus [S o T = ([S][T))ki, for all 4, k. O

4.7. Exercise. The n x m matrices E;; with a “1” in the (i, j) spot and zeros elsewhere,
are a basis for matrix space M(n x m,K) since [a;] = >, ; a;;Eij. When m = n the
matrices E;; have useful algebraic properties. Prove that:

(a) These matrices satsify the identities
EijEye = 61-Ei
where 6,5 is the Kronecker delta symbol, equal to 1 if » = s and zero otherwise.
(b) The “diagonal” elements E;; are projections, with E% = E;;.

(¢) E11+ ...+ Enp = Lyxn (the identity matrix).
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If T:V — W is an invertible (bijective) linear operator between finite dimensional
spaces, then dim(V) = dim(W) = n and the inverse map T~ : W — V is also linear
(recall Exercise I1.2.3). From the definition of the inverse map 7! we have

Tl oT=idy and ToT !=idy,

so each operator undoes the action of the other. For any bases X,%) in V, W the corre-
sponding matrix realizations of T" and T—! are inverses of each other too. To see why,
first recall

[ldv]xx = Ian and [ldw]@@ = Ian .
Then by Proposition 4.6,
[T xy  [Tlyx = Toxn  and  [Tlyx [T7 xy = Inxn
which means that [T~!]xg is the inverse [T]ié6 of the matrix of 7. When V = W and
there is just one basis X and all this reduces to the simpler statement [T'~!] = [T]~1.

4.8. Exercise. Explain why isomorphic vector space must have the same dimension,
even if one of them is infinite dimensional.

4.9. Exercise. If T : V — W is an invertible linear operator, prove that (1)~ = T.
4.10. Exercise. If U - V -5 W are invertible linear operators, explain why SoT :
U — W is invertible, with (SoT)™! = T~'0 S~1. (Note the reversal of order.)

For A € M(n,K), we have defined the linear operator L4 : K" — K" via L4(x) = A-x,
regarding vectors x as n x 1 column matrices.

4.11. Exercise. Prove that the correspondence L : M(n,K) — Homg (K", K"™) has the
following algebraic properties.

1. Layp=La+ Lp and Ly.4 = A-L4 for all A € K;
2. LAB :LAOLB;
3. If I = I,,x, is the identity matrix, then L; = idgn.

4. L, is an invertible linear operator if and only if the matrix inverse A~! exists in
M(n,K), and then we have (L)™' = (L4-1).

4.12. Exercise. Explain why the correspondence L : M(n,K) — Homg (K", K") is a
linear bijection and an isomorphism between these associative algebras.

4.13. Exercise. If A € M(n x m,K) and X, 9 are the standard bases in coordinate
spaces K™, K™ prove that the matrix B = [LA]@)3€ that describes L4 : K™ — K" for
this particular choice of bases is just the original matrix A

Note: Does this work for arbitrary bases in K"7

4.14. Exercise. Let P = K]z] be the infinite dimensional space of polynomials over K.

Consider the linear operators

1. DERIVATIVE: D(ag+ a1z + ... + apz™) = ay + 2a27 + ... + na,z" 1

2. ANTIDERIVATIVE: A(ag + aix + ... + a,2™) = apz + %a1x2 +...+ %Han:v"“

Show that Do A = idp but that Ao D # idp. (What is Ao D?) Show that D is surjective
and A is one-to-one, but ker(D) # (0) and the range R(D) # P.

This behavior is possible only in an infinite dimensional space. We have already observed
(recall Corollary I1.1.6) that if finite dimensional spaces V, W have the same dimension,
the following statements regarding a linear maop 7' : V' — W are equivalent.
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T is one-to-one T is surjective T is bijective

4.15. Exercise. If A € M(n,K) define its trace to be
Tr(A) = Z @i (sum of the diagonal entries)
i=1

Show that, for any A, B € M(n, K),
1. Tr: M(n,K) — K is a linear map.
2. Tr(AB) = Tr(BA);
3. If B=SAS~! for some invertible matrix S € M(n,K) then Tr(SAS~') = Tr(A).

Change of Basis and Similarity Transformations. If T : V — W is a
linear map between finite dimensional spaces and X, X’ CV and ), 2’ C W are different
bases, it is important to understand how the matrix models [T'|gx and [T']g %/ are related
as we seek particular bases yielding simple descriptions of T'. For instance if T: V — V
we may ask if 7" is diagonalizable over K : Is there a basis such that

A1 0
0 X
Txx =
0 An

(repeats allowed among the \;)? Not all operators are so nice, and if T is not diag-
onalizable we will eventually work out a satisfactory but more complicated “Plan B”
for dealing with such operators. All this requires a clear understanding of how matrix
descriptions behave under a “change of basis.”

4.16. Theorem (Change of Basis). Let T : V — V be a linear operator on a finite
dimensional space and let idy be the identity operator on V. If X = {e1,...,en} and
D ={f1,.., fn} are bases in V, then

(19) [Tyy = [dv]yz-[T]xx [idv]xy

Futhermore [idy]xy and [idv]yx are inverses of each other.

Proof: Since T'=idy oT oidy : V — V — V, repeated application of Proposition 4.3
yields (19), as in the following system of commuting diagrams.

lidv]xy La lidv]yx

K" K" K"
T T T T

idy T idy

V9 — VX)) —— V,X) —— (V.9)

K’ﬂ

where A = [T]xx. Applying the same proposition to the maps idy = idy o idy we get
Inxn = [idv]pgy = [idv]yx-[idv]xy

which proves [idy]xg and [idy]yx are mutual inverses. O

To summarize: there is a unique, invertible “transition matrix” S € M(n,K) such that

(20) [T]@@ = S-[T]xx-sil, where S = [1dv]g]x and Sil = [1dv]x@
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If we have explicit vector equations expressing the )-basis vectors in terms of the X-
basis vectors, the matrix S~ = [id]xy can be written down immediately; then we can

compute S = (S_l)_l from it.

4.17. Definition (Similarity Transformations). Two matrices A, B in M(n,K) are
similar if there is an invertible matriz S € GL(n,K) such that B = SAS™'. The map-
ping os : M(n,K) — M(n,K) given by os(A) = SAS™1 is referred to as a similarity
transformation of A. It is also referred to by algebraists as “conjugation” of arbi-
trary matrices A by an invertible matrix S.

Each individual conjugation operator o5(A4) = SAS~! is an automorphism of the asso-
ciative matrix algebra — it is a bijection that respects all algebraic operations in M(n, K):

os(A-B) = os(A)-os(B)
05(A+B) = 05(A)+05(B)
05()\-14) = )\-Us(A) for A\ e K

US(Ian) = Inxn

for all matrices A, B and all “conjugators” S € GL(n,K). But there is even more to be
said: the correspondence 1 : S — og has important algebraic properties of its own,

05,5, = 05,008, for all invertible matrices S1, S

Olnwn = (the identity operator idy on matrix space M = M(n, K) )
from which we automatically conclude that
-1
The operator og-1 is the inverse (Us) of conjugation by S.

Thus the conjugation operators {cg : S € GL} form a group of automorphisms acting
on the algebra of n X n matrices.

When a linear operator T' : V. — V is described with respect to different bases
in V, the resulting matrices must be similar as in (20). The converse is also true: if
A = [T)xx and B = SAS™! for some invertible matrix S, there is a basis 2) such that
B = [T]yy. Thus, the different matrix models of T' corresponding to bases ) other than
X are precisely the similarity transforms {S [T]xxS~! : S is invertible}.

4.18. Lemma. If T :V — V is a linear operator on a finite dimensional vector space
V and if A = [T|xx then a n x n matriz B is equal to [T)|yg for some basis Y if and
only if B= SAS™ for some invertible matriz S.

Proof: (=) follows from (20). For (<«): since S is invertible it has a matrix inverse
S~1. (Later we will discuss effective methods to compute matrix inverses such as S~1.)
According to Theorem 4.16, what we need is a basis 9 = { f1, ..., fn} such that [idy]xy =
S~ then [idy]gx = (S71) ' = S and B = S[T)xxS~". If we write S™! = [b;;] and
S = [s45] the identity S~ = [idy]|xg means that

fi = 1dV(f1) = ijiej for 1 S 7 S n
J

where X = {e1,...,en}. This is the desired new basis @ = {f;}. To see it is a basis,
we have {f;} C K-span{ey, ..., e, } by definition, but {e;} is in K-span{f;} because the
matrix S~ = [b;;] is invertible; in fact, S™1S = I implies that Y, bj;six = d;, (Kronecker
delta). Then

Zsikfi = Zslk( ijiej) = Z (Zbﬁsik) €j = Z(Sjkej = €k

i J
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for 1 < k < n, so {ex} C K-span{f;} as claimed. Therefore {e1,...,e,} and {f1,...fn}
both span V', and because {e;} is already a basis {f;} must also be a basis. [

The next example shows that it can be difficult to tell by inspection whether an
operator T is diagonalizable.

4.19. Example. Let T : C?> — C? be the linear operator whose action on the standard
basis X = {e1 = (1,0),e2 = (0,1)} is

T(el) = 461 T(eg) = —e€

Clearly T is diagonalized by the X-basis since

Compute [T]gg for the basis

1 1
fi=—(e;+e f=—(e; —e
1 \/5( 1 2) 2 \/5( 1 2)
Solution: We have [T]yy = S [T]xxS~" where S = [idy]gx and S~! = [idy]xy. This
inverse can be computed easily from our definition of the vectors f;, fs:

1 1

fi =id(f}) = —=e;1 + —<e

(21) 1 =id{f) = Tge + e
. 1 1

fQ = ld(fQ) = Eel — EGQ

which implies

S_lz[id]xm=<$ ‘/%1 >:i.<1 1)
VR vz \ 1~

The inverse of this matrix (found by standard matrix algebra methods or simply by
solving (21) for eq, ey in terms of f;, f) is

-5 (3 )5 (1 1)

(Notice that S = S~1; this is not usually the case.) Then we get

Ty = Bl = (1 4 ) (0 4 ) (1 )
(02D

Diagonalizability of T" would not be at all apparent if we used the basis 9 = {f1,f2} to
represent 7. [

Sl

ot Mol
N Njot
SN——

4.20. Exercise. Compute the matrix [T]gg for the linear operator T : C? — C? of the
previous example for each of the folowing bases 9 = {f}, f2}:
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1 f1 = \% (el + eg)

] = \/Li (—e; +e) (obtained by rotating the standard basis vectors by § = +45°)
9 f1 = ‘/Tgel =+ %82

. fy = —%el + ‘/7§e2 (the standard basis vectors rotated by 6 = +30°)

3 f1281+i82
’ f; = e; —iey (Wherei:\/—lin(CandV:C2)

4.21. Exercise. Let P,= polynomials of degree < n. Let D = d/dx : P, — Py,
the formal derivative of a polynomial. Compute [D]xx with respect to the basis X =
{t,z,...,2"}. Compute [D?|xx and [D""!]xx too.

An RST equivalence relation on a set X is rule declaring certain points z,y € X
to be “related” (and others not). Writing z 4y y when the points are related, the phrase
“RST” means the relation is

1. REFLEXIVE: x 4 z for all x € X.
2. SYMMETRIC: Z %y = Y 7 .
3. TRANSITIVE: z yyandyy 2 = Ty 2

For each x € X we can then define its equivalence class, the subset
(2], ={y € X 1y z}

The RST property forces distinct equivalence classes to be disjoint, so the whole space
X decomposes into a the disjoint union of these classes.
One example of an RST equivalence is “congruence mod a fized prime p” in the set
X =2,
k~{ < k=/{(mod p) & k and ¢ differ by a multiple of p

It is easily verified that this is an RST relation and that the equivalence class of an
integer m is its (mod p) congruence class

[ml=m+pZ={k€Z:k=m (modp)}

There are only finitely many distinct classes, namely [0], [1], ..., [p— 1], which are disjoint
and fill Z. The finite field Z, is precisely this set of equivalence classes equipped with
suitable ® and ® operations inherited from the system of integers (Z, +, - ).

Similarity of matrices

(22) Aw B & B=SAS™' for some invertible matrix S € GL(n, K)

is an important example of an RST relation on matrix space X = M(n,K). The RST
properties are easily verified.

4.22. Exercise. Prove that similarity of matrices (22) has each of the RST properties.

The equivalence classes partition M(n, K) into disjoint “similarity classes” (aka “con-
jugacy classes”). All the matrices [T]xx associated with a linear operator T': V — V
constitute a single similarity class in matrix space — they are all the possible represen-
tations of T' corresponding to different choice of bases in V' — and different operators
correspond to disjoint similarity classes in M(n, K).
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Figure 2.4. Similarity classes (= conjugacy classes) in M(n,K) partition matrix space
into disjoint subsets [A]. Some classes are single points, for instance [—I],[I], and [0].

Othere sre complicated hypersurfaces in R = M(n,R). A similarity class could have
seevral disconnected components.

The similarity classes don’t all look the same. Some are trivial, consisting of a single
point: for instance if

A=0 or A=MA,x, (ascalar multiple of the identity matrix)
we have
SASTP=\SIS"'=X-88"'=A=A  forall S € GL(n,K)

The similarity class [A] consists of the single point A. In particular, [0] = {0}, [I] = {I}
and [—1] = {—I}. When K = R and we identify M(n,R) with R"", other similarity
classes can be large curvilinear surfaces in Euclidean space. They can be quite a mess to
compute.

4.23. Exercise. If A € M(n,K) prove that

1. A commutes with all n X n matrices < A = A-I, x5, a scalar multiple if the identity
matrix for some \ € K.

2. A commutes with all matrices in all invertible matrices GL(n,K) = {4 : det(A) #
0} & A commutes with all n x n matrices, as in (1.)

Hint: Recall the matrices E;; defined in Exercise 4.7, which are a basis for matrix
space. In (2.), if ¢ # j then I + E;; is invertible (verify that (I — E;;) is the inverse),
and commutes with A. Hence FE;; commutes with A; we leave you to figure out what to
do when ¢ = j. If A commutes with all basis vectors E;; it obviously commutes with all
n X n matrices, and (1.) can be applied.

This shows that a similarity class [A] in M(n,K) consists of a single point < A = AI (a
scalar matriz).

4.24. Exercise. When we identify M(2,R) = R* via the linear isomorphism

x = ¢(A) = (a11, a12, az1, a22) ,

show that the similarity class [A] of the matrix
11
=)
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Figure 2.5. The diagonalization problem for A € M(n,K) amounts to searching for one
(or more) diagonal matrices lying in the similarity class [A] = {SAS™!:S € GL(n,K)}.

is the 2-dimensional surface in R* whose description in parametric form, described as the
range of a polynomial map ¢ : R? — M(2,R), is

[A(s, 1)) = {( o 112515 ) .5t €R and (s,t) £ (o,o)}

Note: A matrix S = ( Z Z ) is invertible if the determinant det(S) = ad — be is not 0,

and then the inverse matrix is

1 d —=b
—1 _
5= det(S) ( —-c a > H

We will have a lot more to say about change of basis, similarity classes, and the
diagonalization problem later on. Incidentally, not all matrices can be put into diagonal
form by a similarity transformation. Our fondest hope is that in the equivalence class
[A] there will be at least one point SAS™! that is diagonal (there may be several, as in
Figure 2.5). If A = [T]xx for some linear operator T': V' — V this is telling us which
bases 9 make [T]yg diagonal, or whether there are any such bases at all.

4.25. Exercise. Suppose T : R? — R? is the linear operator such that T'(e;) = 0 and
T(ez) = e, so its matrix with respect to the standard basis X = {e1,e2} is [T]xx =

< 8 (1) ) Prove that no basis 9 = {f1, fo} can make [T]yy diagonal.

a1 a2
nonzero. We will eventually develop systematic methods to answer questions of this sort.
For the moment, you will have to do it “bare-hands.”

Hint: S = ( a2 > is invertible < the determinant det(S) = a11a202 — aj2a9; is
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Chapter III. Dual Spaces and Duality.

I11.1 Definitions and Examples.

The linear functionals (also known as dual vectors) on a vector space V over K are
the linear maps ¢ : V' — K. We denote the space of functionals by V*, or equivalently
Homg (V, K). It becomes a vector space when we impose the operations

1. ADDITION: (€1 + £2)(v) = l1(v) + La(v)  forallv eV

2. ScALING: (A-£)(v) = AL(v) for A€K,veV
The zero element in V* is the zero functional ¢(v) = Ok for all v € V, for which
ker(¢) = V and range(¢) = {0k }.

Notation: We will often employ “bracket” notation in discussing functionals, writing
(¢,v) instead of {¢(v)

This notation combines inputs ¢, v to create a map V* x V — K that is linear in each
entry when the other entry is held fixed. In bracket notation both inputs play equal
roles, and either one can be held fixed while the other varies. As we shall see this has
many advantages. [

We begin with an example that is central in understanding what dual vectors are and
what they do.

1.1. Example. Let V be a finite dimensional space and X = {ey,...,e,} an ordered
basis. Every v € V has a unique expansion

v= Z cie; (c; € K)
i=1

For each 1 <+¢ < n the map e} : V — K that reads off the ith coefficient
(efv) = c;

is a linear functional in V*. We will soon see that the set of functionals X* = {e},...,e}}
is a basis for the dual space V*, called the dual basis determined by X, from which it
follows that the dual space is finite dimensional with dim(V*) = dim(V) =n. O

The following examples give some idea of the ubiquity of dual spaces in linear algebra.

1.2. Example. For V = K]x] an element a € K determines an “evaluation functional”
€q €EV™:

(€a, [) = chak if = chxk
k=0 k=0

These do not by themselves form a vector subspace of V* because (e, —ep, f) = f(a)—f(b)
cannot always be written as f(c) for some ¢ € K.

More generally, if V' = CJa,b] is the space of continuous complex valued functions
on the interval X = [a,b] C R we can define evaluation functionals (e, f) = f(s) for
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a < s < b, but many element in V* are of a quite different nature. Two examples:

b
(i) I(f) = / f(@®)dt  (Riemann integral of f)
(ii) I*(f) = /z f(®)dt (for any endpoint a < z < b)

For another example, consider the space V = C(Y)(a,b) of real-valued functions on
an interval (a,b) C R that have continuous first derivative df /dxz(s). We can define the
usual evaluation functionals €5 € V*, but since differentiation is a linear operator on
C™M(a,b) there are also functionals £, involving derivatives, such as

d
ls: H%(s) fora<s<b,

or even linear combinations such as £,(f) = f(s) + %(s) O

1.3. Example. Suppose V is finite dimensional and that [ € V* is not the zero
functional. The kernel E = ker(¢) = {v € V : (¢,v) = 0} is a “hyperplane’ in V — a
vector subspace of dimension n — 1 where n = dim(V).

Proof: By the dimension formula,
dimg (V) = dimg ( ker(£)) 4 dimg (range(¢))

But if £ # 0, say (¢,vg) # 0, then (¢, Kvg) =K, so range(¢) = K has dimension 1. O

1.4. Example. On R" we have the standard Euclidean inner product
n
(x,y) =Y apyr  forx,y eR",
k=1

familiar from Calculus, but this is just a special case of the standard inner product on
complex n-dimensional coordinate space C",

(23) (z,w) = Z 2K Wk for complex n-tuples z, w in C" |
k=1

where Z = z—iy is the complex conjugate of z = x+iy. We will focus on the complex case,
because everything said here applies verbatim to the real case if you interpret “complex
conjugation” to mean T = x for real numbers.

In either case, imposing an inner product on coordinate space V' = K" allows us to
construct K-linear functionals ¢, € V* associated with individual vectors y € V = K",
by defining

(by,x) = (x,y) forany x e V

In this setting the right hand vector y is fixed, and acts on the left-hand entry to produce
a scalar in K. (Think of y as the “actor” and x as the “actee” — the vector that gets
acted upon.)

The functional ¢y is K-linear because the inner product is linear in its first entry
when the second entry y is held fixed, hence ¢, is a dual vector in V*. Note carefully
the placement of the “actee” on the left side of the inner product; the inner product on
a vector space over K = C is a conjugate-linear function of the right hand entry.

(z,\-w)=X\-(z,w) while (\-z,w)=\-(z,w)
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for A € K. Placing the “actee” on the right would not produce a C-linear operation on
input vectors. (When K = R, complex conjugation doesn’t do anything, and “conjugate-
linear” is the same as “linear.”)

The special case K™ = R" is of course important in geometry. The inner product on
R™ and the functionals ¢, then have explicit geometric interpretations:

(xy) = (b, x) =[] - [lyll - cos(0)

I/l - (lyl - cos 6)

= x| orthogonally projected length of y
x on the 1-dimensional subspace R-x )

where
n

1/2
x| = (¢, 3012 = (Y | ?)
k=1
is the Euclidean length of vector x € R™. The angle § = 6(x,y) is the angle in radians
between x and y, measured in the plane (two-dimensional subspace) spanned by x and y
as shown in Figure 3.1. Notice that x and y are perpendicular if (x,y) = 0, so cos(6) = 0.

Note: While the real inner product is natural in geometry, in physics the complex inner
product is the notion of choice (in electrical engineering, quantum mechanics, etc, etc).
But beware: physicists employ a convention opposite to ours. For them an inner product
is linear in the right-hand entry and conjugate linear on the left. That can be confusing
if you are not forwarned. [J

E3%
,50“{,&" Z&mj{’@x
g U Nyl Seos ¢

Figure 3.1. Geometric interpretation of the standard inner product (x,y) = ||x]|| ||yl
cos(0(x,y)) in R™. The projected length of a vector y onto the line L = Rx is ||y||-cos(0).
The angle 0(x,y) is measured within the two-dimensional subspace M = R-span{x,y}.
Vectors are orthogonal when (x,y) = 0, so cos § = 0. The zero vector is orthogonal to
everybody.

1.5. Example. In V = R3 with the standard inner product (x,y) = > iy, fix a
vector u # 0. The set of vectors M = {x € R®: (x,u) = 0} is the hyperplane of vectors
orthogonal to u — see Figure 3.2. As an example, if u = (1,0,0) € R? and £y(z) = (x, )
as in Example 1.4, this orthogonal hyperplane coincides with the kernel of #,:

M = ker (éu) = {(z1,22,0) : x1,22 € R} = R-span{ej,es} 0.

1.6. Exercise. If u # 0 in an inner product space of dimension n, explain why the
orthogonal complement

M= (R-u)l ={x:(x,u) =0}

is a subspace of dimension n — 1.
Hint: Reread Example 1.3.
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Figure 3.2. A nonzero vector u € R™ determines a hyperplane M = (Ru)*+ = {x : (x,y) =
0} = ker(4u), an (n — 1)-dimensional subspace consisting of the vectors perpendicular to
u.

1.7. Example. Let V = CJ[0, 1] be the oco-dimensional space of all continuous complex-
valued functions f : [0,1] — C. The Fourier transform of f is the function f* : Z — C
defined by integrating f(t) against the complex trigonometric functions

E,(t) = ™ = cos(2nt) + isin(27t)  (n € Z)

on the real line. The n'" Fourier coefficient of f(t) is the integral:

M) = / fHe > dt (0 ez

(Note that the E, are all periodic with period At = 1, so this integral is taken over
the basic period 0 < ¢t < 1 common to them all.) If f(¢) is smooth and periodic with
f(t+1) = f(t) for all t € R, it can be synthesized as a superposition of the basic complex
trigonometric functions E,,, with weights given by the Fourier coefficients:

+o0 too
f) =Y )™= 3" fNn)-Ea(t)

The series converges pointwise on R if f is periodic and once continuously differentiable.
For each index n € Z the map

Feco — frm)ec

is a linear functional in V*. It is actually another example of a functional determined
via an inner product as in Example 1.4. The standard inner product on C[0,1] is (f, h) =

fol f(t)h(t) dt, and we have

1
0ull) = £°0) = [ SOED e = (£,En)
0
foralln € Z, f € V. So, ¢, is precisely the functional {g, in Example 1.4. O

I11.2. Dual Bases in V*.

The dual space V* of linear functionals can be viewed as the space of linear operators
Homg (V, K). For arbitrary vector spaces V, W of dimension m, n we saw earlier in Lemma
4.4 of Chapter II that Homg(V, W) is isomorphic to the space M(n x m,K) of n x m
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matrices, which obviously has dimension m-n. In the special case when W = K we get
dim(V*) = m = dim(V).

This can also be seen by re-examining Example 1.1, which provides a natural way to
construct a basis X* = {e},...,e}} in V*, given an ordered basis X = {e1,...,e,} in V.

The functional e} reads the i*! coefficent in the unique expansion v = Y, ¢;e; of a vector
v € V, so that

n
(24) <ef,chek> =¢ for1<i<n

k=1

As an immediate consequence, the linear functional e} : V' — K is completely determined
by the property

25 er,e;) = 0; the Kronecker delta symbol = 1 if ¢ = j and 0 otherwise
i) €j J Y J

Identity (25) follows because e; = 0-e1 + ...+ 1-e; + ...+ 0-e,; we recover (24) by

observing that
n n

n
<e;‘, chek > = ch@f, er) = Z ckdik = ¢
k=1 k=1 k=1
as expected.

We now show that the vectors ej, ..., e} form a basis in V*, the dual basis to the
original basis X in V. This implies that dim(V*) = dim(V') = n. Note, however, that to
define the dual vectors e} you must start with a basis in V; given a single vector “v” in
V' there is no way to define a dual vector “v*” in V*.

2.1. Theorem. IfV is finite dimensional and X is a basis for V, the vectors X* =
{e1,...,er} are a basis for V*.
Proof: Independence. If £ =377, cje} is the zero vector in V* then (3, c;ief,v) =0
for every v € V, and in particular if v = e; we get

0={((e;) = ch<6;,8i> = ch5ji =G
J J
for 1 < ¢ < n, proving independence of the vectors e .
Spanning. If £ € V* and ¢; = (£, ¢;), we claim that ¢ is equal to ¢/ = > ((,e;) - e;.
It suffices to show that £ and ¢’ have the same values on the basis vectors {761'} in V, but
that is obvious because

(0 ey = <Z<€,ej>e;,ei>

J

D {le) e e) =Y (Le)bi = (Les)

J J

for 1 <i < n as claimed. [
The formula developed in this proof is often useful in computing dual bases.

2.2. Corollary. If V is finite dimensional, X = {e;} a basis in V, and X* = {e}} is the
dual basis in V*, then any £ € V* has

L= <€7 ei> ' e'j;

1

n
=

as its expansion in the X* basis.
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2.3. Exercise. If v; # vs in a finite dimensional vector space V', prove that there is an
¢ € V* such that (¢,v1) # (¢,v2). (Thus there are enough functionals in the dual V* to
distinguish vectors in V.)

Hint: It suffices to show vy # 0 = (¢, vp) # 0 for some ¢ € V*. (Why?) Think about
bases in V' that involve vg, and their duals.

Note: This result is actually true for all infinite dimensional spaces, but the proof is
harder and requires “transcendental methods” involving the Aziom of Choice. These
methods also show that every infinite dimensional space has a basis X — an (infinite)
set of independent vectors such that every v € V can be written as a finite K-linear
combination of vectors from X. As an example, the basic powers X = {t,x,2%,...} are a
basis for K[z] in this sense. A more challenging problem is to produce a basis for V' =R
when R is regarded as a vector space over the field of rationals Q. Any such Hamel basis
for R is necessarily uncountable. [

2.4. Example. Consider the basis u; = (1,0,1), uy = (1,—1,0), uz = (2,0, —1) in R3.
We shall determine the dual basis vectors u} by computing their action as functionals
on an arbitrary vector v = (1,22, z3) in R3.

Solution: Note that (z1,22,23) = 22:1 xer where {e;} is the standard basis in R3.
The basis {e}} dual to the standard basis {ex} has the following action:

3
(er, (x1, w2, 3) ) = <eZ=Z$iei> =Tk
i1

because e} reads the k' coefficient in v = Y, x;e;. For a different basis such as 9) = {u;},
the dual vector uj, reads the k'h coefficient ¢ when we expand a typical vector v € R?
3 e 3 .
as v =), ¢juy, 50 our task reduces to writing v = (21,72, 23) = > ;_; xie; in terms
of the new basis {uy}.
In matrix form, we have:

1 1 1 2
T2 = Z c;u; = C1 0 + co -1 + c3 0
T3 i 1 0 -1

To determine the coefficients ¢; we must solve for C in the matrix equation

1 1 1 2
AC =X = To where A= 0 -1 0
T3 1 0 -1

Row operations on the augmented matrix for this system yield:
—2o

T 1 1 2 T
[A:X] = T2 — 0 1 0 —x2
X3 0 —1 -3 r3 — I1
2
0
%(501 +x2 — x3)

T
There are no free variables; backsolving yields the unique solution

1 1 2
cT = X1 —Cy—2c3 = §$1 =+ g,@g =+ 51'3
Co = —XI2
1
cg = g(xl + X9 —1'3)
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Thus,
1 1 2 1 1 1
v = (§I1 + §$2 + §$3)U1 — ToUug + (§{E1 + §I2 — §$3)U3

Now read off the coefficients when v = (21, 2, z3). Since (u,u;) = J;; we get

(uf,0) = (uf, (21, 22,23)) = <uz,zxiei>

1 1 2 .
§I1+§$2+§{E3 1=1

<uf, E cjuj> =¢ = - i=2
J

1 1 1 .
§I1+§$2—§{E3 1=3

Since (e}, (x1,x2,x3)) = x; we can also rewrite this in the form

1 1 2
u*{ = gef + §e§ + 3€3
u, = -—e€
* _ 1 % 1 % 1 %
u3; = 3e€; +3€; — 3e;3

by Corollary 2.2. O

IT1.3. The Transpose Operation. There is a natural connection between linear
operators T : V. — W and operators in the opposite direction, from W* — V*.

3.1. Theorem. The transpose T : W* — V* of a linear operator T : V. — W
between finite dimensional vector spaces is a linear operator that is uniquely determined
in a coordinate-free manner by requiring that

(26) (TH(0),v) = (¢, T(v)) forallt e W veV

Proof: The right side of (26) defines a map ¢, : V' — K such that ¢¢(v) = (¢, T(v)).
Observe that ¢y is a linear functional on V' (easily verified), so each £ € W* determines a
well defined element of V*. Now let T : W* — V* be the map T*(f) = ¢;. The property
(26) holds by definition, but we must prove T" is linear (and uniquely determined by the

property (26)).
Uniqueness is easy: if S : W* — V* is another operator such that

(S(0),v) = (£, T(v)) = (T",) forall € W* andv eV,

these identities imply S(¢) = T*(¢) for all ¢, which means S = T"" as maps on W*.
The easiest proof that T is linear uses the scalar identities (26) and the following
general observation.

3.2. Exercise. If V. W are finite dimensional vector spaces, explain why the following
statements regarding two linear operators A, B : V — W are equivalent.

(a) A = B as operators.
(b) Av=Bv forallveV.
(c) (¢, Av) = (¢, Bv) for allv € V,£ € W*.
Hint: Use Exercise 2.3 to prove (3.) = (2.); implications (2.) = (1.) = (3.) are trivial.

To prove T%(¢y + €2) = T*(¢1) + T*(¢2) just bracket these with an arbitrary v € V and
compute:

(T' (L +12),v) = (h+1,T(v)
(I, T(v)) + (l2,T(v))  (definition of (+) in W*)
(T*(l1) +T"(l),v)  (definition of (+) in V*)
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for all v € V. The other identity we need, T*(\-¢) = X\-T*(¢), is proved similarly. O

Thus T* : W* — V* is a well-defined linear operator that acts in the opposite direction
fromT:V — W.

Basic properties of the correspondence T' — T are left as exercises. The proofs are
easy using the scalar identities (26).

3.3. Exercise. Verify that

(a) The transpose 0' of the zero operator 0(v) = Oy from V — W is the zero operator
from W* — V*, so 0%(¢) = Oy~ for all £ € W*.

1. When V = W the transpose of the identity map idy : V' — V, with idy (v) = v, is
the identity map idy~ : V* — V* — in short, (idv)t =idy=.
2. ()\1T1 + )\ng)t = )\1Tlt + )\QTE, for any \i,\o € Kand 71,75 : V — W.

3.4. Exercise. If U —— V - W are linear maps between finite dimensional vector
spaces, prove that

(SoT) =Tto 5"
Note the reversal of order when we compute the transpose of a product.
3.5. Exercise. If V,W are finite dimensional and T : V' — W is an invertible linear
-1
operator (a bijection), prove that 7% : W* — V* is invertible too, and (T‘l)t = (Tt)
as maps from V* — W*.
Now for some computational issues

3.6. Theorem. Let T : V — W be a linear operator between finite dimensional spaces,
let X = {v1,..,vm}, P = {wi, ..., wn} be bases in V, W and let X* = {v}, P* = {w}}
be the dual bases in V*, W*. We have defined the transpose A® of an n x m matriz to
be the m x n matriz such that (A);; = Aj;. Then “[T*'] = [T]'” in the sense that

[T %9 = ([T)yx)’

Important Note: This only works for the dual bases X*, 9* in V* W*. If A, B are
arbitrary bases in V*, W* unrelated to the dual bases there is no reason to expect that

[T")e = the transpose of the matrix [T]yx O

Proof: To determine [T'] we must calculate the coefficients in the system of vector
equations

T'(w)) =Y [T} 1<i<n
j=1

These are easily found by applying each of these identities to a basis vector v in V:
(27) (THw)),on) = Y [T (], 06) = Y [TY5056 = [TV

forany 1 <i<mnand1<k<m. Thus

[Tk = (T*(w;), vk)
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% W, = K(P?)
=2TReS 2R uy

Figure 3.3. The decomposition V' = W; @ W, determines the projection P : RZ —
R? in Example 3.7 that maps V onto Wi = Ru; along W2 = Ruz. We show that
its transpose P' projects V* onto its range R(P') = Ruj = R(e} — e3), along
K(P") = Ruj = Re}. Horizontal axis in this picture is Re} and vertical axis is
Re3; a functional is then represented as £ = (£1e] + Z2€3) with respect to the basis
X* = {e],e5} dual to the standard basis X = {e1,e2}.

By definition of T and the matrix [T]yx, we can also write (27) as

(T (w))on) = (i, T(on) = (i, [T]nw;)

j=1

J
= E Jiw{wi, wy) =

Jj=1 J

Jk(slj - ]1k

'M:

1

forany 1<i<n,1<k<m.
Upon comparison with (27) we conclude that [T*]x; = [T = ([T]*),,. Thus [T*]x-y-
is the transpose of [T]yx. O

3.7. Exercise (Computing Matrix Entries). If T : V — W and bases X = {e;},
Y = {f;} are given in V, W let X*, P* be the dual bases. Prove that

[Tz = [ti;] has entries t;; = (f}, T(e:))

The transpose of a projection P : V — V is a projection P* : V* — V* because
P'o P' = (PoP)' = P' so P' maps V* onto the range R(P') along the nullspace
K(P"') = ker(P") in the direct sum V* = R(P") @& K(P"). The following example shows
how to calculate these geometric objects in terms of dual bases.

3.8. Example. Let V = R? with basis @ = {u;,us} where u; = (1,0), uz = (1,1), and
let P = projection onto W7 = Ru; along Wa = Rus. The standard basis X = {eq, eq}

or the basis ) = {u;,us} can be used to describe P. The description with respect to X
has already been worked out in Example 3.6 of Chapter II.

1. Compute the dual bases X*, 9* as functions ¢ : R? — R and find the matrix
descriptions of P*:
[Plasx- and  [P'ly-g-

2. Compute the kernel K (P') and the range R(P') in terms of the basis X* dual to
the standard basis X.
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3. Repeat (2.) for the basis Y*.

Solution: First observe that

u = e e = W
{ u = e;+e; - { € = Ww—-—w
By definition, 9 = {u;,us} is a diagonalizing basis for P, with
P(ul) = um . 1 0
{ P(UQ) -0 which = [P]QJQJ = ( 0 0 )

We also have

Ple1) = P(u) =u = e . (1 -1
{ P(eg) = P(ug —u1) = —u; = —€; which = [P]%% B ( 0 0 )

The dual basis vectors are computed as functions R — R by observing that
uj(vi,v2) = uj(vie; +vae2)
= ui((vi — v2)uy +vouy) which = u} = e} — e}
= v —vy = (e] —e3)(v1,12)
and
uj(vy,v2) = uj(vie; + voes)
= w((v1 — v2)uy + vauz) which = uj =e;
= vy = ej(vy,v2)

No further calculations are needed to finish (1.), just apply Theorem 3.6 to get

Phexs = (Fee) = (1 9)

Applying the same ideas we see that

Py = (1Plyy) = ( 0 8 >t - ( 0 8 )

That resolves Question 1.
For (2.), a functional ¢ = i€} + iqe} (i; € R) is in K(P*) &

e ()= (4 8) ()= () women (8)

That happens < &1 = 0, so K(P') = Re} with respect to the X* basis. Since we know
es = u} we get K(P') = Ruj with respect to the 2* basis.

As for R(P?Y), if £ = bye} + bee} in the X*-basis and we let B = col(by, b2), we must
solve the matrix equation AX = B, where A = [P']x+x-. Row operations on [A : B]

yield

1 0 bl N 1 0 bl

-1 0 b2 0 0 b2 + bl
so B€ R(P') & by +by =0 < ¢ € R-(ef —e}). Thus R(P') = R-(e} — e}) in the X*
basis, while in the 9* basis this becomes

R(P') = R(ef - e3) = R((u; + uj) —u3) = Ruj O
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The projection P*, and the corresponding decomposition V* = R(P') @ K (P*), both
have coordinate-independent geometric meaning. But the components of the direct sum
have different descriptions according to which dual basis we use to describe vectors in
V.

R(ul) ® R(u3 for the 2* basis
P L Y
R(ef —e3) ®R(e3) for the X* basis

3.9. Exercise. Round out the previous discussion by verifying that
(a) For the standard basis X we have R(P) = Re; and K(P) = R-(e; + e3).
(b) For the 2 basis we have R(P) = Ru; and K(P) = R(uz).

3.9A. Exercise. Let X = {e1,...,e,} and Y = {f1,...,f,} be the standard bases in
V=K" W =K". If ST are linear maps such that

(a) m<mnand S(x1,...,Zm) = (T1,...,2m,0,...,0)
(b) m>nand T(x1,...,%Tn, ., Tm) = (T1,...,2y)

Compute the actions of S* and T with respect to the dual bases X* = {e}, ..., e} and
Y ={ff,.... &}

Reflexivity of Finite Dimensional Spaces. If V is finite dimensional there
is a natural “bracketing map”

¢p:V*'xV ->K given by o (Lv) — (£,0)

The expression (¢, v) is linear in each variable when the other is held fixed. If £ is fixed
we get a linear functional v — £(v) on V, but if we fix v the map ¢ — (£, v) is a linear
map from V* — K, and hence is an element j(v) € V** = (V*)*, the “double dual” of
V.

3.10. Lemma. If dim(V) < oo the map j : V — V** is linear and a bijection. It is a
“natural” isomorphism (defined without reference to any coordinate system) that allows
us to identify V** with V.

Proof: For any ¢ € V* we have
<j(1)1 + 1)2),€> = <€,1}1 + ’02> = <€7 Ul> + <€,1}2> = <-](’Ul)5€> + <](1}2),€>

and similarly
(J(A0),6) = (€, ) = A-(L,v) = (A-j(v), L)

Since these relations are true for all £ € V* we see that j(A1v1 +Aave) = A17(v1)+A2j(v2)
in V** and j : V — V** is linear.

Finite dimensionality of V' insures that dim(V**) = dim(V*) = dim(V), so j is a
bijection < j is onto < j is one-to-one < ker(j) = (0). But j(v) = 0 if and only if
0 = (j(v),£) = (£,v) for every £ € V*. This forces v = 0 (and hence ker(j) = (0))
because if v # 0 there is a functional £ € V* such that (¢,v) # 0. [In fact, we can extend
{v} to a basis {v,vs,...,v,} of V. Then, if we form the dual basis {v*,v3,...,v%} in V*
we have (v*,v) =1] O

There is, on the other hand, no natural (basis-independent) isomorphism from V to V*.
The spaces V and V* are isomorphic because they have equal dimension, so there are
many un-natural bijective linear maps between them. (We can create such a map given
any basis {e;} C V and any basis {f;} C V* by sending e; — f;.)
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If we identify V' = V** via the natural map j, then the dual basis (X*)* gets identitfied
with the original basis X in V. [Details: In fact, the vector e* in the dual basis to X*
coincides with the image vector j(e;) because

(d(ei), €5) = (ef, ei) = dij

which is the defining property of the vectors (e})* in X**. Hence j(e;) = ef*.] By time-
honored abuse of notation mathematicians often write “X** = X” even though this is
not strictly true.

Furthermore when we identify V** & V| the “double transpose” T = (T'*)" mapping
V** — V** becomes the original operator T', allowing us to write

T" =T  (again, by abuse of notation)
The precise connection between T' and T is shown in the following commutative diagram

(T

V** V**
ULt 1 (Diagram commutes: T" =joToj ')
T
174 e — \%

3.11. Exercise. If |V| = dim V < oo, X = {e1,...,en} is a basis, and T : V — V a
linear operator,

(a) Fill in the details needed to show that the diagram above commutes,
(T)oj=joT
(b) Prove the following useful fact relating matrix realizations of T and T'**
[T*)gee e = [T]xx
for the bases X and X** = j(X).

For infinite dimensional spaces there is still a natural linear embedding j : V — V**.
Although j is again one-to-one, it is not necessarily onto and there is a chain of distinct
dual spaces V, V* | V** V** . When dim(V) < oo, this process terminates with
V** = V. For this reason finite dimensional vector spaces are said to be “reflexive.”
(Some infinite dimensional space are reflexive too, but not many.)

Annhilators. Additional structure must imposed on a vector space in order to speak
of “lengths” or “orthogonality” of vectors, or the “orthogonal complement” W+ of some
subspace. When K = R or C, this is most often accomplished by imposing an “inner
product” B : V x V — K on the space. However, in the absence of such extra structure
there is still a natural notion of a “complementary subspace” to any subspace W C V;
but this complement

We={leV*:{{,w)y=0forallwe W} (the annihilator of W)

lives in V'* rather than V. It is easily seen that W° is a vector subspace in V*. Obviously
(0)° = V* and V° = (0) in V*, and when W is a proper subspace in V' the annihilator

W is a proper subspace of V*, with (0) Swesvr.

3.12. Lemma. Let V be finite dimensional and W SVa subspace. If vg € V lies
outside of W there is a functional £ € V* such that ((,W) =0 so £ € W*° but ({,v) # 0.
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If W#V,sor <n=dim(V), the idea is to start with a basis {ey, ..., e, } for W. Given
a vector vg ¢ W, adjoin additional vectors e, 11 = vg, €,42, ..., €, to make a basis X for
V. The dual basis X* provides the answer. We leave the details as an exercise.

We list the basic properties of annihilators as a series of exercises, some of which are
major theorems (hints provided). In proving one of these results you may use any prior
exercise or theorem. In all cases we assume dim(V) < occ.

3.13. Exercise. Let W be a subspace and X = {e1,...,e,,...,e,} a basis for V such
that {e1,...,e.} is a basis in W. If X* = {e} is the dual basis, prove that {e_ |,...,e5}
is a basis for the annihilator W° C V*.

3.14. Exercise. (Dimension Theorem for Annihilators). If W is a subspace in a
finite dimensional vector space V', prove that

(28) dimg (W) + dimg (W°) = dimg(V) |

or in abbreviated form, |W| + |W°| = |V].
3.15. Lemma. If T : V — W is a linear operator,

(a) Prove that
K(T') = R(T)°  (annihilator of the range R(T))

(b) Is it also true that R(T") = K(T)° ? If not, what goes wrong?

3.16. Exercise. If V is finite dimensional, T': V' — V is linear, and W a subspace of
V', prove that W is T-invariant if and only if its annihilator W*° is invariant under the
transpose 1.

Hint: Implication (=) is easy; in the other direction think about dual bases.

3.17. Exercise. If T : V — W is linear operator between finite dimensional vector
spaces, prove that rank(7T") = rank(T).

Recall that the rank of any linear operator T' : V. — W is the dimension |R(T)| =
dim(R(T)) of its range. If A € M(n x m,K) we defined L4 : K™ — K" via L4 (v) = A-v,
for v € K™, and the rank of the matrix is rk(A) = dim (R(L4)). Furthermore, recall
that the “column rank” of a matrix is the dimension of its column space: colrank(A4) =
dim (Col(A)), and similarly rowrank(A) = dim (Row(A)). It is important to know that
these numbers, computed in entirely different ways, are always equal — i.e.

“row rank = column rank” = rk(A) for any matrix,

regardless of its shape. The following exercises address this issue.

3.18. Exercise. Let T : V — W be a linear map between finite dimensional spaces,
with bases X = {e;}, 9 = {f;}. If A= [T]yx prove that

(a) The range R(L4) is equal to column space Col(A), hence
rk(A) = rank(L4) = dim(R(L4)) = dim (Col(A)) = colrank(A)
for any n X m matrix.
(b) If A= [T]y,x then rank(7") = rank(L4) = colrank(A)

Hint: For (b) recall the commutative diagram Figure 2.3 of Chapter II; the vertical
maps are isomorphisms and isomorphisms preserve dimensions of subspaces.

3.19. Exercise. If A is an n X m matrix,
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(a) Prove that rk(A') = rank(L 4:) is equal to rank((L)").

(b) This would follow if it were true that “(La)" = La¢.” Explain why this statement
does not make sense.

Hint: Keep in mind the setting for this (and the next) Exercise. If V = K™ W = K",
and A is n x m we get amap L, : K™ — K". The transpose A is m x n and determines
a linear map in the opposite direction:

La L e « (La)* "
V=W Ve——Ww Vi ie—W

3

while the transpose (LA)t maps W* — V*.
Use the results of the previous exercises to prove the main result below.

3.20. Exercise. If A is an n x m matrix, prove that

Theorem: For any n X m matriz, rowrank(A) = colrank(A)
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Chapter 1V. Determinants.

IV.1 The Permutation Group S,,.

The permutation group S, consists of all bijections o : [1,n] — [1,n] where [1,n] =
{1, ...,n}, with composition of operators

o1 009(k) = 01(02(k)) for1<k<n

as the group operation. The identity element e is the identity map id[; ,) such that
e(k) = k, for all k € [1,n]. We recall that a group is any set G equipped with a binary
operation (k) satisfying the following axioms:

1. ASSOCIATIVITY: z * (y x 2) = (x * y) * 2;
2. IDENTITY ELEMENT: There is an ¢ € G such that exz =z =z *x e, for all z € G;

3. INVERSES: Every 2 € G has a “two-sided inverse,” an element z—! € G such that
-1 1

T kT =TxT  =e.
We do not assume that the system (G, %) is commutative, with x xy = y*x; a group with
this extra property is a commutative group, also referred to as an abelian group. Here
are some examples of familiar groups.

1. The integers (Z,+) become a commutative group when equipped with (+) as the
group operation; multiplication (-) does not make Z a group. (Why?)

2. Any vector space equipped with its (+) operation is a commutatve group, for
instance (K", +);

3. The set (C*,:) = C ~ {0} of nonzero complex numbers equipped with complex
multiplication (-) is a commutative group. So is the subset S* = {z € C : |z| = 1}
(unit circle in the complex plane) because |z|,|w| = 1 = |zw| = |z|-|w| = 1 and
[1/2] = 1/]z] = 1.

4. GENERAL LINEAR GROUP. The set GL(n,K) = {4 € M(n,K) : det(A4) # 0} of
invertible n X n matrices is a group when equipped with matrix multiply as the
group operation. It is noncommutative when n > 2. Validity of the group axioms
for (GL, -) follows because

1
~ det(A4)

det(AB) = det(A)-det(B) det(I) =1 det(A™h)

and a matrix A has a two-sided inverse < det(A4) # 0.

SPECIAL LINEAR GROUP. These properties of the determinant imply that the
subset SL(n,K) = {4 € M(n,K) : det(A) = 1} equipped with matrix multiply is
also a (noncommutative) group;

5. The set of permutations (Per(X), o), all bijections on a set X of n distinct objects,
is also a group when equipped with composition (o) as its product operation. No
matter what the nature of the objects being permuted, we can restrict attention to
permutations of the set of integers [1,n] by labeling the original objects, and then
we have the group S,.
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Permuations. The simplest permutations are the k-cycles.

1.1. Definition. An ordered list (iy,....,ix) of k distinct indices in [1,n] = {1,...,n}
determines a k-cycle in Sy, the permutation that acts in the following way on the set
X =1[1,n].

»”

i1 =109 — ... 1 — 11 (a one-step “cyclic shift” of list entries)

(29) o maps { j—3 for all j not in the list {i1, ..., ix}

A I-cycle (k) is just the identity map idx so we seldom indicate them explicitly, though
it is permissible and sometimes quite useful to do so. The support of a k-cycle is the
set of entries supp(o) = {i1,...,ir}, in no particular order. The support of a one-cycle
(k) is the one-point set {k}.

The order of the entries in the symbol ¢ = (i1,...,4;) matters, but cycle notation is
ambiguous: k different symbols

ity yin) = (i i it) = (i, ik inyin) = o = (i in,. .o ig)

obtained by “cyclic shifts” of the list entries in o; all describe the same operation in
Syn. Thus a k-cycle might best be descibed by a “cyclic list” of the sort shown below,
rather than a linearly ordered list, but such diagrams are a bit cumbersome for the
printed page. If we change the cyclic order of the indices we get a new operator. Thus
(1,2,3) = (2,3,1) = (3,1,2) # (1,3,2) because (1,2,3) sends 1 — 2 while (1, 3,2) sends
1—3.

R X":T'{\z, "';‘?3

/"h—*{‘ Y G
* | M \
4y .s. L#lJ'
x .

P *

.h o *

Yk‘m"
Figure 4.1. Action of the k-cycle o = (i1,,...,i;) on X = {1,2,...n}. Points £ not in

the “support set” supp(o) = {41, ..., } remain fixed; those in the support set are shifted
one step clockwise in this cyclically ordered list. This o is a “1-shift.” (A 2-shift would
move points 2 steps in the cyclic order, sending i1 — i3 to... etc.

One (cumbersome) way to describe general elements o € S,, employs a data arrray
to show where each k € [1,n] ends up:

< 1 2 3 .. n >
g = . . . .
Jr J2 J3 - Jn

More efficient notation is afforded by the fact that every permutation o can be uniquely
written as a product of cycles with disjoint supports, which means that the factors
commute.

1.2. Exercise. If 0 = (i1, ...,%,), 7 = (j1,..,js) act on disjoint sets of indices, show that
these operators commute. This is no longer true if the sets of indices overlap. Check
this by computing the effect of the following products o7(k) = o(7(k)) of permutations
in S5.

1. (1,2,3)(2,4);
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2. (2,4)(1,2,3).
Is either product a cycle?

Thus the order of factors in a product of cycles is irrelevant if the cycles are disjoint.

The product of two cycles o7 = 0 o 7 is a composition of operators, so the action of
oT = o o7 on an element k € [1,n] is evaluated by feeding k into the product from the
right as below. Taking o = (1,2), and 7 = (1,2,3) in S5 we have

it (1,2)

o k2P 1,2,3) 6 T2 (1,2)((1,2,3) k) = ((1,2)(1,2,3) k)

To determine the net effect we track what happens to each k:

Action Net Effect
12D L2y
2 — 3 — 3 2—3
3 — 1 — 2 3—2
4 — 4 — 4 4 —4
5 — 5 — 5 5—5

Thus the product (1,2)(1,2,3) is equal to (2,3) = (1)(2,3)(4)(5), when we include re-
dundant 1-cycles. On the other hand (1,2,3)(1,2) = (1, 3) which shows that cycles need
not commute if their supports overlap. As another example we have

(1,2,3,4)% = (1,3)(2,4)
which shows that a power ¢* of a cycle need not be a cycle, although it is a product of

disjoint cycles. We cite without proof the fundamental cycle decomposition theorem.

1.3. Theorem (Cycle Decomposition of Permutations). Fveryo € S, is a product
of disjoint cycles. This decomposition is unique (up to order of the commuting factors)
if we include the 1-cycles needed to account for all indices k € [1,n].

(1 2 3 4 5 6
7\ 246 51 3
as a product of disjoint commuting cycles.

Hint: Start by tracking 1 — 2 — 4 — ... until a cycle is completed; then feed o the
first integer not included in the previous cycle, etc.

1.4. Exercise. Write

1.5. Exercise. Evaluate the net action of the following products of cycles

1. (1,2)(1,3) in Ss; 4. (1,2,3,4,5)(1,2) in Ss;
2. (1,2)(1,3) in Sg ; 5. (1,2)? in Ss;
3. (1,2)(1,2,3,4,5) in Ss; 6. (1,2,3)2in Ss.

Write each as a product of disjoint cycles.

1.6. Exercise. Determine the inverses o1 of the following elements in Ss
1. (1,2); 3. Any 2-cycle (i1,12) with i1 # ig;
2. (1,2,3); 4. Any k-cycle (i1, ..., i)-
1.7. Exercise. Evaluate the following products in S,, as products of disjoint cycles

1. (1,5)(1,4)(1,3)(1,2);
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2. (1,2)(1,3)(1,4)(1,5);
3. (LE)(1,2,0 ke —1).

1.8. Exercise. The order o(0) of a permutation o is the smallest integer m > 1 such
that 0™ =0-....0 =e.

1. Prove that every k-cycle has order o(c) = k.

2. Verify that the r*® power ¢” of a k-cycle o = (iy,...,ix) is an “r-shift” that moves
every entry clockwise r steps in the cyclically ordered list of Figure 4.1.

3. If o is a 6-cycle its square 02 = 0 o ¢ is a cyclic 2-shift of the entries (iy,...,1is).

What is the order of this element in S,,?

Hint: By relabeling, it suffices to consider the standard 6-cycle (1,2, 3,4,5,6) in answer-
ing (3.)

The only element in .S, of order 1 is the identity e; two-cycles have order 2. As noted
above, in (2.) the powers o” of a k-cycle need not be cycles (but sometimes they are).

Parity of a Permutation. In a different direction we note that the 2-cycles (i, 5)
generate the entire group S,, in the sense that every o € S,, can be written as a product
o0 =11-... 7, of 2-cycles. However these factors are not necessarily disjoint and need
not commute, and such decompositions are far from unique since we have, for example,

e=(1,2)? = (1,2)* = (1,3)? etc..
Nevertheless an important aspect of such factorizations is unique, namely its parity

sgn(o) = (~1)"

where r = #(2-cycles in the factorization ¢ = 71,...,7.). That means the elements
o € S, fall into two disjoint classes: even permutations that can be written as a product
of an even number of 2-cycles, and odd permutations. It is not obvious that all 2-cycle
decompositions of a given permutation have the same parity. We prove that next, and
then show how to compute sgn(o) effectively.

We first observe that a decomposition into 2-cycles always exists. By Theorem 1.3
it suffices to show that any k-cycle can be so decomposed. For 1-cycles this is obvious
since (k) = e =(1,2)-(1,2). When k > 1 it is easy to check that

(1,2, k) = (1,k) - ... - (1,3)(1,2)

(with k& — 1 factors)

1.9. Exercise. Verify the preceding factorization of the cycle (1,2,...,k). Then by
relabeling deduce that (i1, ...,i) = (i1, %) (1,9%—1) - ... - (i1,42) for any k-cycle.
Note: This is an example of “proof by relabeling.”

Once we verify that the parity is well defined, this tell us how to recognize the parity of
any k-cycle

(30) sgn(iy, ig, ..., ix) = (—=1)F1 for all k> 0
1.10. Theorem (Parity). All decompositions ¢ = 11 - ... T, of a permutation as a
product of 2-cycles have the same parity sgn(o) = (—1)".

Proof: The group S, acts on the space of polynomials K[x] = K[z1, ..., ;] by permuting
the variables

(U-f)(.%‘l, ceey ;vn) = f(xg(l), ceey xg(n))
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For instance (1,2,3) - f(x1,x2,x3, x4, 25) = f(x2,x3,21,24,x5). This is a “covariant
group action” in the sense that

(o7)-f =0o-(1-f) and ef=1f

for all f and all o,7 € S,,. The notation makes this a bit tricky to prove; one way to
convince yourself is to write

o (T )@, .., Tn)

T f(Zo1)s - To(n))

= Tnf('(Ul, e ,wn) ‘UJl:xa(l) VVVVV Wn =T g ()

= f(w‘r(l)a-'-awT(n))l

WE=T (k)
= f(@o(r())s -+ To(r(n))
= f(@en@: - Tenm) = (07)-f(x1,...,20)
Now consider the polynomial in n unknowns ¢ € K[z, ..., z,] given by
d(x1, .y ) = H (x; — ;).
i<j

We claim that o-¢ = (—1)-¢ for any 2-cycle o = (i,5); by “covariance” it follows that
o-¢ = (—1)"¢ if o is a product 71 - ... 7. of r two-cycles. Since the definition of o-¢
makes no reference to 2-cycle decompositions we will conclude that (—1)" must be the
same for all such decompositions of o, completing the proof.

To show that 7-¢ = (—1)¢ for a 2-cycle (i,7) we may assume i < j. Note that the
terms x — x¢ (k < £) not involving i or j are unaffected when we switch x; < x;. The
remaining terms are of three types.

CASE 1: Terms involving both ¢ and j. The only such term is z; — x; which becomes
o-(vi —xj) = x; —x = (=1)(wi — ;) ,
suffering a change of sign.

CASE 2: Terms involving only ¢. The possibilities (for k # j) are listed below

LT — T4 Xr; — Tk Ty — Tk
Terms 1<k<i 1<k<j i<k<n
#(Terms) i—1 j—i—1 n—j
Effect of No change Ty — T — Tj — Tk No change
T; T (since k <i<j)| = (-1)(xx —z;) | (sincei < j <k)

on sign of term

CASE 3: Terms involving only j. These are (for k # ).

T — Tj Tk — Ty Tj — Tk
Terms 1<k<i 1<k<y I<k<n
#(Terms) j—1 j—i—1 n—j
Effect of No change Tp—Tj; — Tk — T4 No change
Ti > T (since i <j<k)| =(=1)(z;—zx) | (sincei <j<k)

on sign of term
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The effect of switching z; < x; is to permute the terms in [, ,(x — 2;) changing
the sign of some, so the product gets multiplied by +1 or —1. Counting the number of
sign changes in all cases we see that

(_1)#(changes) = (—p)rreven — g

as claimed. O

1.11. Corollary. The parity map sgn : S, — {£1}, defined by sgn(o) = (=1)" if o can
be written as a product of r two-cycles, has the following algebraic properties

1. sgn(e) = +1;
2. sgn(or) = sgn(o) - sgn(T);

3. sgn(o1) = (sgn(o))_l = sgn(o) (since sgn = +1).

Proof: Obviously sgn(e) = 1 since we may write e = (1,2)%. If 0 = ¢; - ... ¢, and

T =} ... ¢ where ¢;, ¢; are 2-cycles, then o7 = ¢ -...-¢.c) ... ¢ is a product of
r + s cycles, proving (2.). The third property follows because

1 = sgn(e) = sgn(oo™t) = sgn(o) - sgn(c™)
since the only values of sgn are +£1. [

IV.2 Determinants.

The previous digression about the permutation group S,, is needed to formulate the
natural definition of det(A) for an n x n matrix A € M(n,K), or of det(T') for a linear
operator T': V' — V on a finite dimensional vector space.

Any discussion that formulates this definition in terms of “expansion by minors” is
confusing the natural definition of det with a commonly use algorithm for computing its
value. Here is the real definition:

2.1. Definition. If A € M(n,K), we define its determinant to be

(31) det(A) = Z Sgn(g) *Al0(1) - Ano(n) = Z sgn(a) ! Hai,a(i)
=1

ocES, oSy

The products in this sum are obtained by taking o € S, and using it to select one entry
from each row, taking each entry from a different column. Thus each o determines a
“template” for selecting matriz entries that are to be multiplied together (the product
then weighted by the signature sgn(c) of the permutation). The idea is illustrated in
Figure 4.2.

Many properties can be read directly from definition but the all-important multi-
plicative property det(AB) = det(A)-det(B) is tricky no matter what definition we start
from. We begin with several easy properties:

2.2. Theorem. If A € M(n,K) and ¢ € K we have
1. det(Inxn) = 1;

[\

. det(cA) = ¢™-det(A) if Aisn xn;
. det(A%) = det(A);

w

4. When K = C we have det (Z) = (det(A)) where z = the complex conjugate of
z=x+1y.
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Figure 4.2. A permutation o € S, determines a “template” for selecting matrix entries
by marking the address (i, 0(i)) — the one in Row;, Column, ;). Each row contains exactly
one marked spot, and likewise for each column.

5. If A is “upper triangular,” so

A:

0 Ann

then det(A) = [1,_, akk is the product of the diagonal entries.

Proof: Assertions (1.),(2.), (4.) are all trivial; we leave their proof to the reader. In (5.)
the typical product £a1 5(1) - ... " Gpo(n) in the definition of det(A) will equal 0 if any
factor is zero. But unless o(k) = k for all k, there will be some row such that o(k) > k
and some other row such that o(¢) < £. The resulting template includes a matrix entry
below the diagonal, making the product for this template zero. The only permutation
contributing a term to the sum (31) is o = e, and that term is equal to a11 - ... - Gpy as
in (5.)
For (3.) we note that

det(At) = Z Sgn(o)(blﬁg(l) e bnﬁg(n))
oESy

if B = A" = [b;;]. By definition of A*, b;; = a;; so the typical term becomes

bl,a(l) e "bn,a(n) = Qs(1),1"+ - " Ao(n),n

However, we may write ay(j),; = Go(j),0-1(o(;)) for each j, and then

det(A") = Z sgn(a)bl)a(l)n cobnon) = Z sgn(a)aa(l))l-. Qg (n)n
o0€ESn ocSy,

Note that [, asey, = I, Ao(i),0~1(o(i)), SO if we replace the dummy index i in the

product with j = o(¢) the product becomes =1 @j,o=1(5) and

det(A") = > sgn(o) - [[ ajo-100)-
o€Sn j=1
Next, write 7 = o0~!. The 7 run through all of S,, as ¢ runs through S, because S,

is a group. (This is our first encounter with the “group” property of S,.) Furthermore
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sgn(t) = sgn(o~1) so that

det(A*) = Z sgn(T)-H ajr;) = det(A) O
j=1

TES,

The following observation will play a pivotal role in further discussion of determinants.

2.3. Lemma. If B is obtained from A by interchanging two rows (or two columns) then

det(B) = (—1) - det(A) .

Proof: We do the case of column interchange. If A = [a;;] then B = [b;;] with b;; =
air(j); i.e. Colj(B) = Col,(;(A), for 1 < j < n, where 7 is the two-cycle 7 = (k, ()
that switches the column indices when we interchange Colg(A) < Colg(A). Then for any
o € Sy, we have

bl,o(l) tees bn,a’(n) = 01,70(1) " -+ An,7o(n)
But S,, is a group so 75, = S,, and the elements 7o run through all of S,, as ¢ runs

through S,; furthermore, because 7 is a 2-cycle we have sgn(r) = —1 and sgn(ro) =
sgn(t)sgn(o) = (—=1)-sgn(o). Thus

n

det(B) = > sgn(o)- [[biow = Y sgn(o) - [[airew
=1

o0ESH i=1 oceSy

> sgn(r)sgn(ro) - [ ] airo0)

oceSy i=1
= sgn(r)- Y sgn(p) - [ aiue = (=1)-det(4) O
HESnH i=1

2.4. Exercise. Use the previous results to show that det(A) = 0 if either:
1. A has two identical rows (or columns);
2. A has a row (or column) consisting entirely of zeros.
Recall the definition of the “elementary row operations” on a matrix A.
e TYPE I: R; «+ R;: interchange Row; and Rowy;
e TYPE II: R; — A+ R;: multiply Row; by A (A € K);

e TypE III: R; — R; + AR;: Add to Row; any scalar multiple of a different row R;
(leaving Row,; unaltered).

The effect of the first two operations on the determinant of a square matrix is easy to
evaluate. We have just seen that Type I operations cause a sign change.

2.5. Exercise. Prove that if B has R;(B) = \-R;(A) with all other rows unchanged,
then det(B) = X - det(A).

To deal with Type III operations we first observe that the map det : M(n,K) — K is a
multilinear function of the rows or columns of A.
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2.6. Lemma. If the i*" row of a matriz A is decomposed as a linear combination
R; = aR; + bR of two other rows of the same length, then

Ry Ry R
det(A) = | aR,+bR! | =a-det | R, | +b-det | R/ | = a-det(A")+b-det(A”)
R, R, Rn

In other words det(A) is a multilinear function of its rows: If we vary only R; holding
the other rows fixed, the determinant is a linear function of R;.

Proof: If R, = (z1,...,2,) and R = (y1,...,Yn), then A;; = ax; + by; and

det(A) = Z sgn(o) - (al)g(l) (@) + WYo()) e Gno(n))
geSy
= a- Z sgn(o) - (alyg(l) ST e anyg(n))
oeSy
+ b- Z sgn(o) . (al_’g(l) teen -yg(i) e anyg(n))
geSy

= a-det(A") + bdet(A")

as claimed. [

2.7. Corollary. If B is obtained from A by a Type III row operation R; — R; + cR;
(j #14) then Row;(B) = R; + cR; and
R1 Rl
R R;
det(B) = det : +c-det ; = det(A) + 0 = det(A)
R; R;
R, R,

because the second matrix has a repeated row.

Row Operations, Determinants, and Inverses. Every row operation on
an n X m matrix A can be implemented by multiplying A on the left by a suitable n x n
“elementary matrix” FE; the corresponding column operation is achieved by multiplying
A on the right by the transpose E*.

e TYPE I. (Row;) — A - (Row;): is equivalent to sending A to F1A where
1 0

Er = A

Obviously det(Ey) = A and
det(FErA) = A - det(A) = det(Ey) - det(A)
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e TYPE II. (Row;) < (Row;): Now the result is achieved using the matrix

COli C’olj

. [0]

Since Eip is I, xn with two rows interchanged, det(Er) = —1 and
det(EHA) e (—1) . det(A) e det(EH) . det(A)

e TYPE III. (Row;) — (Row;) + A(Row;), with j # ¢. Assuming ¢ < j, the appro-
priate matrix is

COli COlj

.

and we have det(Er) = 1. But then by Lemma 2.6 we also have
det(ErrA) = det(A) = det(Em) - det(A)
This proves:
2.8. Lemma. If E is any (n X n) elementary matrix then
det(FA) = det(E) - det(A)

for any n x n matriz A.

This allows us to compute determinants using row operations, exploiting the fact that
det(A) can be calculated by inspection if A is upper triangular. First observe that the
effect of a sequence of row operations is to map A — E,, -...- E; - A (echelon form), but
then

det(Ep, - ... F1A) = det(Ep) - det(Em_1 - ... By-A) = (ﬁdet(Ei))-det(A)
=1

Thus .
det(A) = (] det(E)™!) - det(B; - ... EnA)
=1

and calculating det(A) reduces to calculating the upper triangular row reduced form,
whose determinant can be read by inspection. (You also have to keep track of the row

i



operations used, and their determinants.)

Computing Inverses. Suitably chosen row operations will put an n X n matrix
into echelon form; if we only allow elementary operations of Type II or Type III we can
achieve nearly the same result, except that the pivot entries contain nonzero scalars \;
rather than “1”s, as shown in Figure 4.3. Next recall that M(n,K) and the space of linear
operators Hom (K", K™) are isomorphic as associative algebras under the correspondence

A Ly (LA(X) =A-x=((nxn)-(nx 1) matrix product) ,
as we showed in the discussion surrounding Exercise 4.12 of Chapter II. That means the

following statements are equivalent.

1. A matriz inverse A=1 exists in M(n, K);

(32) 2. La: K™ — K" is an invertible linear operator;
32
3. ker(L4) = (0);

4. The matriz equation AX = 0 has only the trivial solution X = 0,x1.

We say that a matrix is nonsingular if any of these conditions holds; otherwise it is
singular.

2.9. Exercise. If A, B are square matrices prove that
1. The product AB is singular if at least one of the factors is singular.
2. The product AB is nonsingular if both factors are nonsingular.

With this in mind we can deduce useful facts about matrix inverses from the preceding
discussion of row operations and determinants.

2.10. Proposition. The following statements regarding an n x n matriz are equivalent.
1. det(A) # 0;
2. A has a multiplicative inverse A= in M(n, K);

3. The multiplication operator Ly : K™ — K" is an invertible (bijective) linear opera-
tor on coordinate space.

Proof: We already know (2.) < (3.). Row operations of Type IT and III reduce A to one
of the two “modified echelon forms” A’ (see Figure 4.3(a-b)), in which the step corners
contain nonzero scalars Aq, ..., A, that need not equal 1, and r = rank(A4). Obviously
if there are columns that do not meet a step-corner, as in 4.3(a), then the product of
diagonal entries det(A) is zero; at the same time, the matrix equations A’X = 0 and
AX = 0 will have nontrivial solutions, so the left multiplication operator L4 : K™ — K"
fails to be invertible (because ker(La) # (0)) and a matrix inverse A~! fails to exist.
The situation in Figure 4.3(b) is better: since Type II and Type III operations can only
change det(A) by a =+ sign, det(A4) = +det(A’) = £ ][, \; is nonzero. Concurrently,
AX = 0 has only the trivial solution, L4 is an invertible linear operator on K™, and a
matrix inverse A~! exists. [

To summarize, we have proved the following result (and a little more).

2.11. Theorem. If A € M(n,K) then A~! exists if and only if Type Il and Type II
row operations yield a modified echelon form that is upper triangular, with all diagonal

78



|2

9]

o) SPe| x
o o

%= A | ¥
¥

o) Q

3@y s rank(4)*r<n

nan

K3 ()7 rak(y)=n

Figure 4.3. Row operations of Type II and III reduce an n X n matrix A to one of the
two “modified echelon forms” A’ shown in 4.3(a)—4.3(b); in both the step corners contain
nonzero scalars A1, ..., A, that need not = 1, and r = rank(A) with » = n in 4.3(b).

If there are columns that do not meet a step-corner as in 4.3(a), then some diagonal
entries in in A’ are zero and det(A) = +det(A’) = 0. In the situation of 4.3(b) det(A) =
+det(A’) = £(A1-...-An) because Type II and III elementary operations have determinant
= £1. In this case det(A) is nonzero and its value can be determined by inspection, except

for a (+) sign.

entries nonzero.

E, ...-EiA=

Then the determinant is

0 %
0

det(A) = ﬁ det(Ey) "t -
k=1

The factor T],_, det(Ey)™" attributed to the row operations can only be £1 since no
Type I operations are involved. On the other hand, if the modified echelon form contains

(A #0)

=1

columns that do not meet a setp corner, then det(A) =0 and A~! does not ewist.

The basic definition (31) of the determinant is computationally very costly. Below
we will give an algorithm (“expansion by minors”) which is often useful in studying the
algebraic properties of determinants, but it is still pretty costly compared to the row

reduction method developed above. To illustrate:

n = Matrix Size

Expansion by Minors
Adds Multiplies

Row Reduction

Adds Multiplies

T N

[y
s}

1 2
23 40
119 205

3.6 x 10° 6.2 x 106

1 3
14 23
30 45

285 339

The technique used above also yields a fairly efficient algorithm for computing A"
(which at the same time determines whether A is in fact invertible). Allowing all three
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types of row operations, an invertible matrix can be driven into its reduced echelon form,
which is just the identity matrix I,,x,. In this case

33 E, ... .Ey-A=1I,., and A'=E1Y . E Y I,n
1

m

Each inverse £, 1is easily computed; it is just another elementary matrix of the same
type as Ex. This can be codified as an explicit algorithm:

The Gauss-Seidel Algorithm. Starting with the augmented n X 2n matrix
[A : I,xn], perform row operations to put A into “reduced” echelon form
(upper triangular with zeros above all step corners). If rank(A) < n and A
is not invertible this will be evident — not all columns include a step-corner —
and the algorithm reports that det(A) = 0 and A is not invertible. Otheruwise,
every column is a pivot column and the reduced echelon form of A is just the
identity matriz. Applying the same operations to the entire augmented matriz
transforms [A : Inxn] — [Lnxn : B] in which B = A=, (Why?)

Another consequence of the preceding discussion is the very important multiplicative
property of determinants.

2.12. Theorem (Multiplicative Property). If A, B € M(n,K) then
det(AB) = det(A) - det(B)

Proof: If A is singular then AB is singular (Exercise 2.9) so det(A4) = 0 and det(AB) =0
by Proposition 2.10. Thus

det(AB) = 0 = 0-det(B) = det(A)-det(B)

and similarly if B is the singular factor.

Otherwise A and B are nonsingular and so is AB, so we can find elementary matrices
such that E,,-...-F1 A = I, x,, which implies A = El_1 -...-E; 1. By repeated application
of Lemma 2.8 we see that

det(A) = ﬁ det(E; )

and
det(AB) = det(E;')-det(Ey"'-...-E;'B)
= [l;det(E;") - det(B) = det(A) - det(B). O
2.13. Exercise. If A € M(n,K) is invertible then det(A~!) = det(A)~!. If A,B €
M(n,K) and S is an invertible matrix such that B = SAS™! then det(B) = det(A).

Thus det(A) is a “similarity invariant”— it has constant value for all matrices in a similar-
ity class. We will encounter several other similarity invariants of matrices in the following
discussion.

2.14. Exercise. Explain why rank(A) of an n x n matrix is a similarity invariant.

2.15. Exercise. An n x n matrix A is said to be orthogonal if A'A = I,,x,. Prove
that

1. A'A=1= AA* =1, s0 A is orthogonal < A* = A~! (two-sided inverse).

2. det(A) = £1 for any orthogonal matrix, over any field.
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Hint: Recall the comments posted in (32). For (1.) it suffices to show A'A =T = the
operator L4 : K” — K" is one-to-one.

2.16. Exercise. Use Type II and III row operations to find the determinant of the
following matrix.
1
2
A= 3

i
W W N
I el )

3

2.17. Exercise. Use Type II and III row operations to show that det(A) = —16i for
the following matrix in M(4, C), where i = /—1.

1 1 1
1 =1 —t
-1 1 -1

2.18. Exercise. Apply the Gauss-Seidel algorithm to find A~! for the matrices
1 3 1 1 3 2
(i) A= 2 8 4 (i) A= 2 4 1
0 4 7 0 4 2

2.19. Exercise. Consider the set of matrices H,, of the form

1 = Ty, Z
0 1 Yn

A = :
1 wn

0 1

with z;,y;,2 in K. When K = R this is the n-dimensional Heisenberg group of quantum
mechanics.

1. Prove that H, is closed under matrix product.

2. Prove that the inverse A~! of any matrix in H, is also in H,, (compute it explicitly
in terms of the parameters x;, y;, 2).

Since the identity matrix is also in H,, that means H,, is a matriz group contained in
GL(n + 2,K).

2.20. Exercise. For n > 2 let

0 1 0
1 01
01 0 1
A =
1 01
0 1 0

Use row operations to
1. Calculate det(A).

2. Calculate the inverse A1 if it exists.
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Note: The outcome will depend on whether n is even or odd.

2.21. Exercise. Given a diagonal matrix D = diag(A1,...,\,) with distinct entries,
find an invertible matrix S such that conjugation D — SDS~! interchanges the i*" and
4 diagonal entries (i # j):

A1 0 A1 0
|

0 An 0 An

Hint: Think row and column operations on D. Note that if Ey; is a Type II elementary
matrix then E~! = E = E', and right multiplication by E' effects the corresponding
column operation.

Determinants of Matrices vs Determinants of Linear Operators.
A determinant det(T') can be unambiguously assigned to any linear operator T : V — V
on a finite dimensional space. Given a basis X = {¢;} in V, we get a matrix [T]xx and
could entertain the idea of assigning

(34) det(T) = det ([T]xx)

but for this to make sense the outcome must be independent of the choice of basis. This
actually works. If 9) is any other basis we know there is an invertible matrix S = [idv]yx
such that [T]yy = S[T)xxS~', and then by Theorem 2.12

det(S) - det ([T)xx) - det(S™1)
det($S™Y)-det ([T]xx) = det(Inxn) - det ([T]xx)
= det([T]xx)

det ([T]py)

as required. Thus the determinant (34) of a linear operator is well defined.

The trace Tr(T) is another well-defined attribute of an operator T': V' — V when
dim(V') < co. Recall Exercise 4.19 of Chapter II: For n x n matrices the trace Tr(A4) =
i, Ay is a linear operator Tr : M(n,K) — K such that Tr(I,xn) = n and Tr(AB) =
Tr(BA). If X, 9 are bases for V, we get

TI‘([T]QJQJ) = TI‘(S[T]:{;{S_l) = TI‘(S_18~ [T]xx) = TI‘([T];{:{)
Thus
(35) To(T) = Tr([T]xx)

determines a well-defined trace on operators. Note, however, that if T : V — W with
V' # W, there is no natural way to assign a “determinant” or “trace” to T, even if
dim (V') = dim(W). The problem is philosophical: there is no natural way to say that a
basis X in V' is the “same as” another basis ) in W.

The operator trace has the same algebraic properties as the matrix trace.

2.22. Exercise. If A, B :V — V are linear operators on a finite dimensional space V,
prove that
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1. Tr: Homg (V, V) — K is a K-linear map between vector spaces:

Tr(A + B) = Tr(A) + Tr(B) and Tr(A- A) =X Tr(A)

2. Tr(idy) = n-dim(V);
3. Tr(AB) = Tr(BA) (composition product of operators);
4. If S is an invertible operator and B = SAS~! then Tr(B) = Tr(A).

The last statement shows that Tr is a similarity invariant for linear operators; so is the
determinant det.

2.23. Exercise. If T': V — V is a linear operator on a finite dimensional space prove
that
Tr(T) = Tr(T") and det(T) = det(T")

Note: A conceptual issue arises here: T maps V — V while the transpose T : V* — V*
acts on an entirely different vector space! But if you take a basis X in V' and the dual
basis X* in V* the definitions (34) and (35) still have something useful to say.

2.24. Exercise. Let P : V — V be a projection (associated with some direct sum
decomposition V = E @ F') that projects vectors onto E along F. Prove that Tr(P) =
dlmK(E)

Expansion by Minors and Cramer’s Rule. The following result allows a
recursive computation of an n x n determinant once we can compute (n — 1) x (n — 1)
determinants. Although it is useful for determining algebraic properties of determinants,
and is handy for small matrices, it is prohibitively expensive in computing time for
large n. This expansion is keyed to a particular row (or column) of A and involves an
(n—1) x (n — 1) determinant (the “minors” of the title) for each row entry.

2.25. Theorem (Cramer’s Rule). For any row 1 <i < n, we can write

det(A) = Z(—l)H_‘jaij -det (/LJ)
j=1
where Aij = the (n — 1) x (n— 1) submatriz obtained by deleting Row; and Col; from A.
Stmilarly, for any column 1 < j < mn we have

n

det(A) = (=1)"a;;-det (Ay;)

i=1

Proof: Since det(A4) = det(A"), it is enough to prove the result for expansion along a
row. Each term in the sum

det(A) = Z sgn(o) - (ala(l) o ana(n))

gESy,

contains just one term from Row;(A) = (a;1,.-.,ain), so by gathering together terms we
may write

det(A) = apnaly + ...+ amnal,
in which aj; involves no entry from Row;(A).

Our task is to show aj; = (1) det (AU) One approach is to reduce to the case
when ¢ = 7 = n. In that special situation, we get

anna:;n = Z Sgn(o) . (a/la’(l) E— ang(n))

o€Ss],
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where S], C S, is the subgroup of permutations such that o(n) = n (the subgroup that
“stabilizes” the element “n” in X = {1,2,...,n}).

2.26. Exercise. If 6 € S,,_; is regarded as the permutation o € S/, C S,, such that
o(n) =n and o(k) = d(k) for 1 < k <n — 1, show that sgn(c) = sgn(o).

In view of this the sum (...) becomes (...). Thus

ces, 5€S8, 1

at, = (1) det (A,,) = det(An,)

nn

Now consider any i and j. Interchange Row;(A) with successive adjacent rows (“flips”)
until it is at the bottom. This does not affect the value of det(/Lj) because the relative
positions of the other rows and columns are not affected; however each flip switched the
sign of a;; in the formula, and there are n — ¢ such changes. Similarly we may move
Col;(A) to the nth column, incurring n — j sign changes. Thus

af; = (1) det(Ay;) = (—1)" det(Ay)

ij
for all ¢ and j, proving the theorem. [J

We post the following formula for A~ without proof (cf Schaums, p 267-68). If matrix
A € M(n,K) is invertible we have

(36) A - (Cof(4))"

~ det(4)
where the n x n “cofactor matriz’ Cof(A) has i,j entry = (=1)"7A4;;, and A4;; =

determinant of the (n — 1) x (n — 1) submatrix obtained by deleting (Row;) and (Col;)
from A.
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Chapter VI. Inner Product Spaces.

VI.1. Basic Definitions and Examples.

In Calculus you encountered Euclidean coordinate spaces R™ equipped with additional
structure: an inner product B : R" x R” — R.

EUCLIDEAN INNER PRODUCT: B(x,y) = >0z

which is often abbreviated to B(z,y) = (x,y). Associated with it we have the Euclidean

norm
n

Il =D lail® = (x,%)1/?

i=1

which represents the “length” of a vector, and a distance function

d(x,y) =[x =yl

which gives the Euclidean distance from x to y. Note that y = x + (y — x).

b ) .
Differ, e vestor
¥ g3
KR

Wy

Figure 6.1. The distance between points x, y in an inner product space is interpreted as
the norm (length) |ly — x|| of the difference vector Ax =y — x.

This inner product on R™ has the following geometric interpretation

(x,5) = [l - [Ix] - cos (6(x, ¥))

where 6 is the angle between 2 and y, measured in the plane M = R-span{x,y}, the 2-
dimensional subspace in R™ spanned by x and y. Orthogonality of two vectors is then
interpreted to mean (x,y) = 0; the zero vector is orthogonal to everybody, by definition.
These notions of length, distance, and orthogonality do not exist in unadorned vector
spaces.

We now generalize the notion of inner product to arbitrary vector spaces, even if they
are infinite-dimensional.

1.1. Definition. If V is a vector space over K =R or C, an inner product is a map
B :V xV — K taking ordered pairs of vectors to scalars B(vy,ve) € K with the following
properties

1. SEPARATE ADDITIVITY IN EACH ENTRY. B is additive in each input if the other
input is held fized:

e B(v; +va,w) = B(v1,w) + B(va, w)
e B(v,w1 + wz) = B(v,wy) + B(v,ws).
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g U Nyl <eos ¢

Figure 6.2. Geometric interpretation of the inner product (x,y) = ||x|| |ly]|-cos(8(x,y))
in R™. The projected length of a vector y onto the line L = Rx is ||y||-cos(#). The angle
0(x,y) is measured within the two-dimensional subspace M = R-span{x,y}. Vectors are
orthogonal when cos 6 = 0, so (x,y) = 0. The zero vector is orthogonal to everybody.

for v, v, w,w; in V.

2. PosITIVE DEFINITE. For allv € V,
B(v,v) >0 and B(v,v) =0 if and only if v =0

3. HERMITIAN SYMETRIC. For allv,w €V,
B(v,w) = B(w,v) when inputs are interchanged.

Congugation does nothing for © € R (T = x for x € R), so an inner product on a
real vector space is simply symmetric, with B(w,v) = B(v,w).

4. HERMITIAN. For A € K, v,w €V,

e B(Av,w) = AB(v,w) and,
e B(v,\w) = AB(v,w).

An inner product on a real vector space is just a bilinear map — one that is R-linear in
each input when the other is held fixed — because conjugation does nothing in R.

The Euclidean inner product in R” is a special case of the standard Euclidean inner
product in complex coordinate space V = C",

n
(Z,W) = ZZJw_J )
j=1

which is easily seen to have properties (1.)-(4.) The corresponding Euclidean norm and
distance functions on C" are then

ol = 22 = [ S 152]7" and dmw) = a—wi = [ 3 1e - wl?]
j=1

j=1

1/2

Again, properties (1.) - (4.) are easily verified.
For an arbitrary inner product B we define the corresponding norm and distance
functions
lolls = B(v,0)'"?  dp(v1,02) = o1 — w2l

which are no longer given by such formulas.

1.2. Example. Here are two important examples of inner product spaces.

107



1. On V = C" (For R") we can define “nonstandard” inner products by assigning
different positive weights o; > 0 to each coordinate direction, taking

n n 1/2
Bu(z,w) = Zaj - 2;W; with norm lz]|o = [ Z a; - |zj|2]
j=1

j=1

This is easily seen to be an inner product. Thus the standard Euclidean inner
product on R™ or C™, for which oy = ... = «,, = 1, is part of a much larger family.

2. The space C[a, b] of continuous complex-valued functions f : [a,b] — C becomes an
inner product space if we define

b [
(f,h)2 = / f@)h(t)dt  (Riemann integral)

The corresponding “L?-norm” of a function is then

b 1/2
||f||2=[/ roRa]”

the inner product axioms follow from simple properties of the Riemann integral.
This infinite-dimensional inner product space arises in many applications, particu-
larly Fourier analysis. [

1.3. Exercise. Verify that both inner products in the last example actually satisfy
the inner product axioms. In particular, explain why the L2-inner product (f,h)s has
[[fll2 > 0 when f is not the zero function (f(t) = 0 for all ¢).

We now take up the basic properties common to all inner product spaces.

1.4. Theorem. On any inner product space V the associated norm has the following
properties

1. Jlz|| > 0;
2. || Az|| = [A - ||z]| (and in particular, || — x| = ||z|| );
3. (TRIANGLE INEQUALITY) For z,y € V, ||z £ y| < |z|| + |ly]|-

Proof: The first two are obvious. The third is important because it implies that the
distance function dp(z,y) = ||z — y|| satisfies the “geometric triangle inequality”

dp(z,y) <dp(z,z) +dp(z,y), forallz,y,zeV
as indicated in Figure 6.3. This follows directlly from (3.) because
dp(z,y) = |z =yl =[x = 2) + (z =yl < llz = 2| + ||z = yl| = dB(2, 2) + dB(2,y)

The version of (3.) involving a (—) sign follows from that featuring a (4) because
v—w=wv+(-w) and || - w[| = [jwl.
The proof of (3.) is based on an equally important inequality:

1.5. Lemma (Schwartz Inequality). If B is an inner product on a real or complex
vector space then

[B(@,y)| < l|lzllz - lyl5
forallx,y e V.

108



2 @ Ay, >
\@
ol e, 2 / Y
®~ N Divect diskaucs dhixyy.

b3

Figure 6.3. The meaning of the Triangle Inequality: direct distance from x to y is always
< the sum of distances d(x,z) + d(z,y) to any third vector z € V.

Proof: For all real ¢ we have ¢(t) = ||z + ty||% > 0. By the axioms governing B we can
rewrite ¢(t) as

o(t) = B(z+ty,xz+ty)
= B(z,x) + B(ty, =) + B(x, ty) + B(ty, ty)
= |2l +tB(e,y) +t Blz,y) + lyl%
= |ls + 2t Re(B(z,y)) + |lyl%
because B(tx,y) = tB(z,y) and B(z,ty) = tB(x,y) (since t € R), and z+Z = 2Re(2) =

2z for z = x4+ i1y in C. Now ¢ : R — R is a quadratic function whose minimum value
occurs at tg where

d
%2 (t0) = 2tollyls + Re(B(z,9)) = 0
or
_ —Re(Blay)
205

Inserting this into ¢ we find the actual minimum value of ¢:

)% - lyll% — 2|Re(B(z,y))|* + [Re(B(z,y))|*
lyll%

0 <min{¢(t) : t e R} =

Thus
0<|zl% - lylls — [Re(B(z,y))|?

which in turn implies
|[Re B(z,y)| < ||z|l5 - |yl for all z,y € V.

If we replace = — ez this does not change ||z|| since |e?| = | cos(f) + isin(#)| = 1 for
real 0; in the inner product on the left we have B(e?x,y) = € B(x,y). We may now
take 6 € R so that e - B(z,y) = |B(z,y)|. For this particular choice of  we get

0 < [Re(B(e¢“x,y))| = [Re(e’B(,y))l

Re(|B(z,y)l) = |B(x,y)| < |zl|5 - llyllz -

That proves the Schwartz inequality. [

Proof (Triangle Inequality): The algebra is easier if we prove the (equivalent) in-
equality obtained when we square both sides:

A

2
0 < Joe+ul> < (ol +lvl)
121 + 2]l ]| + ly®
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In proving the Schwartz inequality we saw that
lz+yl* = (@ +y, & +y) = [2l* + 2Re(z, y) + |yl
so our proof is finished if we can show 2Re(z,y) < 2||z||-|ly||. But
Re(z) < |Re(2)] < |z| for all z € C
and then the Schwartz inequality yields

Re(B(z,y)) < |B(z,y)| < |lzll5-Ilylz

as desired. O

1.6. Example. On V = M(n,K) we define the Hilbert-Schmidt inner product and
norm for matrices:

(44) (A, B)ys = Tr(B*4)  and  [JA|Z, = Y fayl* = Tr(A"4)

ij=1

It is easily verified that this is an inner product. First note that the trace map from
M(n,K) - K

TI‘(A) = i (077
i=1

is a complex linear map and Tr( A) = Tr(A); then observe that

n
A3 = (A, A)ys = Z la;j|* is > 0 unless A is the zero matrix.
ij=1

Alternatively, consider what happens when we identify M(n, C) & C" as complex vector
spaces. The Hilbert-Schmidt norm becomes the usual Euclidean norm on (C"z, and
likewise for the inner products; obviously (A, B),, is then an inner product on matrix
space.

The norm || 4], and the sup-norm || A||« discussed in Chapter V are different ways
to measure the “size” of a matrix; the HS-norm turns out to be particularly well adapted
to applications in statistics, starting with “least-squares regression” and moving on into
“analysis of variance.” Each of these norms determines a notion of matrix convergence
A, — Aasn — oo in M(N,C).

HS

1/2
| - |]2-CONVERGENCE: |An — Allys = [ Z |a§?) - aij|2] —0asn— o
,J
|+ [loc-CONVERGENCE: || A, — Al = max{ [a{}) —azj|} — 0asn— oo
7

However, despite their differences both norms determine the same notion of matriz con-
vergence.
Ap — Ain ||+ |lgnorm < A, — Ain | - ||cc-norm

The reason is explained in the next exercise. [

1.7. Exercise. Show that there exist bounds Mz, Mo, > 0 such that the |- |2 and |- || s
norms mutually dominate each other

[#ll2 < Moo [[#floc and  [|lz]lec < My [|2]2
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for all z € C". Explain why this leads to the conclusion that A, — A in || - ||2-norm if
and only if A,, — A in || - ||cc-norm.
Hint: The Schwartz inequality might be helpful in one direction.

The polarization identities below show that inner products over R or C can be
reconstructed if we only know the norms of vectors in V. Over C we have

3 3

1 1
kz—(JZ_ka+Zy T +ity) = Zkz |z + i*y||?, wherei=+/—1

(15) Blr,y) =7

Over R we only need 2 terms:

B(x,y) = i(B(:Hy, z+y)+(~1)B@—y,z—y))

1.8. Exercise. Expand
(x +ify, x +ity) = |z +ity[?
to verify the polarization identities.

Orthonormal Bases in Inner Product Spaces. A set X = {e; : i € I} of
vectors is orthogonal if (e;,e;) = 0 for ¢ # j; it is orthonormal if

(es,e5) = di; (Kronecker delta) foralli,jel.

An orthonormal set can be infinite (in infinite dimensional inner product spaces), and all
vectors in it are nonzero; an orthogonal family could have v; = 0 for some indices since
(v,0) = 0 for any v. The set X is an orthonormal basis (ON basis) if it is orthonormal
and V is spanned by {X}.

1.9. Proposition. Orthonormal sets have the following properties.
1. Orthonormal sets are independent;

2. If X ={e;:i €I} is a finite orthonormal set and v is in M = K-span{X} then by
(1.) X is a basis for M and the expansion of any v in M with respect to this basis

18 just
v = Z (v,e;)e;
iel

Finiteness of X required for . ...) to make sense; otherwise the right side is
q el g
an infinite series).

In particular if X = {e1,...,en} is an orthonormal basis for a finite-dimansional inner
product space V', the coefficients in the expansion

n
E v, €;) e, for everyv e V
i=1

are easily computed by taking inner products.

Proof: For (1.), if a finite sum ), ¢;e; equals 0 we have

0= (v,ex) = Zci(ei,ek) = Zcﬁik =c

i A
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for each k, so the e; are independent. Part (2.) is an immediate consequence of (1.): we
know {e;} is a basis, and if v = ), ¢;e; is its expansion the inner product with a typical

basis vector is
(v,ex) = § ci(eq, ex) E cidik =c . O
Z

1.10. Corollary. If vectors {vy,...,vn} are nonzero, orthogonal, and a vector basis in V,
then the renormalized vectors

(%
[Jvil

€; =

for1<i<n
are an orthonormal basis. [

Entries in the matrix [T|yx of a linear operator are easily computed by taking inner
products if the bases are orthonormal (but not for arbitrary bases).

1.11. Exercise. Let T': V — W be a linear operator between finite-dimensional inner
product spaces and let X = {e;}, 9 = {f;} be orthonormal bases. Prove that the entries
in [T]yx are given by

Ty = (T(es), fi)yw = (fi. T(ej)w
for 1 <i < dim(W), 1 <j <dim(V).

The fundamental fact about ON bases is that the coefficients in v = Y_;_, (v, ¢e;)€;
determine the norm ||v|| via a generalization of Pythagoras’ Formula for R™,

n

n
PYTHAGORAS: Ifx=) wze; then  [x|*=>|a]?
3 i=1

We start by proving a fundamental inequality.

1.12. Theorem (Bessel’s Inequality). Let X = {e1,...,en} be any finite orthonor-
mal set in an inner product space V (possibly infinite-dimensional). Then

n
(46) Slwe)P <l forallveV

i=1
Furthermore, if v' = v — Y"1 | (v,e;) e;, this vector is orthogonal to each e; and hence is
orthogonal to all the vectors in the linear span M = K-span{X}.

Note: The inequality (46) becomes an equality if X is an orthonormal basis for V because
then v' = 0.

Proof: Since inner products are conjugate bilinear, we have

0 < |V = () = (U—Z(v,ei)ei, v (v,e))e; )
i=1 j=1
= (v,v) - (Z(U ei)ei, v) = (v, Z(U ej)ej) + (Z(U,ei)ei, Z(Uaej)ej)

”UH2 _Z(U 61 61, 'U 6] +Z ’U 61 ’U €J) (el,ej)
J 5,
lvll* — Zl v, ei)| Zl vep)? ) [(v,e) (since (ex,v) = (v,ex) )

= |ll* =) (v, e)l?
i
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Therefore

Yol en)l® < Jlol?

i=1
as required.
The second statement now follows easily because

Wer) = (1= (we)ej, ex) = (vier) = > (v,¢)-(e5, ex)

J J

= (v,ex) — (v,ex) =0 for all k£

Furthermore, if w = Y_;" | cxey, is any vector in M we also have

(’U/,U)) = ch(vlaek) =0 ’
k

so v’ is orthogonal to M as claimed. O

1.13. Corollary (Pythagoras). If X is an orthonormal basis in a finite dimensional
inner product space, then
m
lol> =D I(v, )|
i=1

(sum of squares of the coefficients in the basis expansion v =7 (v,€;)e€;).
1.14. Theorem. Orthonormal bases exist in any finite dimensional inner product space.

Proof: We argue by induction on n = dim(V'); the result is trivial if n = 1 (any vector
of length 1 is an orthonormal basis). If dim(V) = n + 1, let vy be any nonzero vector.
The linear functional ¢y : v — (v,vp) is nonzero, and as in Example 1.3 of Chapter III
its kernel
1
M = {v: (v,v9) =0} = (Kuvp)

is a hyperplane of dimension dim(V) —1 = n. By the induction hypothesis there is an
ON basis Xo = {e1,,...,e,} in M, and every vector in M is orthogonal to vy. If we
rescale vg and adjoin e,11 = vo/||vg]] to Xy the enlarged set X = {e1,...,en,€nq1} is
obviously orthonormal; it is also a basis for V. [By Lemma 4.4 of Chapter III, X is a
basis for W = K-span{X} C V, and since dim(W) = |X| = n+ 1 = dim(V) we must
have W =V 0O

VI.2. Orthogonal Complements and Projections.

If M is a subspace of a (possibly infinite-dimensional) inner product space V, its or-
thogonal complement M= is the set of vectors orthogonal to every vector in M,

Mt ={veV:(vm)=0,foralme M}={v:(v,M)={0}} .
Obviously {0}+ =V and V+ = {0} from the Axioms for inner product.
2.1. Exercise. Show that M" is again a subspace of V, and that
M, C My = My C Mj- .

2.2. Proposition. If M is a finite dimensional subspace of a (possibly infinite-
dimensional) inner product space V', then

1. MO M+ = {0} and M + M+ =V, so we have a direct sum decomposition V =
M@ M*.
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2. If dim(V) < oo we also have (M+)+ = M; if |V| = oo we can only say that
M C (M*)*.

Proof: If v € M N M~ then ||v]|2 = (v,v) =0s0o v =0and M N MLt = {0}. Now let
{e1, ...,en} be an orthonormal basis for M. If v € V write

v = (v — Z(v,ei) ei) + Z(v,ei) e = v+

i=0 i=1
in which v, is orthogonal to M and v is the component of v “parallel to” the subspace
M (because it lies in M). Then for all v € V' we have
(v,01) = (v +vy,v1) = (v, 01) + (o,00) = o> +0 = [o]®
If v e (M+)*, so (v,v1) = 0, we conclude that [|[vy || = 0 and hence v = vy + v = 0+
is in M. That proves the reverse inclusion M-+ C M. O

The situation is illustrated in Figure 6.4.

. (] - -
Y=v Z{ (’V,G(z)qﬂ

=

(roperdicular orpenent) |

Csim =
b ZIP{:! ({Vf efl> e(;
(pesalie| Cam PMW‘FE’ )

Figure 6.4. Given an ON basis {e;,...,em} in a finite dimensional subspace M C V, the
vector v = > L (v, ex) ex is in M and vy = v — v is orthogonal to M. These are the
components of v € V' “parallel toM” and “perpendicular to M,” with v=1v, +v).

Orthogonal Projections on Inner Product Spaces. If an inner product
space is a direct sum V =V @& ... & V,. we call this an orthogonal direct sum if the
subspaces are mutually orthogonal.

(ViVi) =0 ifi#]

We indicate this by writing V = Vid...@V, = @::11/1-. The decomposition V =
M&M* of Proposition 2.2 was an orthogonal decomposition.

In equation Exercise 3.5 of Chapter II we defined the linear projection operators
P; : V — V associated with an ordinary direct sum decomposition V=V, & ... V.., and
showed that such operators are precisely the linear operators that have the idempotent
property P2 = P. In fact there is a bijective correspondence

(idempotent linear operators) «—— (direct sum decompositions V= R® K) ,
described in Proposition 3.7 of Chapter II, and reprised below.

THEOREM. If a linear operator P : V — V is idempotent operator, so P? =
P, there is a direct sum decomposition V = R & P such that P projects V
onto R along K. In particular,

R = R(P) = range(P) and K = K(P) = ker(P)
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Furthermore (Q = I — P is also idempotent and

R(Q)=K(P)  and K(Q)= R(P)

When V is an inner product space we will see that the projections associated with an
orthogonal direct sum V = E@F have special properties. They are also easy to compute
using the inner product. (Compare what follows with the calculations in Example 3.6
of Chapter II, of projections associated with an ordinary direct sum decomposition V =
E @ F in a space without inner product.)

Projections associated with an orthogonal direct sum decomposition V = Vi@ ... &V,
are called orthogonal projections.

2.3. Lemma. IfV = E®F is an orthogonal direct sum decomposition of a finite
dimensional inner product space, then

Et=F and F'=F EYtr=F and F't=F

Proof: The argument for F is the same as that for £. We proved that E++ = E in
Proposition 2.2 and we know that E C F by definition; based on this we will prove the
reverse inequality £ D F*.

Since |V| < 0o we have V = F & F*, so that |V| = |F| + |F1|; since V= E & F we
also have |V| = |F| + |E|. Therefore |E| = |F+|. But E C F* in an orthogonal direct
sum EDF, so we conclude that £ = F+. O

2.4. Exercise. Let V = Vi & ... DV, be an orthogonal direct sum decomposition of an
inner product space (not necessarily finite dimensional).

(a) If W; is the linear span Zj# V;, prove that W; L V; for each i, and V = V;W,.

(b) If v = v + ...+ v, is the unique decomposition into pairwise orthogonal vectors
vi € Vi, prove that [Jv]|? = 32, [|vil|*.

The identity (2.) is yet another version of Pythagoras’ formula.

2.5. Exercise. In a finite dimensional inner product space, prove that the Parseval
formula

(v, w) = Z (v, e)-(ei, w)
i=1
holds for every orthonormal basis {es,...,en}.

The Gram-Schmidt Construction. We now show how any independent set of
vectors {v1,...,v,} in an inner product space can be modified to obtain an orthonormal
set of vectors {ey,...,e,} with the same linear span. This Gram-Schmidt construc-
tion is recursive, and at each step we have

1. ex € K-span{vy, ..., v}
2. My, = K-span{ey, ..., ex} is equal to K-span{vy, .., v} for each 1 < k < n.

The result is an orthonormal basis {ei,...,e,} for M = K-span{vi,..,v,} (and for all
of V if the {v;} span V). The construction procedes inductively by constructing two

sequences of vectors {u;} and {e;}.
STEP 1: Take
U1
Uy = v and e = ——
[[on]

Conditions (1.) and (2.) obviously hold and K-v; = K- u; = K-ey.
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STEP 2: Define
U2

[Juall’

Obviously ug € K-span{vy,vo} and us # 0 because vy ¢ Kv; = Ke; = My; thus ey is
well defined. Furthermore

ug = vg — (valer)-e1 and ey =

1. us L M, because
(ug,e1) = (va — (v2,e1)er, e1) = (v2,e1) — (va,e1)-(er,e1) =0 = eg L M,
hence {e1, ez} is an orthonormal set of vectors;
2. M5 = K-span{ey, ea} = Kug + Ke; = Kvg + Key = Kvg + Koy = K-span{vy, v2}.

If n = 2 we're done; otherwise continue with

STEP 3: Define )

3 3 ()
Uz = U3 — (vs,€i)-€; = v3 — ”ZH; Ui
7

i=1 =1

Then u3 # 0 because the sum is in K-span{vy,v2} and the v; are independent; thus
e3 = —”32” is well defined. We have us L My because

2
(uz,e1) = (vs—Z(vmei)ei,el)

i=1
2
= (vs,e1) — Z(’UBaei)'(eivel)
i=1
= (’03561)_ ’03561):07

and similarly (us,es) = 0, hence es L My = K-span{eq, e2}. Finally,

K-span{ej, ez, es} = Kug+K-{er,ea} = Kvz+K-{e1,ea}
= K’Ug + K—{Ul, 1)2} = K—{’Ul, V2, 1)3}
At the kP step we have produced orthonormal vectors {e1, ..., e;, } with K-span{ey, ..., ex } =
K-span{vy, ...,vx } = M. Now for the induction step:
STEP k + 1: Define

k k
_ _ (Uk—i-laui)
Uk+1 = Vk+1 — Z(Uk—i-la €i) € = Vg1 — Z W Ui
i=1 i=1 i
and
Uk+1
€k+1 = T~

[[wk-1ll

Again ug41 # 0 because vg41 ¢ My, = K-span{vy, ..., vx} = K-span{ey, ...,ex}, S0 €41 is
well defined. Furthermore ug1 1L My because

k
(ukt1,€5) = (UkJrl - Z(Uk+17€i> i, 6;‘)
i=1

k
= ’Uk-l-lae] § ’Uk-l-laez 6176])
i=1

= (Uk-‘rl ) 6]) (Uk-‘rl ) 6]) 0
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hence also ex41 L M. Then

K-{e1,..,ert1} = Kuppr +K-{e1,....,en} = Kopg1 +K-{eq,....,ex}
= K—{Ul,...,vk_H} .
By induction, {e1, ..., e,} has the properties claimed. [

Note that the outcome of Step(k+1) depends only on the {ey, ..., ex} and the new vector
vg+1; the original vectors {v1, ..., vx } play no further role in the inductive process.

2.6. Example. The standard inner product in C[—1,1] is the L? inner product

(f.h)2 = [ e d

for functions f : [-1,1] — C. Regarding v; = t, vo = x, v3 = 2% as functions from
[-1,1] — C, these vectors are independent. Find the orthonormal set {ej,es,e3} pro-
duced by the Gram-Schmidt process.

Solution: We have u; = v; = t and since ||u1* = fil tdr =2, we get e; = % 1. At
the next step
1
( ) (U27u1) filx&d:c 0
up = vz — (v2,€1) €1 = V2 — 1=r————— t=x =z
[Jua 2 [Jur ]2

and

1 1
1 1 2
ool = [ wtae=2 [ azar—2|3a),] -3

The second basis vector is
u9 \/§
g = —— =\/=--x
[[uzl 2

At the next step:

us = U3 — ((U3|61)61 + (U37€2)62)
(v3au2> (v3au1)
= U3 — “U2 + Sup
( [[ul? [[ua]? )
1 2 1 .2
_ e o 2 ade . J = -}dac'
2 2
3
1 1
= $2—0—§} = I2—§

Then

—1 —1
1
2 1
4 2
= - = d
/_1 (:v 390 + 9) x
o 2 3 1 1 8
= — — —x —x = —
5 9 9 !0 45
and the third orthonormal basis vector is
us 450 4 1 5,0 o
= —"- =4/— —=)=4/=03z*=-1) O
s = oy = V5~ 5) = V5 )



If we extend the original list to include v4 = 2* we may compute e, knowing only e, €2, €3

(or uy,us,us) and vg; there is no need to repeat the previous calculations!
2.7. Exercise. Find u4 and e4 in the above situation.

This process can be continued indefinitely to produce the orthonormal family of Leg-
endre polynomials e;(t),ea(t),...,e,(¢) ... in the space of polynomials C[z] restricted
to the interval [—1,1]. (This is also true for R[z] restricted to [—1, 1] since the Legen-
dre polynomials all have real coefficients.) Clearly the (n + 1)-dimensional subspace M,
obtained by restricting the space of polynomials of degree < n

P, = K-span{ey, ..., ep41} = K-span{t,z, ..., 2"}

to the interval (so M,, = P,|[—1,1]) has {e1,...,en+1} as an ON basis with respect to
the usual inner product on C[—1,1]

(fsh)2 = [1f(t)Wdt.

Restricting the full set of Legendre polynomials eq(¢), ..., ent1(t), ... to [—1,1] yields
an orthonormal set of vectors in the infinite-dimensional inner product space C[—1,1].
The orthogonal projection P, : C[—1,1] — M,, C C[—1, 1] associated with the orthogonal
direct sum decomposition V = M,, @ (M,,)* (in which dim(M,,)* = 00) is given by the
explicit formula

n+1

Pof(t) = Y (fren)er(t) (~1<t<1)
k=1
n+1

= Z(/ f(x)T(:v)dx)-ek(t)
k=1 J-1

= Z Ck t* (c €C)

k=0

for any continuous function on [—1,1]. The projected image P, f(t) is a polynomial of
degree < n even though f(t) is continuous and need not be differentiable.

A standard result from analysis shows that the partial sums of the infinite series
> e ck t* converge in the L%-norm to the original function f(t) throughout the interval
—1<t<1,

1/2

1
If = Pufll = [/ ) = PafOPdt] =0 asn— oo

for all f € C[-1,1].

It must be noted that this series expansion of f(t) ~ Y7o, ckt* is not at all the
same thing as a Taylor series expansion about ¢ = 0, which in any case would not make
sense because f(t) is only assumed continuous (the derivatives used to compute Taylor
coefficients might not exist!) In fact, convergence of this series in the L2-norm is much
more robust than convergence of Taylor series, which is why it is so useful in applications.

Fourier Series Expansions. The complex trig polynomials E,,(t) = e*™™ (n € 7Z)
are periodic complex-valued functions on R ; each has period At = 1 since

e2min(t+1) — g2mint | 2min _ o2mint for all t € R and n € Z.
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If e, (t) is the restriction of E, () to the “period-interval” I = [0, 1] we get an ON family of
vectors with respect to the usual inner product (f,h) = fol f(t)h(t) dt on C[0, 1], because

1 1
/ |en(t)|2dt:/ tdt =1
0 0

1 1
(emu en) = / €m (t)en (t) dt = / e27ri(m_")tdt
0 0

e27ri(m—n)t ‘ 1
0

lenll?

— =0 if .
2mi(m —n) } if m#n
Thus {e,, : n € Z} is an orthonormal family in C[0, 1].
For N > 0 let My = K-span{e; : —N < k < N}. For f in this subspace we have the

basis expansion:
N N

f: Z (f,ek)ek: Z Cke%'rikt

k=—N k=—N

where ¢, is the k*' Fourier coefficient

(47) ek = (f,ex) = /0 f(t)e 2 gt

By Bessel’s inequality:

1 N N
112 = / FORA > S el = 3 ((fen)?
k=—N

k=—N

and this is true for N = 1,2, .... The projection Py of C[0,1] onto My along My is then
given by

N N

Pyft)= > ckex(t)= Y (fiex) ™™™, N =0,1,2,...

k=—N k=—N

because Py (f) € My by definition, and (f — Py f,ex) =0 for —N <k < N.
The Fourier series of a continuous (or bounded Riemann integrable) complex-valued
function f : [0,1] — C is the infinite series

(48) f ~ Z(fu 6k)'€27rikt

keZ

whose coefficients ¢, = (f, e, ) are the Fourier coefficients defined in (47).

It is not immediately clear when this series converges, but when convergence is suit-
ably interpreted it can be proved that the series does converge, and to the initial function
f(t). This expansion has proved to be extremely useful in applications. Its significance
is best described as follows.

If t is regarded as a time variable, and F(t) is some sort of periodic “signal” or
“waveform” such that F(t + 1) = F(t) for all ¢, then F is completely determined by
its restriction f = F|[0,1] to the basic period interval 0 < t < 1. The Fourier series
expansion of f on this interval can in turn be regarded as a representation of the original
waveform as a “superposition,” with suitable weights, of the basic periodic waveforms
E,(t) = ¥t (t € R).

—+oo
F(t)~ Y cuEn(t) forallteR

n=—oo

119



For instance, this implies that any periodic sound wave F'(t) with period At = 1 can
be reconstructed by superposing scalar multiples of the “pure tones” FE,,(t), which have
frequencies w, = n cycles per second. This is precisely how sound synthesizers work.
It is remarkable, that the correct “weight” assigned to each pure tone is the Fourier
coefficient ¢,, = (f,e,); even more remarkable is the fact that complez-valued weights
¢ € C must be allowed, even if the signal is real-valued, because the functions E, (t) =
cos(2mnt) + isin(2mnt) are complex-valued.

If f is piecewise differentiable the infinite series (48) converges (except at points of
discontinuity) to the original periodic function f(t). Furthermore the following results
can be proved for any continuous (or Riemann integrable) function on [0, 1].

THEOREM. If f(t) is bounded and Riemann integrable for 0 <t <1, then

1. L2-NorM CONVERGENCE: The partial sums of the Fourier series (48)
converge to f(t) in the L?-norm.

N

(Vs Z (f,ek)6k||2—>0 as N — 0o
k=—N

2. EXTENDED BESSEL: | f||? = fol |f ()| dt is equal to > oy |(f er)? -

1/2
The norm || f — hlj2 = [ JIf—h? dt] is often referred to as the “RMS = Root Mean
Square” distance between f and h.

Y=1 D Y= o - . N .
i ! 1 [ | t { \ ! \
Cow ‘( : i i ,' i sae LXIN 1 1 \ | | tew
t
7 ,.Lﬁ' . —‘(b——_c'y__‘{)_*l‘“——qj'y‘ (‘3——-—5
=7

t=0 t=1 42 Ly t=o =1 t
2y SawtzoHh (l?) éﬁuaﬂfz Wave.

© b==1 =0 £=] t

]
- G D O

4

bamy =0 4= = (d) Conhnuons Saw ot
(e) Fnothes squans waue

Figure 6.5. Various waveforms with period At = 1, whose Fourier transforms can be
computed by Calculus methods.

2.8. Example. Let
t for0<t<1

f(t):{ 0 fort=1

This is the restriction to [0, 1] of the periodic “sawtooth” waveform in Figure 6.5(a).
Find its Fourier series.
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Solution: If k£ # 0 integration by parts yields

L = /1 te~2mikt gy
0
_ [%ezmkt o |;] 3 /01 ﬁe,zmkt dt
= 27_mlk + ﬁ(ek’ eo)  (where eg(t) =1 for all t)
= % ifk#0.

For k = 0 we get a different result:

[y

1
COZ/ tdtzi
0

By Bessel’s Inequality we have

1 1
£z = / |f()[?dt = / t? dt:% (by direct calculation)
0 0
N N
> > fen))? = D |l
k=—N k=—N

1 1
4 + Z Ar2k2
k#0,—N<k<N

for any N = 1,2, ... If we multiply both sides by 472, then for all N we get

4 2 1 2

0<|kI<N
N
1, 1
—a2 > 2 -
3 Pt 2
2 N 2 o0
T 1 T 1
k=1 k=1

(the infinite series converges by the Integral Test). Once we know that || f||> = >, ., |cx[?
we get the famed formula
oo 2
S =%
s =
— k 6

The Fourier series associated with the sawtooth function f(t) is

o0

O~ Y (eent) =5 ”szk

k=—o0

which converges pointwise for all ¢ € R except the “jump points” ¢ € Z, where the series

converges to the middle value % O

2.9. Exercise. Compute the Fourier transforms of the periodic functions whose graphs
are shown in Figure 6.5 (b) — (d).

A Geometry Problem. The following result provides further insight into the
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meaning of the projection Py (v) = Efil(v, e;) e; where {e;} is an orthonormal family
in an inner product space V.

2.10. Theorem. If {e1,...,en} is an orthonormal family in an inner product space,
and Ppr(v) = >0 (v, €;) e; the projection of v onto M = K-span{er, ...,e,} along M=+,
then the image Pys(v) is the point in M closest to v,

1Py (v) — v]| = min{ ||u — v|| : v € M}

for any v € V.. In particular the minimum is achieved at the unique point Py(v) € M.

Proof: Write v = v +v, where v = Pp(v) = Zi]\il(v, ei)e; and vy =v— (v, €)e;.
Obviously v L v, and if 2z is any point in M we have (v —2) € M and (v —v)) L M,
so by Pythagoras

lv — 2| 1w = o) + (v = 2)|”

o — vy I? + [lv) — z|I?

Thus
o= 2)* > [lo—vy|?

for all z € M, so |lv— z||? is minimized at z = v = Zij\il(v, e;) e;. Figure 6.6 shows why

the formula [[v[|? = [Jvy||* + [JvL||* really is equivalent to Pythagora’s formula for right
triangle (see the shaded triangle). O

'VJ:’I/“U —A

%

M, = np o otV o
0=V =X 3 8,

M o 3[1

Figure 6.6. If M is a finite dimensional subspace of inner product space V and v € V,
the unique point in M closest to v is mg = v = 3_;(v, ;) e;, and the minimized distance
is [[v — my||. The shaded plane is spanned by the orthogonal vectors v and v, and we
have ||v||? = llvg I? + |lvo||? (Pythagoras’ formula).

V.3. Adjoints and Orthonormal Decompositions.

Let V be a finite dimensional inner product space over K = R or C. Recall that a
linear operator T : V' — V is diagonalizable if there is a basis {e, ..., e,} of eigenvectors
(so T(e;) = pe; for some p; € K). We have seen that this happens if and only if
V' = @D esp(r) EA(T") where

sp(T) = (the distinct eigenvalues of T in K) = {A € K: E5(T) # (0)}
ExX(T) = {veV:(T—-X)v=0}=ker(T—\)
We say T is orthogonally diagonalizable if there is an orthonormal basis {e1, ..., e}

of eigenvectors, so T'(e;) = p;e; for some p; € K.

3.1. Lemma. A linear operator T : V — V on a finite dimensional inner product space
is orthogonally diagonalizable if and only if the eigenspaces span V and are pairwise
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orthogonal, so Ex(T) L E,(T) for A # v in sp(T).

Proof («): is easy. We have seen that the span W =3, ) Ex(T) is a direct sum
whether or not W = V. If W =V and the E) are orthogonal then we have an orthogonal
direct sum decomposition V' = @, Ex(T'). Taking an orthonormal basis in each E) we
get a diagonalizing orthonormal basis for all of V.

Proof (=): If X = {e1,...,e,} is a diagonalizing orthonormal basis with T'(e;) = p;e;,
each p; is an eigenvalue. Define

sp’ = {Ae€sp(T) : A = p; for some i } C sp(T)

and for A € sp(T') let
My =Y {Ke;: i = A} C Ex(T)

(which will = (0) if A does not appear among the scalars p;). Obviously |My| < |E\|;
furthermore, each e; lies in some eigenspace Ey, so

V = K-span{es,...,en}t C Z E,CV
Aesp(T)

and these subspaces coincide. Thus

Vi= > B> ) IEa> ) [Ma] > |V

Aesp(T) AEsp’ A€Esp’

and all sums are equal. (The last inequality holds because ), cspr Mx 2 Z?:l Ke; =V.)

Now if sp(T') # sp’ the first inequality would be strict, and if M) < E) the second
the second would be strict, both impossible. We conclude that |My| = |Ex(T)| so
My = E\(T). But the M) are mutually orthogonal by definition, so the eigenspaces F)
are pairwise orthogonal as desired. [J

Simple examples (discussed later) show that a linear operator on an inner product space
can be diagonalizable in the ordinary sense but fail to be orthogonally diagonalizable. To
explore this distinction further we need additional background, particularly the definition
of adjoints of linear operators.

Dual Spaces of Inner Product Spaces. There is a natural identification of
any finite dimensional inner product space V with its dual space V*. It is implemented
by a map J : V — V* where J(v) = the functional ¢, € V* such that

(ly, 2y = (x,v) forallz € V.

Each map ¢, is a linear functional because the inner product (x, *) is K-linear in its left
hand entry (but conjugate linear in the right hand entry unless K = R). The map J is
one-to-one because

Jw1) =J(w2) = 0= (ly,, ) — (ly,,x) = (x,v1) — (x,02) = (x,v1 — v2)

for all x € V. Taking z = v; — v, we get 0 = |Jv; — v2]|?> which implies v1 — vy = 0
and v; = v by positive definiteness of the inner product. To see J is also surjective we
invoke:

3.2. Lemma. IfV is finite dimensional inner product space, {ei,...,e,} an orthonor-
mal basis, and £ € V*, then

= J(vp) where vy = Z (€, ei) e
i=1
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(proving J surjective).

Proof: For any € V we have x = ). (x,¢;) ¢;. Hence by conjugate-linearity of (x, *)

(J(vo),x) = (x,v9) = (leez,z le;) ej) le (€, e;)-(ei,e5)
le (e = (1, er> — (z) forallz €V

Therefore J(vg) = ¢ as elements of V*. O

3.3. Exercise. Prove that J : V — V™ is a conjugate linear bijection: it is additive,
with J(v + ") = J(v) + J(v') for all v,v" € V, but J(Av) = AJ(v) for v e V, A € C.

The Adjoint Operator T*. If T : V — W is a linear operator between finite
dimensional vector spaces we showed that there is a natural transpose 7% : W* — V*.
Since V' =2 V* for inner product spaces, it follows that there is a natural adjoint operator
T*:V — W between the original vector spaces, rather than their duals.

3.4. Theorem (Adjoint Operator). Let V,W be finite dimensional inner product
spaces and T :' V — W a K-linear operator. Then there is a unique K-linear adjoint
operator 7" : W — V such that

(49) (TW),w),, = (v, T*(w)), forallveV, weW |
or equivalently (T*(w),v), = (w,T(v)), owing to Hermitian symmetry of the inner
product.

Proof: We define T*(w) for w € W using our observations about dual spaces. Given
w € W, we get a well defined linear functional ¢,, on V if define

<¢wav> = (T(U)vw)w

(w is fixed; the variable is v).
Obviously ¢, € V* because (x,*),, is linear in its left-hand entry. By the previous
discussion there is a unique vector in V', which we label T*(w), such that J(T*(w)) = ¢,

in V*, hence
(T(x),w)y = (Pw,z) = (J(T"(w)),z) = (x,T"(w)),

We obtain a well defined map 7" : W — V.

Once we know a map T™* satisfying (49) exists, it is easy to use these scalar identities
to verify that T is a linear operator, and verify its important properties. For linearity
we first observe that two vectors vy, vg are equal in V' if and only if (v1,x) = (ve, z), for
all z € V because the inner product is positive definite.

Then T*(w; + we2) = T*(wy) + T*(ws) in V follows: for all v € V' we have

(T (w1 +w2),v)y = (w1 +w2,T(v)y = (w1, T(0))y + (w2, T(v))
= (T"(w1),v), + (T"(wa,v), (definition of T™(wy))
= (T"(w1) +T*(wz),v), (linearity of (x|*) in first entry)
Similarly, T*(Aw) = XT*(w), for all A € K, w € W (check that A comes forward instead
of \). O

Note: A general philosophy regarding calculations with adjoints: Don’t look at T*(v);
look at (T™*(v),w) instead, for allv € V,w € W.

3.5. Lemma. On an inner product space (T*)* =T as linear maps from V. — W.
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Proof: It suffices to check the scalar identities (T**(v), w),, = (T'(v),w),,, for allv € V|
w € W. But by definition,

(T (v),w),, = (v, T*(w)), = (T(v),w),
Done. 0O

The adjoint T* : W — V of a linear operator T : V' — W between inner product
space is analogous to the transpose T : W* — V*. In fact, if V,W are inner product
spaces and we identify V = V* W = W* via the maps Jy : V = V* Jy : W — W*
then T* becomes the transpose T : W* — V* in the sense that the following diagram
commutes: X

w5 v
Jw | L Jv
Tt
W —

That is
T'odw =JyoT* (orT*=J, ' oT" o Jw)

3.6. Exercise. Prove this last identity from the definitions.

Furthermore, as remarked earlier, when V is just a vector space, there is a natural
identification of V = V**

j:V -V (j(v),0) =L(v) forallleV* veV
We remarked that under this identification of V** = V' we have T* = T for any linear
operator T': V. — W in the sense that the following diagram commutes
gv 1 Tjw

v L ow

If V,W are inner product spaces, we may actually identify V ~ V* (something that
cannot be done in any natural way in the absence of the extra structure an inner product
provides). Then we may identify V = V* X V** =2 V*** = and W & W* =2 W** =
W*** == - when we do, T* becomes T* and T*" becomes T** = T.

3.7. Exercise (Basic Properties of Adjoints). Use (49) to prove:
(a) I* = I and (\)* = AL,
(b) (T + 1) =Ty + 15,
(c) (\T)* = XT*  (conjugate-linearity)

3.8. Exercise. Given linear operators V' 5w L Z between finite dimensional inner
product spaces, prove that

(ToS) =8"cT*:Z—->V.

Note the reversal of order when we take adjoints.

3.9. Exercise. If A € M(n,C) and (A*);; = Aj; is the usual adjoint matrix, consider
the operator L4 : C* — C” such that Ls(z) = A-z. If C" is given the standard inner
product prove that
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(a) If X = {ey,...,e,} is the standard orthonormal basis then [L4]xx = A.

(b) (LA)* = L4~ as operators on C".

3.10. Example (Self-Adjointness of Orthogonal Projections). On an unadorned
vector space V the “idempotent” relation P2 = P identifies the linear operators that
are projections associated with an ordinary direct sum decomposition V= M @& N. The
same is true of an inner product space, but if we only know P = P? the subspaces M, N
are not necessarily orthogonal. We now show that an idempotent operator P on an inner
product space corresponds to an orthogonal direct sum decomposition V = M@N if and
only if it is self-adjoint (P* = P), so that

(50) P?=pP=p*
Discussion: If M L N it is fairly easy to verify (Exercise 3.11) that the associated
projection Py of V onto M = range(Py) along N = ker(P)y) is self-adjoint. If v,w € V|

let us indicate the components by writing v = vas + vy, w = wyr + wy. With (49) in
mind, self-adjointness of Py; emerges from the following calculation.

(1), PJE(’LU)) = (PM(U)v ’LU) = (UM7 wpr + 'LUN) (deﬁnition of PA[(U) = UM)
= (vm,wnr) (since wy L wyr)
= (’UM +oN, W) = (’U,’UJM) = (’U,PM(M))

Since the is true for all v € V we get P;;(w) = Py (w) for all w, whence Py, = P as
operators.

For the converse we must prove: If the projection Pjs associated with an ordinary
direct sum decomposition V' = M @ N is self-adjoint, so that Py; = Pus, then the
subspaces must be orthogonal. We leave this proof as an exercise. [

3.11. Exercise. If P: V — V is a linear operator on a vector space such that P? = P
it is the projection operator associated with the decomposition

V=RoK where R =range(P), K = ker(P)

If V' is an inner product space prove that the subspaces must be orthogonal (R L K) if
the projection is self-adjoint, so P2 = P = P*. [

Matrix realizations of adjoints are easily computed, provided we restrict attention to
orthonormal bases in both V' and W. With respect to arbitrary bases the computation
of [T*]xg can be quite a mess.

3.12. Proposition. Let T : V. — W be a linear operator between finite dimensional
inner product spaces and let X = {e;}, 9 = {f;} be orthonormal bases in V., W. Then
(51) T*]xy = ( [T]@x)* (taking matriz adjoint on the right)

where A* is the usual m x n “adjoint matriz,” the conjugate-transpose of A such that
(A*);; = Aji for A € M(n x m,K).

Proof: By definition, the entries of [T]gx are determined by the vector identities

el) = ZTkZ fk which lmply ( (ez f] ZTkl fkvfj) J'L’

k=1

for all 7, j. Hence

T*(fi) = Y [T wier = (T*(fi)se5) = [T7;i

k=1
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from which we see that
[T = (T*(f):e),
= (fpT(e))w = (T(ed, ) = T = ([11"),,

where (A*);; = Aj; for any matrix. O

3.13. Exercise. Let Vi be the restrictions to [0,1] of polynomials f € C[z] having
degree < N. Give this (N + 1)-dimensional space of C[0,1] the usual L? inner product

(f,h)2 = fol f(t)h(t) dt inherited from the larger space of continuous functions. Let
D : Vy — Vi be the differentiation operator

D(ao+art +ast® + ...+ ant™) = a1 + 2a2t + 3az > + ... + Na, t¥ !

(a) Is D one-to-one? Onto? What are range(D) and ker(D)?
(b) Determine the matrix [D]xx with respect to the vector basis X = {t,z,22,... 2V},

)
)

(c) Determine the eigenvalues of D : Vy — Vi and their multiplicities.
)

(d) Compute the L2-inner product (f, h)2 in terms of the coefficients ay, by, that deter-
mine f and h.

(e) Is D a self-adjoint operator? Skew-adjoint?

3.14. Exercise. If D* is the adjoint of the differentiation operator D : Viy — Vi, entries
Dy; in its matrix [D*]x with respect to the basis X = {1, z, 22,..., 2V} are determined
by the vector identities D*(x%) = E]kvzo Dj, x*. By definition of the adjoint D* we have

N
(', D(a?))y = (D*(a"), al), = Y _Diy (a*,a?), for0<ij<N
k=0

and since X is a basis these identities implicitly determine the D};. Compute explicit
matrices B and C such that [D*]x = C:B~!. Asin the preceding problem, D(z*) = ka*~!
and inner products in Vi are integrals

(. h), = /O f(2)-h(x) dx

for polynomials f, h € V.

Hint: BEWARE: The powers z' are NOT an orthonormal basis, so you will have to use
some algebraic brute force instead of (51). This could get complicated. For something
more modest, just compute the action of D* on the three-dimensional space V = C-
span{t,t,t%}.

3.15. Exercise. Let V' = C°(R) be the space of real-valued functions f(¢) on the real
line that have continuous derivatives D* f of all orders, and have “bounded support” —
each f is zero off of some bounded interval (which is allowed to vary with f). Because
all such functions are “zero near co” there is a well defined inner product

(f.h)2 = / oL

The derivative D f = df /dt is a linear operator on this infinite dimensional space.

(a) Prove that the adjoint of D is skew-adjoint, with D* = —D.
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(b) Prove that the second derivative D? = d?/dt? is self-adjoint.
Hint: Integration by parts.

Normal and Self-Adjoint Operators. Various classes of operators T : V. — V
can be defined on an finite dimensional inner product space.

1. SELF-ADJOINT: T* =T
2. SKEW-ADJOINT: T* = -T

3. UNITARY: T*T =1 (which implies TT* = I because T : V' — V is one-to-one
< onto < bijective.) Thus “unitary” is equivalent to say-
ing that 7% = T, at least when V is finite dimensional.

(In the infinite-dimensional case we need both identities
TT*=T*T=1toget T*=T71)

4. NorMAL: T*T =TT* (T commutes with 7*)
The spectrum spg(T) = {A € K: Ex(T') # (0)} of T is closely related to that of T*.
3.16. Lemma. On any inner product space
sp(T*) =sp(T) = {X: A €sp(T)}
Proof: If (T — \I)(v) = 0 for some v # 0, then 0 = det(7 — M) = det ([T]x — Mnxn)

for any basis X in V. If X is an orthonormal basis we get [T*]x = [T]% = [T]%. Then

det ([T%]x — Mywp) = det ([T]% — Mpxn) = det ([T]x — M)
det ([T]x — Myxn) = 0

because

det(A®) = det(A) and det(A) = det(A) .
Hence A € sp(T™*). Since T** = T, we get

sp(T') = sp(T™*) C sp(T*) C sp(T

S~—"
I

sp(T) O

3.17. Exercise. If A € M(n,K) prove that its matrix adjoint (A*);; = A;; has deter-
minant

det(A*) = det(A).
If T:V — V is a linear map on an inner product space, prove that det(T*) = det(T).

3.18. Exercise. If T :V — V is a linear map on an inner product space, show that the
characteristic polynomial satisfies

pr-(A\) = pr(}) or equivalently — pr(A) = pr(})
for all A € K. In particular,
spx(T*) = spg(T) = { X X € spe(T)}.
Proof: Since I* = I and (\)* = A we get
pr-(\) = det(T* — XI) = det (T* — (\I)*)
= det ((T —XI)*) = det(T —XI) = pr(\)
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Recall that p € spg(T) < pr(p) =0. O

VI1.4. Diagonalization in Inner Product Spaces.

If M is a T-invariant subspace of inner product space V' it does not follow that T*(M) C
M. The true relationship between invariance under 7" and under T is:

4.1. Exercise. If V is any inner product space and T : V' — V a linear map, prove that
(a) A subspace M C V is T-invariant (so T(M) C M) == M+ is T*-invariant.
(b) If dimg (V) < oo (so M++ = M) then T(M) C M < T*(M*) C M*.
4.2. Proposition. If T : V — W is a linear map between finite dimensional inner
product spaces, let R(T) = range(T), K(T) = ker(T). Then T* : W — V and
K(T*) = R(T): inW
R(T*) = K(M)*inV
In particular if T is self-adjoint then ker(T) L range(T) and we have an orthogonal direct
sum decomposition V = K(T)&R(T).
Proof: If w € W then
T"(w)=0 < (U,T*(w))v =0 forallveV
& 0= (T(w)v =TW),w)w, forallveV
< wl R(T).
Hence w € K(T%) if and only if w L R(T'). The second part follows because T** = T
and M++ = M for any subspace. [
We will often invoke this result.
Orthogonal Diagonalization. Not all linear operators T : V — V are diago-
nalizable, let alone orthogonally diagonalizable, but if V' is an inner product space we
can always find a basis that at least puts it into upper-triangular form, which can be

helpful. In fact, this can be achieved via an othonormal basis provided the characteristic
polynomial splits into linear factors over K (always true if K = C).

4.3. Theorem (Schur Normal Form). Let T : V — V be a linear operator on a finite
dimensional inner product space over K =R or C such that pr(x) = det(T — zI) splits

over K. Then there are scalars \1,..., A\, and an orthonormal basis X in V such that
)\1 *
A2
[T)xx = '
0 An

Proof: Work by induction on n = dimg(V); the case n = 1 is trivial. For n > 1, since
pr splits there is an eigenvalue A in K and a vector vg # 0 such that T'(vg) = Avg. Then
A is an eigenvalue for 7%, so there is some wy # 0 such that T*(wg) = Awp.

Let M = Kuwyp; this one-dimensional space is T*-invariant, so M is invariant under
(T*)* = T and has dimension n — 1. Scale wy if necessary to make ||wg|| = 1. By the
Induction Hypothesis there there is an orthonormal basis Xy = {e1,...,en—1} in M + such
that

/\1 *
A2
[T|M* ]z, =



Then letting e,, = wp (norm = 1) we get an orthonormal basis for V' such that [T]zx has
the form:

Al * C1
[T]xx - 0 )\nfl Cn;l
0 0 ‘ An
where .
T(en) = T(wo) = A\nen + Z cje;
j=1

(Remember: M = Kwg need not be invariant under 7.) O

4.4. Exercise. Explain why the diagonal entries in the Schur normal form must be the
roots in K of the characteristic polynomial pr(z) = det(T — 2T), each counted according
to its algebraic multiplicity.

Note: Nevertheless, it might not be possible to find an orthonormal basis such that all
occurrences of a particular eigenvalue A € spg(T') appear in a consecutive string A, ..., A
on the diagonal. [l

Recall that a linear operator T': V' — V on an inner product space is normal if it
commutes with its adjoint, so that T*T = TT*. We will eventually show that when
K = C (or when K = R and the characteristic polynomial of T splits into linear factors:
pr(z) = [T, (x — a;) with ; € K), then T is orthogonally diagonalizable if and only
if T is normal. Note carefully what this does not say: T might be (non-orthogonally)
diagonalizable over K = C even if T is not normal. This latter issue can only be resolved
by determining the pattern of eigenspaces E)\(T') and demonstrating that they span all
of V.

Figure 6.7. The (non-orthogonal) basis vectors u; = e; and uz = ej + e2 in Exercise 4.5.

4.5. Exercise. Let {e1,es} be the standard orthonormal basis vectors in V = K2, and
consider the ordinary direct sum decomposition

V=VieV,=Ke; ®K(e; +e2) =Kf; ®Kfy where f;=e1,fo=e1+es.
These subspaces are not orthogonal with respect to the standard Euclidean inner product
(56161 + x2e1, y1€1 + yzez) = T1Y1 + 222

Define a K-linear map 7' : V' — V| letting

T(el) = 2e; T(el + 92) = %(el + 92)
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(see Figure 6.7). Then T is diagonalized by the basis 9 = {fi,fo} with f; = e; and
fo = e1 + e (which is obviously not orthonormal), with

[T]QJQJ—(?) 8)

2

(a) Determine the action of T" on the orthonormal basis vectors X = {e1, ez} and find
[T]xx;

(b) Describe the operator T* by determining its action on the standard orthonormal
basis X, and find [T*]xx;

(¢) Explain why T is not a normal operator on V. Explain why no orthonormal basis
{f1,f2} in V can possibly diagonalize T.

Hint: The discussion is exactly the same for K = R and C, so assume K = R if that
makes you more comfortable.

Diagonalizing Self-Adjoint and Normal Operators. We now show that
a linear operator 7' : V' — V on a finite dimensional inner product space is orthogonally
diagonalizable if and only if T" is normal. First, we analyze the special case of self-adjoint
operators (T* = T'), which motivates the more subtle proof needed for normal operators.

4.6. Theorem (Diagonalizing Self-Adjoint T). On a finite dimensional inner prod-
uct space any self-adjoint linear operator T : V — V is orthogonally diagonalizable.

Proof: If u, A € spg(T), we first observe that:

1. If T =T* all eigenvalues are real, so spg(T) C R + 0.

Proof: If v € E\(T), v # 0, we have
Mvll? = (Tw,v) = (v, T"v) = (v, Tv) = (v, 2v) = A|[v?]*

which implies A\ = \.

2. If X # p in sp(T') the eigenspaces F\(T') and E,(T) must be orthogonal.
Proof: If v € E\(T), w € E,(T) then

A, w) = (Tv,w) = (v, T*w) = (v, pw) =7 (v,w) = p (v, w)

since eigenvalues are real when T* = T. But pu # A, hence (v,w) = 0 and E\(T) L
E,(T). Thus the linear span E = ) E5(T) (which is always a direct sum) is

actually an orthogonal sum E = @, ¢, Ex(T).

3. If T* = T the span of the eigenspaces is all of V', hence T is orthogonally diagonal-
izable.

Proof: If X € spg(T), then E\(T) # (0) and M = E\(T)* has dim(M) < dim(V).
By Exercise 4.1 the orthogonal complement is T*-invariant, hence T-invariant be-
cause T* = T. It is easy (see Exercise 4.7 below) to check that if W C V is
T-invariant and T* = T on V, then the restriction T|w : W — W is self-adjoint
on W if one equips W with the restricted inner product from V.

4.7. Exercise. If T': V — V is linear and T* = T, prove that
(Tlw)" = (T"w)

for any T-invariant subspace W C V equipped with the restricted inner product.
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To complete our discussion we show that self-adjoint operators are orthogonally diag-
onalizable, arguing by induction on n = dim(V'). This is clear if dim(V) = 1, so assume
it true whenever dim(V') < n and consider a space of dimension n + 1. Since all eigen-
values (roots of the characteristic polynomial) are real there is a nontrivial eigenspace
M = E\(T), and if this is all of V' we’re done: T = AI. Otherwise, M has lower di-
mension and by Exercise 4.7 it has an orthonormal basis that diagonalizes T'|5;. But
V = M&M* (an orthogonal direct sum), and M = E\ obviously has an orthonormal
basis of eigenvectors. Combining these bases we get an orthonormal diagonalizing basis
forallof V. O

We now elaborate the basic properties of normal operators on an inner product space.

4.8. Proposition. A normal linear operator T : V. — V on a finite dimensional inner
product space has the following properties.

1. If T:V =V is normal, |T(v)|| = ||T*(W)]|| for allve V.
Proof: We have

IT@I* = (Tv,Tv) = (T*T(v),v) = (TT*(v),v)
= (T"0,T*) = |T*(v)|?

2. For any c € K, T —cl is also normal because (T —cI)* = T* —¢l and cI commutes
with all operators.

3. If T(v) = v then for the same vector v we have T*(v) = Mv. In particular,
Ex(T*) = Ex(T). (This is a much stronger statement than our earlier observation

that spy (T*) = spg(T) = {X: A € spx(T)}).
Proof: (T — ) is also normal. Therefore if v € V and T'(v) = v, we have
Tw) =M = (T -N(T—-Nuv,v)=|(T-Nv|*>=0
which implies that
0= (T -M\T~-Nv,v)=|(T*=XDv||*> = T*v) =

4. If X p inspg(T), then Ex L E,,.
Proof: If v,w are in E\, E, then
M, w) = (M, w) = (Tv,w) = (v, T*w) = (v,Tw) = p(v,w)
since T*(w) = @w if T(w) = pw. Therefore (v,w) =0 if p# .
It M= ZAGSP(T) E\(T) for a normal operator T, it follows that this is a direct sum

of orthogonal subspaces M = EB /\ESP(T)E,\(T), and that there is an orthonormal basis
{e1,...,en} C M consisting of eigenvectors.

4.9. Corollary. If T :V — V is normal and K = C (or if K = R and the characteristic
polynomial pr splits over R), there is a diagonalizing orthonormal basis {e;} and V is
an orthogonal direct sum €D o1y E(T).

Proof: The characteristic polynomial pr(xz) = det(T — «I) splits in C[z], so there is

an eigenvalue Ao such that T'(vg) = Agvo for some vy # 0. The one-dimensional space
M = Cuyg is T-invariant, but is also T*-invariant since T*(vg) = Agvo by (3.). Then

T*(M)C M = T**(M*) = T(M*) C M+ .
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We also have T*(M~*) C M+ because T(M) C M « T*(M*)C M+. O

4.10. Exercise. If N is a subspace in an inner product space that is invariant under
both T and T*, prove that T|y satisfies

(T|n)" = (T"|n)

Note: Here we do not assume T* = T, which was assumed in Exercise 4.7.

Since T'|,;. is again a normal operator with respect to the inner product M= inherits
from the larger space V, but dim(M*) < dim(V), we may argue by induction to get an
orthonormal basis of eigenvectors. [J

4.11. Theorem (Orthogonal Diagonalization). Let T : V — V be a linear operator
on a finite dimensional inner product space. Assume that the characteristic polynomial
pr(z) splits over K (certainly true for K = C). There is an orthonormal basis that
diagonalizes T' if and only if T is normal: T*T =TT

Note: It follows that V = @ Aespy (T) EA (T); in particular, the eigenspaces are mutually
orthogonal. Once the eigenspaces are determined it is easy to construct the diagonalizing
orthonormal basis for 7.

Proof: (=) has just been done.
Proof: («<). If there is an orthonormal basis X = {e;} that diagonalizes T' then

A1 0
A2
T]xx = '
0 An

But [T*]xx is the adjoint of the matrix [T]xx,

Obviously these diagonal matrices commute (all diagonal matrices do), so
[T Tz = [T"]xx[T)xx = [T]xx[T"]xx = [TT"]xx

which implies T*T = TT* as operators on V. [
4.12. Example. Let L4 : C?> — C2 be the multiplication operator determined by

1 2
+=(o3)
so that La(e1) = e; and La(e; + e2) = 2-(e1 + e2), where X = {e1,es} is the stan-
dard orthonormal basis. As we saw in Chapter 2, [La]lxx = A. But L4 is obviously
diagonalizable with respect to the non-orthonormal basis 9 = {f1,fz} where f; = ey,
f; = e; + 3. The f; are basis vectors for the (one-dimensional) eigenspaces of L 4, which
are uniquely determined without any reference to the inner product in V' = C?; if there
were an orthonormal basis that diagonalized L4 the eigenspaces would be orthogonal.

which they are not. This operator cannot be orthogonally diagonalized with respect to
the standard inner product in C2. O
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4.13. Exercise. Let T : C?> — C? be L4 for the matrix

L (1 -1
A_A_(_l 2)

in M(2.C). Determine the eigenvalues in C and the eigenspaces, and exhibit an orthonor-
mal basis 9 = {f1, {2} that diagonalizes T.

4.14. Exercise. Prove that |[A| = 1 for all eigenvalues A € sp(T') of a unitary operator
(so A lies on the unit circle if K =C, or A = £1 if K =R).

4.14A. Exercise. If P is a projection on a finite dimensional vector space (so P? = P),

(a) Explain why P is diagonalizable, over any field K. What are the eigenvalues and
eigenspaces?

(b) Give an explicit example of a projection operator on a finite dimensional inner
product space that is not orthogonally diagonalizable.

4.14B. Exercise. If P is a projection operator (so P? = P) on a finite dimensional
inner product space, prove that P is a normal operator < K (P) = ker(P) and R(P) =
range(P) are orthogonal subspaces.

Note: (=) is trivial since K(P) = Ex—o(P) and R(P) = Ex=1(P).

4.14C. Exercise. A projection operator P (with P2 = P) on an inner product space is
fully determined once we know its kernel K (P) and range R(P), since V = R(P)® K (P).
The adjoint P* is also a projection operator because (P*P*) = (PP)* = P*.

(a) In an inner product space, how are K(P) and R(P) related to K(P*) and R(P*)?

(b) For the non-orthogonal direct sum decomposition of Exercise VI-4.5 give explicit
descriptions of the subspaces K (P*) and R(P*). (Find bases for each.)

If T:V — V is an arbitrary linear operator on an inner product space we showed in
IV.3.16 that sp(T™) is equal to sp(T); in VI-3.48 we showed that

Ex(T*) = Ex(T) (A esp(T))

for normal operators. Unfortunately the latter property is not true in general.

4.14D. Exercise. If T : V — V is a linear operator on an inner product space and
A € sp(T'), prove that

(a) By(T*) = K(T* — ) is equal to R(T — \)*.
(b) dim E5(T*) = dim E\(T).
(¢) T diagonalizable = T is diagonalizable.

As the next example shows, Ex(T*) = K(T* — XI) is not always equal to Ey(T') unless
T is normal.

4.14E. Exercise. If P : V — V is an idempotent operator on a finite dimensional vector
space (so P? = P), explain why P must be diagonalizable over any field. If P # 0 and
P # I, what are its eigenvalues and its eigenspaces.

4.14F. Exercise. Let P be the projection operator on an inner product space V corre-
sponding to a non-orthogonal direct sum decomposition V' = R(P) @& K(P). Its adjoint
P* is also a projection, onto R(P*) along K (P*).

(a) What are the eigenvalues and eigenspaces for P and P*?
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(b) For A =1, is Fx(T*) = K(T* — \I) is equal to E\(T)?
Hint: See Exercise VI-4.14C and D.

Unitary Equivalence of Operators. We say that two operators T, T’ on a
vector space V are similar, written as T’ ~ T, if there is an invertible linear operator S
such that 7" = SAS™!; this means they are represented by the same matrix [1"]yy =
[T]xx with respect to suitably chosen bases in V. We say T’ is unitarily equivalent
to T if there is a unitary operator U such that T/ = UTU*(= UTU~1). This relation,
denoted T" = T', is an RST equivalence relation between operators on an inner product
space, but is more stringent than mere similarity. We now show 7" & T if and only if
there are orthonormal bases X, Q) such that [T"]ggy = [T]xx.

4.15. Definition. A linear isometry is a linear operator U : V. — W between inner
product spaces that preserve distances in mapping points from V into W,

(52) 1T = UV lw = U (v =) lw = [lv = v'l|v ;

in particular ||[U()|lw = ||v||v for all v € V. Isometries are one-to-one but need not be
bijections unless dim V = dim W (see exercises below).

A linear map U : V — W is unitary if U*U = idy and UU* = idyw, which means
U is invertible with U~' = U* (hence dim V = dim W). Obviously the inverse map
U=L: W — V is also unitary. Unitary operators U : V. — W are also isometries since

2 * 2
Uz} = (Uz,Uz)y, = (x, U Uz)v = |2l
Thus unitary maps are precisely the bijective linear isometries from V to W.
If V is finite dimensional and we restrict attention to the case V' = W, either of the
conditions UU* = idy or U*U = idy implies U is invertible with U~! = U* because
U one-to-one <« U is surjective <« U is bijective,

for any linear operator U : V — V when dim(V) < cc.

4.16. Exercise. If V, W are inner product spaces of the same finite dimension, explain
why there must exist a bijective linear isometry 7' : V' — W. Is T unique? Is the adjoint
T*: W — V also an isometry?

4.17. Exercise. Let V = C™, W = C™ with the usual inner products. Exhibit examples
of linear operators U : V' — W such that

(a) UU* =idy but U*U # idy.
(b) U*U =idy but UU* # idw.

Note: This might not be possible for all choices of m,n (for instance m = n).

4.18. Exercise. If m < n and the coordinate spaces K™, K" are equipped with the
standard inner products, consider the linear operator

T:K" - K" T(x1,...,2m) = (T1,-. -, Tm,0,...,,0)

This is an isometry from K™ into K", with trivial kernel K(T') = (0) and range R(T') =
K™ x (0) in K" = K™ @ K",

(a) Provide an explicit description of the adjoint operator 7* : K® — K™ and deter-
mine K(T*), R(T*).
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(b) Compute the matrices of [T] and [T*] with respect to the standard orthonormal
bases in K™, K".

(¢) How is the action of T™* related to the subspaces K (T'), R(T*) in K™ and R(T"), K (T™*)
in K®? Can you give a geometric description of this action?

Unitary operators can be described in several different ways, each with its own ad-
vantages in applications.

4.19. Theorem. The statements below are equivalent for a linear operator U : V. — W
between finite dimensional inner product spaces.

(a) UU* =idw and U*U =idy (so U* =U~! and dim V = dim W).

(b) U maps SOME orthonormal basis {e;} in V to an orthonormal basis {f; = Ul(e;)}
mn W.

(¢) U maps EVERY orthonormal basis {e;} in V to an orthonormal basis {f; = Ul(e;)}
m W.

(d) U is a surjective isometry, so distances are preserved:
1U(x) =UW)lw = llz —yllv  forz,yeV
(Then U is invertible and U~ is also an isometry).

(e) U is a bijective map that preserves inner products, so that

(U@),U)y = (z.y)y  foralaz,yeV.

(W& (e
&7
(a) & eV &S]

Figure 6.8. The pattern of implications in proving Theorem 4.19.

Proof: We prove the implications shown in Figure 6.8.

Proof: (d) < (e). Clearly (e) = (d). For the converse, (d) implies U preserves lengths
of vectors, with VertUz||w = ||z||v for all . Then by the Polarization Identity for inner
products

1A 1
(z,y) = 1 Z e & + iyl ,
k=0

so inner products are preserved, proving (d) = (e) when K = C; same argument but
with only 2 terms if K = R.

Proof: (e) = (c) = (b). These are obvious since “orthonormal basis” is defined in
terms of the inner product. For instance if (e¢) holds and X = {e;} is an orthonormal
basis in V then @ = {f; = U(e;)} is an orthonormal family in W because

(fi, fi)w = (U(ei), U(ej))w = (e;, U Uej)v = (es,¢j)v = 0;; (Kronecker delta).
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But
K-span{f; = U(e;)} = U(K-span{e;}) = U(V) = W,

so Q) spans W and therefore is a basis.
Proof (a) < (e). We have

U'U=idy & U'Uz=xz forall z & (Uz,Uy)w = (2, U Uy)y = (z,y)v

for all z,y € V.

Proof: (b) = (e). Given an orthonormal basis X = {e;} in V such that the vectors ) =
{fi =U(e;)} are an orthonormal basis in W, we may write z,y € V asx = .(z,€;)e;,

etc. Then
Ulzx) = Z(a:, i)y Ule) = Z(x, ey fi, ete,
hence by orthonormality
Uz, Upw = (D@ e fis D wre)vfi)y = O (@edy e, (fis fidw
i J 4,J

= Z(x,ek)v(ekay)v = (x,y)v O

k

Here we applied a formula worth remembering (Parseval’s identity).

4.20. Lemma (Parseval). If x =}, ae;, y = ) bje; with respect to an orthonormal
basis in a finite dimensional inner product space then (x,y) = Y ._; arby. Equivalently,
since a; = (x,e;) , ... ete, we have

n
Z x,ex)(er,y) for all x,y
k=1

in any finite dimensional inner product space, since (y,ex) = (eg,y). O

Unitary Operators vs Unitary Matrices.

4.21. Definition. 4 matriz A € M(n,K) is unitary if AA* = I (which holds & AA* =
I & A* = A7), where A* is the adjoint matrix such that (A*);; = Aj;. The set of
all unitary matrices is a group since products and inverses of such matrices are again
unitary. When K = C this is the unitary group

Un)={AeMn,C): A*A=1}={A€M(@n,C): A*=A""1}.

But when K = R and A* = A" (the transpose matriz), it goes by another name and is
called the orthogonal group,

On)={AeM(n,R): A"A=1}={AcM(n,R): A" = A~}

Both groups lie within the general linear group of nonsingular matrices GL(n,K) =
{A : det(A) # 0}, and both contain noteworthy subgroups

SPECIAL UNITARY GROUP: SU(n) = {A:A*A =1 and det(A) = +1}
SPECIAL ORTHOGONAL GROUP: SO(n) = {A:A'A=1 and det(A4) = +1}

The group SU(3), for instance, seems to be the symmetry group that governs the relations

between electromagnetic forces and the weak and strong forces of nuclear physics. As we
will see in the next section, SO(3) is the group of rotations in Euclidean space R?, by

137



any angle about any oriented line through the origin (with a similar interpretation for
SO(n) in higher dimensional spaces R™).

Given a matrix A € M(n, K) it is important to know when the operator L4 : K" — K"
is unitary with respect to the standard inner product. The answer extends the list of
condititions (a) — (e) of Theorem VI-4.19 describing when an operator is unitary, and is
quite useful in calculations.

4.22. Proposition. If A € M(n,K) the following conditions are equivalent.
1. Ly : K" — K" is unitary;
2. A is a unitary matriz, so A*A = AA* =TI in M(n,K)
3. The rows in A form an orthonormal basis in K™.
4. The columns in A form an orthonormal basis in K™.

Proof: With respect to the standard basis X = {eq,..., e} in K" we know that [La]x =
A, but since X is an orthonormal basis we also have [(La)*]x = [La]} = A" (the adjoint
matrix), by Exercise 3.12. Next observe that

L= (LA)* as operators on K"

(This may sound obvious, but it actually needs to be proved keeping in mind how the
various “adjoints” are defined — see Exercise 4.24 below.) Then we get

A"A =1 <« idgn =[La-alx = [La<]x - [La]x = [(La)*]x - [La]x
< (La)"La=idgn < (L4 is a unitary operator) ,

proving (1.) < (2.)
By definition of row-column matrix multiplication we have

5ij = (AA*)ZJ = ZAik(A*)kj = ZA’L]CA—jk = (ROWZ(A), ROWj(A))Kn
k k

This says precisely that the rows are an orthonormal basis with respect to the standard
inner product in K”. Thus (2.) < (3.), and similarly A*A = I < the columns form an
orthonormal basis in K™. 0O

A similar criterion allows us to decide when a general linear operator is unitary.

4.23. Proposition. A linear operator T : V. — V on a finite dimensional inner product
space is unitary < its matric A = [T|x with respect to any orthonormal basis is a unitary
matriz (so AA* = A*A=1).

Proof: For any orthonormal basis we have

*

I'=lidv]x = [T"T]x = [T"]x [T]x = ([T)x)" [T]x = A"A

and similarly AA* = I, so A is a unitary matrix.
Conversely, if A = [T]x is a unitary matrix we have

(Tei, Tej) = ( 214]ﬂ €L , Z A[j ej ) = Z AkZA_[J 5kl
k Y4 kL

D Aki(A%)jk = (AA%)ji = §ji = (es,¢))
k

Thus T maps orthonormal basis X to a new orthonormal basis 9 = {T'(e;)}, and T is
unitary by Theorem 4.19(c). O
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4.24. Exercise. Prove that Ly~ = (LA)* when K" is given the standard inner product.
Hint: Show that (A*x,y) = (x, Ay) for the standard inner product.

This remains true when A in an n X m matrix, L4 : K™ — K", and (L4)* : K* — K™,
4.24A. Exercise. If A € M(n,C) give a careful proof that A*A =1 < AA* =1T.

4.25. Exercise. Given two orthonormal bases {e;}, {f;} in finite dimensional inner
product spaces V', W of the same dimension, construct a unitary operator U : V — W
such that Ul(e;) = f; for all q.

Change of Orthonormal Basis. If T : V — V is a linear operator on a finite
dimensional inner product space, and we know its matrix [T]xx with respect to one

orthonormal basis, what is its matrix realization with respect to a different orthonormal
basis 7?

4.26. Definition. Matrices A, B € M(n,K) are unitarily equivalent, indicated by
writing A = B, if there is some unitary matriz S € M(n,K) such that B = SAS* =
SAS~t. O

4.27. Theorem (Change of Orthonormal Basis). If X = {e;} and Y = {f;} are
orthonormal bases in a finite dimensional inner product space and T : V. — V is any
linear operator, the corresponding matrices A = [T)xx and B = [T]yy are unitarily
equivalent: there is some unitary matriz S such that

The identity (53) remains true if the transition matriz S is multiplied by any scalar such
that [A\? = A\ = 1.
Proof: For arbitrary vector bases X,2) in V' we have [id]xy = [1d]5§€ and

(54) [Ty = [idyx - [T]xx - [idlxy = S [T]xxS™!

where S = [id]yx is given by the vector identities e; = id(e;) = >_; Sjif;. But we also
have e; = >~ .(e;, f;) fj, s0 Sij = (e, fi), for 1 <, j <.
The transition matrix S in (54) is unitary because S;; = (e;, fi) =

(ROWZ'(S), ROWj(S))Kn = Z&k% = Z(ekafi) (ekvfj)
k

k

D (firen) (ens i) = (f: fi) = 655

k

by Parseval’s identity. Then S* = S~1 = [1d]5§€ = [id]xg by Theorem 4.22, and
Ty = S [TxxS* = S[T)xxS™' O

We conclude that the various matrix realizations of 1" with respect to orthonormal bases
in V are related by unitary equivalence (similarity modulo a unitary matrix) rather than
similarity modulo a matrix that is merely invertible. Unitary equivalence is therefore a
more stringent condition on two matrices than similarity (as defined in Chapter V).
Elements U in the unitary group U(n) act on matrix space X = M(n,C) by conjuga-
tion, sending
A~ UAU =UAU".

This group action U(n) x X — X partitions X into disjoint orbits

Oa=U(n)-A={UAU* :U € U(n)},
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which are the the unitary equivalence classes in matrix space. There is a similar group
action O(n) x M(n,R) — M(m, R) of the orthogonal group on real matrices. Recall that
the similarity class of an n x n matrix A is its orbit GL(n,K) - A = {EAE™! : E €
GL(n,K)} under the action of the general linear group GL(n,K) = {A : det(A) # 0},
which is considerably larger than U(n) or O(n) and has larger orbits.

Diagonalization over K = C: A Summary. We recall that the spectra
spc(T) of operators over C and their adjoints have the following properties.

1. For any T', sp(T*) = sp(T) and dim Ex(T*) = dim Ex(T). But as we will see in

4.14E below, the X eigenspace F5(T*) is not always equal to E)(T) unless T is
normal.

2. If T'=T"* then T is orthogonally diagonalizable, and all eigenvalues are real because
Tw)=\= -
Moll* = (T(v),v) = (v,T*(v)) = (v, \v) = A|J]?

3. If T is unitary then all eigenvalues satisfy |A| = 1 (they lie on the unit circle in C),
because

T)=Xxv = |v|*=(T"Tv,v) = (Tv,Tv) = (v, v) = [A]* - [Jv]|?
= \*=1ifv#0

4. If T is skew-adjoint, so T* = —T, then all eigenvalues are pure imaginary because
/\”UHQ = (T’U,’U) = (’UvT*U) = (Uv _T(U)) = (Uv _)‘U) = _XHU”2
Consequently, A = —X and A € 0+ iR in C.

5. A general normal operator is orthogonally diagonalizable, but there are no restric-
tions on the pattern of eigenvalues.

In Theorem 4.11 we proved the following necessary and sufficient condition for a linear
operator on a complex inner product space to be diagonalizable.

4.28. Theorem (Orthogonal Diagonalization). A linear operator T : V — V on
a finite dimensional complex inner product space is orthogonally diagonalizable < T is
normal (so T*T =TT*). O

VI1I.5. Some Operators on Real Inner Product Spaces:
Reflections, Rotations and Rigid Motions.

All this works over K = R except that in this context unitary operators are referred
to as orthogonal transformations. The corresponding matrices A = [T]x,x with
respect to orthonormal bases satisfy A'A = I = AA' so A' = A™! in M(n,R). An
orthogonal transformation might not have enough real eigenvalues to be diagonalizable,
which happens < the eigenspaces E\(T) (A € R) fail to span V. In fact there might not
be any real eigenvalues at all. For example, if Ry = (counterclockwise rotation about
origin by 6 radians) in R?, and if @ is not an integer multiple of 7, then with respect to
the standard R-basis X = {e1, e2} we have

cos(f) —sin()
o= nle) ooty )

whose complex eigenvalues are e? and e~%; there are no real eigenvalues if § # nr, even
though Ry is a normal operator. (A rotation by 6 # nm radians cannot send a vector
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v # 0 to a scalar multiple of itself.)

The Group of Rigid Motions M(n). Rigid motions on R” are the bijective
maps p : R" — R” that preserve distances between points,

lo(@) = pW)ll = llz =yl forall z,y .

We DO NOT assume p is linear. The rigid motions form a group M(n) under composition;
it includes two important subgroups

1. TRANSLATIONS: Operators T' = {t; : b € R"} where
ty(z) =z +b for all z € R™ (b € R" fixed)

Under the bijective map ¢ : R" — T with ¢(t) = t, we have ¢(s +t) = ¢(s) o &(t)
and ¢(0) = idgn. Obviously translations are isometric mappings since

[to(z) = to(y)ll = [(z +b) = (y = b) = le =yl  forall band z,y

but they are NOT linear operators on R™ (unless b = 0) because the zero element
does not remain fixed: t,(0) = b.

2. LINEAR ISOMETRIES: Operators H = {L4: A € O(n)} where Ly(z) = A-xz and A
is any orthogonal real n x n matrix (so A is invertible with A® = A~1).

Although rigid motions need not be linear operators, it is remarkable that they are
nevertheless simple combinations of a linear isometry (an orthogonal linear mapping on
R™) and a translation operator.

(55) pz) = (thoLa)(x)=Az+b (beR™ AcO(n))

for all z € R™. In particular, any rigid motion p : R® — R" that leaves the origin fixed
is automatically linear.

5.1 Proposition. If p : R™ — R"™ is a rigid motion that fizes the origin (so p(0) = 0),

then p is in fact a LINEAR operator on R™, p = L4 for some A € O(n). In general, every

rigid motion is a composite of the form (55).

Proof: The second statement is immediate from the first, for if p moves the origin to

b = p(0), the operation t_; 0 p is a rigid motion that fixes the origin, and p = tpo (t_p0p).
To prove the first assertion, let {e;} be the standard orthonormal basis in R™ written

as column vectors and let €, = p(e;). Since p(0) = 0 lengths are preserved because

lo(x)]| = ||p(x) — p(0)|| = ||x||, and then inner products are also preserved because
~2(p(x),p(y)) = lp(x) = p®)I* = lo)I* = oI
= Ix=ylI* = IIxI” - yl* = —2(x,¥)

Hence the images €; = p(e;) of the standard basis vectors are also an orthonormal basis.

Now let A be the matrix whose i'" column is e} = col(0,...,1,...,0), so La(e;) =
A-e; =el. Then Aisin O(n), La and (La)~! = L,-1 are both linear orthogonal
transformations on R™, and the product L;xl o p as a rigid motion that fixes each e; as
well as the zero vector. But any such motion must be the identity map. In fact if x € R"
then (x,e;) = (p(x), p(e;)) = (p(x),€}), and since e} = e; we get

= (x,€;) = (P(X)ae;) = (p(x),ei) = z;

for all i. Hence x' = p(x) = x for all x, as claimed. O
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Every rigid motion on R”,
T(x)=A-x+1t,=(tyoLa) with A € O(n) and b € R"

has two components, an orthogonal linear map L4 and a translation t;. Rigid motions
are of two types, orientation preserving and orientation reversing. Translations
always preserve orientation of geometric figures, so the nature of a rigid motion 7T is
determined by its linear component L4, which preserves orientation if det(4) > 0 and
reverses it if det(A) < 0. As a simple illustration, consider the matrices (with respect to
the standard basis X in R?) of a rotation about the origin Ry (orientation preserving),
and a reflection r, across the y-axis (orientation reversing).

cos § —sin 6 -1 0
[Ro]xx = ( sin @ cos 8 ) [rylacx = ( 0 1 >
ROTATION: Ry, det [Rg] = +1 REFLECTION: 1y, det [ry] = —1

Rotations and reflections can be described in terms of the inner product in R™.

5.2 Example (Reflections in Inner Product Spaces). If V is a finite dimensional
inner product space over R, a hyperplane in V is any vector subspace M with dim(M) =
n—1 (so M has “codimension 1”7 in V). This determines a reflection of vectors across

M.

Discussion: Since V = M@&M = (orthogonal direct sum) every vector v splits uniquely as
v = v)+vy (with “parallel component” v € M, and v, € M+). By definition, reflection
ry across M is the (linear) operator that reverses the “perpendicular component” v, ,
so that

(56) ry (v +vL) = —vL =v—2-v1

as shown in Figure 6.9.

Figure 6.9. Geometric meaning of reflection rjs across an (n—1)-dimensional hyperplane
in an n-dimensional inner product space over R

Now, let {e1,...,en—1} be an orthonormal basis in the subspace M and let e, be v

renormalized to make ||e,|| = 1, so M+ = Re,,. We have seen that
n—1
v =Y (vex)ex ,
k=1

S0 v = v — v = c- e, for some c € R. But in fact ¢ = (v, e,) because

c=(cen,en) = (v —v),e,) = (v,€,) +0
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This yields an important formula involving only the inner product.

(57) TMZUH—UJ_:(UH+UJ_)—2-UJ_:v—2(v,en)-en

Note: we need |le,|| =1 to make this work. O

5.3 Exercise. Show that (57) implies the following properties for any reflection.
(a) raprory =idy, so rpy is its own inverse;
(b) det(rpr) = —1, so all reflections are orientation-reversing,.
(c) M is the set of fixed points Fix(ray;) = {z :ry(z) =2}, O

5.4 Exercise. Prove that every reflection rj; on an inner product space preserves
distances,

(@) = rar ()1 = Il — yl|
for all z,y € V.

5.5 Exercise. If M is a hyperplane in a finite dimensional real inner product space V'
and b ¢ M, the translate b + M (a coset in V/M) is an n — 1 dimensional hyperplane
parallel to M (but is not a vector subspace). Explain why the operation that reflects
vectors across M’ = b+ M must be the rigid motion T' =t o rp; ot_y.

Hint: Check that 72 = T and that the set of fixed points Fix(T) = {v € V : T'(v) = v}
is precisely M’.

In another direction, we have Euler’s famous geometric characterization of orientation
preserving orthogonal transformations L4 : R? — R3 with A'A = I = AA* in M(3,R)
and det(A) > 0. In fact, det(A) = +1 since A'A = I implies (det(A))2 =1, so
det(A) = +1 for A € O(n).

5.6 Theorem (Euler). Let A € SO(3) = {A € M(3,R): A*YA =1 and det(A) =1}. If
A £ T then A =1 is an eigenvalue such that dimg (EAZl) =1. If vg # 0 in Ex—1 and
¢ =Ry there is some angle 0 ¢ 277 such that

L4 = Ry g = (rotation by 0 radians about the oriented line ¢ through the origin).

(Rotations by a positive angle are determined by the usual “right hand rule,” with your
thumb pointing in the direction of vy).

Proof: The characteristic polynomial pr(x) for T = L4 has real coefficients. Regarded
as a polynomial pr € R[z] C C[x], its complex roots are either real or occur in conjugate
pairs z = x + iy, Z = x — iy with y # 0. Since degree(pr) = 3 there must be at least
one real root A. But because T = L4 is unitary its complex eigenvalues have || = 1,
because if v # 0 in Ejy,

ol = (T(v), T(v)) = (v, xv) = AP [Jo]* = AP =1.

If X is real the only possibilities are A = £1. The real roots cannot all be —1, for then
det(T) = (—1)3 = —1 and we require det(T) = +1. Thus A = 1 is an eigenvalue, and we
will see below that dimpg (E,\Zl) =1.

If vg # 0 in Ex—1, let M = Rvy. Then M is 2-dimensional and is invariant under
both T and T* = T~!. Furthermore (see Exercise 5.7) the restriction T'|;1 is a unitary
(= orthogonal) transformation on the 2-dimensional space M+ equipped with the inner
product it inherits from R3. If we fix an orthonormal basis {fi, f} in M+ and let
fo = vo/|lvol|, we obtain an orthonormal basis for R3. The matrix A of T|y;. with
respect to Xo = {f1, f2} is in

SO(2) = {AeM(2,R): A"A =T and det(A4) = 1}
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because the matrix of T' with respect to the orthonormal basis X = { fo, f1, f2} is

[T]x—[(l) 2]

Thus A € SO(2) because 1 = det ([T]x) = 1-det(A). As noted below in Exercise VI-5.8,
if A € SO(2) the rows form an orthonormal basis for R? and so do the columns, hence
there exist a,b € R such that

A+t =1 and A=(a _b)
b a

It follows easily that there is some 6 € R such that
cos § —sin 6
A= ( sin @ cos 6 > ’
This is the matrix A = [Rg]x, of a rotation by @ radians about the origin in M=, so

T :R? — R3 is a rotation Ry g by 6 radians about the axis £ = Rvy. O

We cannot have 6 € 277 because then T' = id is not really a rotation about any well-
defined axis); that’s why we required A # I in the theorem.

5.7 Exercise. Let T : V — V be a linear operator on a finite dimensional inner product
space, and M a subspace that is invariant under both 7" and 7. Prove that the restriction
(T|M) : M — M is unitary with respect to the inner product M inherits from V.
Hint: Recall Exercise 4.10.

5.8 Exercise. If A = [a,b;c,d] € M(2,R) verify that A*A = I < the rows of A are an
orthonormal basis in R?, so that

A+ =1 A+d?=1 ac+bd=0

If, in addition we have
det(A) = ad — be = +1

prove that ¢ = —b, d = a and a? + b? = 1, and then explain why there is some § € R
such that a = cos() and b = —sin(0).

Note: Thus L4 : R? — R? is a counterclockwise rotation about the origin by 6 radians.
Hint: For the last step, think of a?4+b? = 1 in terms of a right triangle whose hypoteneuse
has length = 1.

5.9 Exercise. Consider the linear map L4 : R? — R2 for the matrix

-1 1 .
A= < 11 > in O(2)
What is the geometric action of L 4?7 If a rotation, find the angle 0; if not, show that the
set of fixed points for L4 is a line through the origin L, and L4 = (reflection across L).

5.10 Exercise. If A = [ ch b ] is in O(2) and has det(A) = —1,

d
1. Prove that L4 : R? — R? is reflection across some line ¢ through the origin.
2. Explain why

a>+b* =1 A+d*=1 ac+bd=0 det(A) = ad — bc = —1

cos sin 6

and then show there is some 0 such that A = )
sin @ —cos @
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Note: The preceding matrix is not a rotation matrix since det(A) = —1. The angle 6
determined here is related to the angle between the line of reflection ¢ and the +az-axis.
Hints: The map L4 : C2 — C? is unitary, and in particular is orthogonally diagonal-
izable. What are the possible patterns of complex eigenvalues (counted according to
multiplicity), and how do they relate to the requirement that det(A) = —17

VI1.6. Spectral Theorem for Vector and Inner Product
Spaces.

If V is a vector space over a field K (not necessarily an inner product space), and if
T :V — V is diagonalizable over K, then V' = @/\esp(T) E\(T) (an ordinary direct sum)
— see Proposition 11-3.9. This decomposition determines projection operators Py = P3

of V onto E(T') along the complementary subspaces @, E.(T). The projections
Py = P\(T') have the following easily verified properties:

1. P2 =P
2. PAP,=P,P\=0if A # pin sp(T);
3. 1=3, Py

Condition (1.) simply reflects the fact that Py is a projection operator. Each v € V has
a unique decomposition v = Y, vy with vy € E\(T), and (by definition) Py(v) = va.
Property (3.) follows from this. For (2.) write v = ), vx and consider distinct a # 3 in
sp(T'). Then

PaPs(v) = PaPs( D va) = Palvg) =0 (since a # )
A

and similarly for PgP,. The operators {Py : A € spg(T)} are the spectral projections
associated with the diagonalizable operator 7.

Now let V' be an inner product space. If T is orthogonally diagonalizable we have
additional information regarding the spectral projections Py (T):

4. The eigenspaces E5(T) are orthogonal, Ex L E, if X\ # p, and V = E.B/\EA(T) is
an orthogonal direct sum decomposition.

5. The Py are orthogonal projections, hence they are self-adjoint in addition to having
the preceeding properties, so that Pf =P, = PFy.

In this setting we can prove useful facts relating diagonalizability and eigenspaces of an
operator T : V — V and its adjoint T*. These follow by recalling that there is a natural
isomorphism between any finite dimensional inner product space V and its dual space
V*, as explained in Lemma VI-3.2. Therefore given any basis X = {e1,...,e,} in V
there exists within V' a matching basis X’ = {f1,..., fn} that is “dual to” X in the sense
that

(e;, fj) =0;; (Kronecker delta)

These paired bases can be extremely useful in comparing properties of 7' with those of
its adjoint T .

6.1 Exercise. Let X = {e1,...,e,} be an arbitrary basis (not necessarily orthonormal)
in a finite dimensional inner product space V.

(a) Use induction on n to prove that there exist vectors 9 = {fi,..., fn} such that
(€i, f5) = 0ij.
(b) Explain why the f; are uniquely determined and a basis for V.
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Note: If the initial basis X is orthonormal then f; = e; and the result trivial; we are
interested in arbitrary bases in an inner product space.

6.1A Exercise. Let V be an inner product space and T a linear operator that is
diagonalizable in the ordinary sense, but not necessarily orthogonally diagonalizable.
Prove that

(a) The adjoint operator T is diagonalizable. What can you say about its eigenvalues
and eigenspaces?

(b) If T is orthogonally diagonalizable so is T*.

Hint: If {e;} diagonalizes T what does the “dual basis” {f;} of Exercise 6.1 do for T*?

6.1B Exercise. If V is a finite dimensional inner product space and T : V — V is
diagonalizable in the ordinary sense, prove that the spectral projections for T are the
adjoints of those for T"

Po(T*) = (PA(T))"  for all X € sp(T)

Hint: Use VI-6.1A and dual diagonalizing bases; we already know sp(T*) = sp(T).
Note: (Py(T))" might differ from Py (T).

We now procede to prove the spectral theorem and examine its many applications.

6.2 Theorem (The Spectral Theorem). If a linear operator T : V — V is diagonal-
izable on a finite dimensional vector space V' over a field K, and if {Px : A € spg(T)} are
the spectral projections, then T' has the following description in terms of those projections

(58) T- Y AR

Aesp(T)

If f(z) = 3, cka® € K[z] is any polynomial the operator f(T) =>",_, cxT* takes the
form

(59) fT)y="%_ [P

Aesp(T)

In particular, the powers T* are diagonalizable, with T* = Z)\Gsp(T) \E.Py.

If we define the map ® : Klz] — Homg(V,V) from polynomials to linear operators
on'V, letting ®(t) =1 and

O(f) :chTk for  f(z) :chxk ,
k=0 k=0

then ® is linear and a homomorphism of associative algebras over K | so that

(60) O(fg) =@(f)o®(g)  for f,g € K[z]

Finally, ®(f) = 0 (the zero operator on V) if and only if f(\) =0 for each A € spg(T).
Thus ©(f) = ®(g) if and only if f and g take same values on the spectrum sp(T), so
many polynomials f € K[z] can yield the same operator f(T).

Note: This is all remains true for orthogonally diagonalizable operators on an inner
product space, but in this case we have the additional property

(61) ®(f)=®(f)* (adjoint operator)
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where f(z) =Y,_, 2" and ¢ is the complex conjugate of c. [

Proof of (6.2): If v € V' decomposes as v =}, vx € D cqp(r) Er(T), then
T(v):T(Zm) = Z)\ vA—Z/\ Py(v
A
( >\ n).

Aesp(T)

for all v € V, proving (58). Then T = 3°, AP\ becomes

TF(v) = Tk<Zv)\) = ZT]CUA
A

A
But T'(vy) = Avy =
TQ(U)\) = T()\-m) = /\21))\, Tg(’U)\) = /\31))\, etc

soif v =73, vy we get

THw) = 3" Moy =S APy (0) = (Y NP v
A A

A

for all v € V. Noting that the powers T and the sum f(T') are linear operators, (59)
follows: For any f(x) = 3", cxa* we have

f(T)() = f(T)(;w) = Xm0
Z(Z%T’“) =22 aThw)
ZZ%WA = Z(Zcm ) va
- ;f vy = z/\:f/\()\)Pf v

(Zf()\)P,\)U forallv e V
X

Thus f(T) = >, f(X)Px as operators on V.
When f(x) is the constant polynomial f(z) =t we get

S fAP=Y Pi=1
A

Aesp(T)

as expected. Linearity of ® is easily checked by applying the operators on either side
to a typical vector. As for the multiplicative property, let f = 3, apz® and g =
> o>0 bezt, so fg = >k o—o Arbe 2#+¢. First notice that the multiplicative property holds

for monomials f = z¥, g = 2* because

oMo = (S AR)( Y 4P)

Xesp(T) pesp(T)
_ Z)\k/LEPAP;L _ Z)‘kHPA
A A
_ (I)(xk-l-f)
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(P\P, =0 if A # p, and P = Py). Then use linearity of ® to get

O(fg) = CI)( Z akngk"'é) = Z apbe® (k)

k,6=0 k,6=0

= S abd@)eE’) = (Y ad@)) - (D b))
k£ k=0 £=0

= ©(f)o®(9)

That completes the proof of Theorem 6.2. [

Although the operator ®(f) = 3", f(\)P\ was defined for polynomials in K[z], this
sum involves only the values of f on the finite subset sp(7') C K, so it makes sense for all
functions h : sp(T) — K whether or not they are defined off of the spectrum, or related
in any way to polynomials. Thus the spectral decomposition of T" determines a linear
map

(62) ® : & — Homg(V, V) o(h)= > h(NPy
Aesp(T)

defined on the larger algebra & D F[z] whose elements are arbitrary functions h from
sp(T) — K. The same argument used for polynomials shows that the extended version
of ® is again a homomorphism between associative algebras, as in (60). Incidentally,
the Lagrange Interpolation formula tells us that any h(x) in £ is the restriction of some
(nonunique) polynomial f(z), so that

®(h) = (I)(f sp(T)) =o(f)

All this applies to matrices as well as operators since a matrix is diagonalizable < the
left multiplication operator L4 : K™ — K" on coordinate space is diagonalizable.

We can now define “functions h(T) of an operator” for a much broader class of
functions than polynomials, as in the next examples.

6.3 Example. If a diagonalizable linear operator T : V' — V over C has spectral
decomposition T'= ), A-E\, we can define such operators h(T) as

L |T| =Y, [\ Py =h(T)  taking h(z) = 2.
2. el =%, e* Py =h(T) taking h(z) = e* =377, 2" /n!

3. VT = 3, \Y/2P, assigning any (complex) determination of h(z) = \/z at each
point in the spectrum. Thus there are r? possible operator square roots if T has
r distinct eigenvalues that are all nonzero. As in Exercise 6.4 below, every such
“square root” has the property h(T)? =T.

4. The indicator function of a finite subset £ C C is

R BEEET:
E\Z) =1 0 otherwise

Then by (60), 1z(T) is a projection operator with 15(7)? = 1g(T). In particular,
if E={\,...,2s} Csp(T) we have

15(T) = Z Py, = éP,\i (projection onto éE,\i (T))
i=1 i=1

AEE

We get 1g(T) =1 if E =sp(T), and if E = {A} is a single eigenvalue we recover
the individual spectral projections: 1g(T) = Py,. O
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6.4 Exercise. Let T : V — V be a diagonalizable linear operator over any ground field
K. If T is invertible (A = 0 not in the spectrum), explain why

nMT) = Z %-P,\ (h(x) = % for x # O)

Aesp(T)

is the usual inverse T~1 of T.
Hint: Show Toh(T)=h(T)oT =1

Similarly we have
_ _1\k 1
Tk =(171) :ZVPA
A
for k=0,1,2..., with 7° = I.

6.5 Exercise. Prove (61) when V is an inner product space over C. (There is nothing
to prove when K = R.)

6.6 Exercise. Prove that a normal operator 7' : V' — V on a finite dimensional inner
product space over C is self adjoint if and only if its spectrum is real: spe(7") € R + 0.
Note: We already explained (=); you do («<=).

6.7 Exercise. If T is diagonalizable over R or C, prove that
el = Z eAP,\
Aesp(T)

is the same as the linear operator given by the exponential series

[eS)
€T = E
k=0

. Note: If T has spectral decomposition " = > , A- Py then T% = Y>>, A*Py. To
discuss convergence of the operator-valued exponential series in Exercise VI-6.7, fix a
basis X C V. Then a sequence of operators converges, with T,, — T as n — oo, if and
only if the corresponding matrices converge entry-by-entry, [T,]xx — [T]xx as n — o0
in matrix space, as described in Chapter II, Section 5.3. The partial sums of a series
converge to a limit

| —

Tk

o

1 1
Sp=I+T+=T%+...+=T" - S,
2! n!

=4 (Sn)” — (SO)ij in C for all 1 < 1,5 < N. O
6.8 Exercise. Let S € M(2,C) be a symmetric matrix, so A* = A

(a) Is Ly : C?* — C? diagonalizable in the ordinary sense?

(b) Is L : C? — C? orthogonally diagonalizable when C? is given the usual inner
product?

Prove or provide a counterexample.

Note: If we take R instead of C the answer is “yes” for both (a) and (b) because
A* = A* when K = R. Recall that (LA)* = L4~ for the standard inner product on C? —
see Exercise VI-3.9. Self-adjoint matrices are diagonalizable over both R and C, but we
are not assuming A = A* here, only A = A",

6.9 Exercise. Let T : C?> — C2 be the operator T = L 4 for
2 3
(5 1)
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Explain why T is self-adjoint with respect to the standard inner product (z,w) = z1w7 +
zowy on C2. Then determine

(a) The spectrum spe(T) = {A1, A2};

(b) The eigenspaces E(T') and find an orthonormal basis {f1, f2} in C? that diagonal-
ize T'. Then

(¢) Find a unitary matrix U*U = I such that

* )\1 0
(% 0)

where sp(T') = {A1, A2 }.

6.10 Exercise (Uniquess of Spectral Decompositions). Suppose T : V — V is
diagonalizable on an arbitrary vector space (not necesarily an inner product space), so
T = Yi_, NP\, where sp(T) = {\1,..., A} and Py, is the projection onto the \;-
eigenspace. Now suppose T = Z;Zl 1;@Q; is some other decomposition such that

P2=Q;#0 QiQr = Q@ =0 ifj#k > Q=1
j=1

and {u1,. ..,y } are distinet. Prove that
(a) r =s and if the u; are suitably relabeled we have p; = X; for 1 <4 <r.
(b) Q; =Py, for 1 <i<r.

Hint: First show {u1,...,p4s} € {\1,..., A} =sp(T); then relabel.

Here is another useful observation about spectra of diagonalizable operators.

6.11 Lemma (Spectral Mapping Theorem). If T : V — V is a diagonalizable
operator on a finite dimensional vector space, and f(x) is any function f : sp(T) — C,
then f(T) is diagonalizable and

sp(f(T)) = f(sp(T)) = {f(N) : A e sp(T)} .

Proof: We have shown that T =3 Aesp(T) APy where the Py are the spectral projections
determined by the direct sum decomposition V- = @, Ex(T'). Then f(T) =", f(A)Px,
from which it is obvious that f(T')v = f(A)v for v € Ex(T); hence f(T') is diagonalizable.
The eigenvalues are the values f(A) for A € sp(T'), but notice that we might have f(\) =
f(u) for different eigenvalues of T'. To get the eigenspace E, (f(T)) we must add together
all these spaces

E.(f(T)) = @{/\:f()\):a} E\(T) for every « € f(sp(T)) .

The identity is now clear. [J

As an extreme illustration, if f(z) =1 then f(T) = I and sp(T) = {1}.

VI1.7. Positive Operators and the Polar Decomposi-
tion.

IfT :V — W but V # W one cannot speak of “diagonalizing T.” (What would
“eigenvector” and “eigenvalue” mean in that context?) But we can still seek other de-
compositions of T" as a product of particularly simple, easily understood operators. Even
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when V' = W one might profitably explore such options if 7" fails to be diagonalizable —
diagonalization is not the only useful decomposition of a linear operator.

When V = W and V is an inner product space over R or C, all self-adjoint (or normal)
operators are orthogonally diagonalizable, and among them the positive operators are
particularly simple.

7.1 Definition. A linear operator T : V — V on an inner product space is positive if
i) T*=T and (i) (Twv,v) >0 forallveV.

It is positive definite if (Tv,v) = 0 only when v = 0. We write T > 0 or T > 0,
respectively, to indicate these possibilities. A matrix A € M(n,C) is said to be positive
(or positive definite) if the multiplication operator La : C* — C™ is positive (positive
definite) with respect to the usual inner product, so that (Av,v) > 0 for all v.

Note that self-adjoint projections P? = P* = P are examples of positive operators, and
sums of positive operators are again positive (but not linear combinations unless the
coefficients are posiive).

If T is diagonalizable, sp(T') = {A1,..., A}, and if T = >, \; Py, is the spectral
decomposition, a self-adjoint operator is positive < A; > 0 for all ¢, so sp(T') C [0, +00) +
i0. [In fact if T > 0 and v; € Ey,, we have (Tv;,v;) = \iflv;]|> > 0. Conversely if all
Ai > 0and v =73, v weget (Tv,v) = Ei7j(Tvi,vj), and since Ey, L E, for i # j
this reduces to Y. (Tv;, v;) = >, Aif|vil|* > 0]

If T is positive definite then A; = 0 cannot occur in sp(7') and T is invertible, with

1
7! = Z )\—PM (also a positive definite operator) .

Positive Square Roots. If T > 0 there is a positive square root (a positive
operator S > 0 such that S? = T'), namely

(63) VT = Z \/)\_iP,\i (\/)\_l = the nonnegative square root of A\; > O) ,

which is also denoted by T''/2. This is a square root because

S2=N" VAV PLPy =Y NPy =T
Z J J
4,J i

where Py, Py, = d0ij - Py,. Notice that the spectral decompositions of T and VT involve
the same spectral projections Py,; obviously the eigenspaces match up too, because
Ex(T) = E /5 (VT) for all i.

Subject to the requirement that S > 0, this square root is unique, as a consequence
of uniqueness of the spectral decomposition on any vector space (see Exercise VI-6.10)

7.2 Exercise. Use uniqueness of spectral decompositions to show that the positive
square root operator VT = Zi VvV Ai Py, defined above is unique —i.e. if A>0and B >0
and A? = B2 =T for some T > 0, then A = B.

Positivity of T : V' — V has an interesting connection with the exponential map on
matrices Exp : M(n,C) — M(n, C),

Exp(A4) = e = iA"
n!

n=0

We indicated in Section V.3 that commuting matrices A, B satisfy the Exponent Law
eATB = eA.eB with e¥ = I. In particular all matrices in the range of Exp are invertible,
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with (eA)_l =e A
7.3 Exercise. Let P be the set of positive definite matrices A in M(n,C), which are
all self-adjoint by definition of A > 0. Let H be the set of all self-adjoint matrices in

M(n, C), which is a vector subspace over R but not over C since ¢A is skew-adjoint if A
is self-adjoint. Prove that

(a) The exponential matrix e is positive and invertible for self-adjoint matrices H.
(b) The exponential map Exp : H — P is a bijection.

Hint: Explain why (eA)* = ¢ and then use the Exponent Law applied to matrices
et4) t € R ( you could also invoke the spectral theorem).

It follows that every positive definite matrix A > 0 has a unique self-adjoint logarithm
Log(A) such that

Exp(Log(A4)) = A for AeP
Log(ef') = H for HeH

namely the inverse of the bijection Exp : H — P. In terms of spectral decompositions,

Log(T) of a positive definite T is Log(T) = Z Log(\) Py, if T = Z Ai Py,
Exp(H) of a self-adjoint matrix H is e = Z etiQy, if H = Z 1iQ s

2

When V = W the unitary operators U : V' — V are another well-understood family of
(diagonalizable) operators on an inner product space. They are particularly interesting
and easy to understand because they correspond to the possible choices of orthonormal
bases in V. Every unitary U is obtained by specifying a pair of orthonormal bases
X ={e;} and P = {f;} and defining U to be the unique linear map such that

n n

U( Z cie; ) = Z ¢ f; (arbitrary ¢; € C)

i=1 j=1

Polar Decompositions. The positive operators P > 0 and unitary operators U
on an inner product space provide a natural polar decomposition T = U - P of any linear
operator T : V' — V. In its simplest form (when T is invertible) it asserts that any
inwvertible map T has a unique factorization

T_U.p U:V —V unitary (a bijective isometry of V)
B P:V —V Dpositive definite, invertible = e with H self-adjoint

Both factors are orthogonally diagonalizable (U because it is normal and P because it
is self-adjoint), but the original operator T" need not itself be diagonalizable over C, let
alone orthogonally diagonalizable.

We will develop the polar decomposition first for an invertible operator T': V — V
since that proof is particularly transparent. We then address the general result (often
referred to as the singular value decomposition when it is stated for matrices). This
involves operators that are not necessarily invertible, and may be maps T : V — W
between quite different inner product spaces. The positive component P : V — V is still
unique but the unitary component U may be nonunique (in a harmless sort of way). The
“singular values” of T are the eigenvalues A; > 0 of the positive component P.
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7.4 Theorem (Polar Decomposition I). Let V be a finite dimensional inner product
space over C. Every invertible operator T : V — V has a unique decomposition T = U-P
where

U € U(n) = (the group of unitary operators U* = U~")
P € P = (invertible positive definite operators P > 0)

By Ezercise 7.3 we can also write T = U - el for a unique self-adjoint operator H € H.

This is the linear operator (or matrix) analog of the polar decomposition

z=|z]e? =r. e with 7 > 0 and 6 real (so |e?| = 1)
for nonzero complex numbers. If we think of “positive definite” = “positive,” “self-
adjoint” as “real,” and “unitary” = “absolute value 1,” the analogy with the polar

decomposition z = re?® of a nonzero complex number z is clear.

Some Preliminary Remarks. If 7: V — W is a linear map between two inner
product spaces, its absolute value |T| is the linear map from V — V determined in the
following way.

The product T*T maps V' — V and is a positive operator because

(T*T)* =TT =TT (T*:W -V and T** =T on V)
(T*Tv,v) = (Tv,Tv) = |Tv||*>0 forveV

Thus T*T is self-adjoint and has a spectral decomposition T*T = )", \; Py,, with eigen-
values A; > 0 and self-adjoint projections Py, : V. — E\,(T*T) onto orthogonal sub-
spaces. The absolute value |T'|: V — V is then defined as the unique positive square

root Lo
7| = (r°1)" Zf Py,

whose spectral decomposition involves the same projections that appeared in T*T. For
any linear operator T : V — W we have T*T = |T|* and hence

(64) [T}y = (T*Tw,v)v = (|T|?0,v),, = || |T|(v ||V forallve V.

Thus |T'|(v) € V and Tv € W have the same norm for every v € V. It follows from (64)
that T, T*T, and |T'| have the same kernel because

Tv=0= TT(w)=0 = (T*Tv,v)=(T2w),v))=]||T@)]*=0
= ITI()—0:>Tv—0 (by (64)) ,

Thus the kernels coincide
(65) K(T)=K(I"T)= K(|T)

even if the ranges differ, and one of these operators is invertible if and only if they all
are. In particular |T'| is positive definite on V' (|T'] > 0) if and only if T : V — W is
invertible. (Comparisons between T and |T'| do not follow from spectral theory because
T itself need not be diagonalizable, even if V.= W.)

Proof of VI-7.4: The proof in the invertible case is simple. For any linear operator
T :V — V we have T*T = |T'|? and have seen in (64) that |T'|(v) and Tv always have
the same norm. When T is invertible, so is |T'| and we have R(T) = R(|T|) = V. The
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identities (64) determine a bijective isometry U : V. — V that sends T'(v) — |T|(v)
for all v, as indicated in Figure 6.10. This map is also linear because U = T o |T'|~1
is a composite of linear operators on V. Thus when T is invertible the desired polar
decomposition is

Uo|T|=(To|T|™")o|T|=T

j’H %) (’}“5)}\0
VoA

AN
\\\ ilﬂs(’wr\‘“(ﬁmv@ﬁw@)

Uereiri™h N
\%

Figure 6.10. The maps involved in defining |T'| : V' — V for an invertible map T': V — W
between two inner product spaces. In the discussion we show that the positive operator

IT| = (T*T)/2 is invertible and R(T*T) = R(|T|) = R(T) = V when T is invertible.
The induced bijection U = T'o|T|~! : V — V is a bijective linear isometry (a unitary map
of V' — V) and the polar decomposition of T" is U-|T|.

As for uniqueness (valid only in the invertible case), suppose T = UP = Uy P, with
U,Up unitary and P, Py positive definite. Then P* = P, Py = Fp, and T* = P*U* =
PU* = PyU; = RyUy since the positive components are self-adjoint; hence

P2 = PU*UP = PU*(PU*)" = RUUPy = P2

Now P? = P*P is a positive operator which has a unique positive square root, namely
P; likewise for PZ. By uniqueness we get Py = P, from which Uy = U folllows. O

Computing U for Invertible 7' : V' — V. Determining the positive part
P =|T| is straightforward: P? = T*T is self-adjoint and its spectral decomposition can
be computed in the usual way. If {e;} is an orthonormal basis of eigenvectors for T*T,
which are also eigenvectors for P = |T|, we have

(66) T*T(el) = )\iei and |T|(61) =V )\i €;
(with all A; > 0 because |T| is invertible < T is invertible < all \; # 0). From this we
get
1 1
T Ye;) = |7 T|(e:) | = i
e = 1 (e e = e
3
1
Ule) = T(IT|"e;) = —=Tles)

By its construction U is unitary on V so the vectors
1
Vi

are a new orthonormal basis in V. This completely determines U. O

fi= T (es)

Note that
1

Vi

1
Vi

Vi
leill =1
Vi

U (el = —=IT(en)ll = —= [ ITI(e:) || =
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as expected.

The General Polar Decomposition. When T : V — V is not invertible the
polar decomposition is somewhat more complicated. The positive component in T' = U-P
is still the unique positive square root P = |T'| = (T*T)'/2. But the unitary part is based
on a uniquely determined isometry Uy : R(|T|) — R(T) between proper subspaces in V'
that can have various extensions to a unitary map U : V — V. This ambiguity has
no effect on the factorization T = U - P; the behavior of U off of R(|T]) is completely
irrelevant.

7.5 Theorem (Polar Decomposition II). Any linear operator T : V — V on a finite
dimensional complex inner product space has a factorization T = U |T| where

1. |T| is the positive square root of T
2. U 1is a unitary operator on V.

The unitary factor is uniquely determined only on the range R(|T|), which is all that
matters in the decomposition R = U |T|, but it can be extended in various ways to a
unitary map V. — V when T is not invertible.

Proof: First note that
R(|T|) = K(IT|)*" = K(T)*" = K(T*T)" = R(T*T)
R(T|)* = K(|T|) = K(T) = K(T*T) = R(T*T)*

The subspaces in the first row are just the orthocomplements of those in the second. The
first and last identities in Row 2 hold because |T'| and T*T are self-adjoint (Proposition
VI-4.2); the rest have been proved in (65). We now observe that equation (64)

2
I

|Tv||? = (T*Tw,v) = (|T*v,v) = || |T|(v) forallve V|

implies that there is a norm-preserving bijection Uy from R(|T|) — R(T), defined by
letting

(67) Uo(IT|(v)) = T(v) -

This makes sense despite its seeming ambiguity: If an element y € R(|T'|) has realizations
y =|T|(v") = |T|(v) we get |T|(v' —v) =0, and then

TW —v)=TW)-TW)=0

because |T'|(v' —v) and T'(v' — v) have equal norms. Thus T'(v') = T'(v) and the operator
(67) is in fact a well-defined bijective map from R(|T|) into R(T). It is linear because

Uo(|Tlvy + [T|vz) = Uo(|T|(v1 +v2)) = T(v1 + v2)
= Twvi+Tvy = Up(|T|v1) + Uo(|T|v2)

It is then immediate that |[Up(y)|| = ||y| for all y € R(|T|), and R(Uy) C R(T),
so dim R(Up) < dim R(T). But dim R(Up) = dim R(|T|) by definition of Uy, and
K(T)=K(|T|) = dim R(T) = dim R(|T|). Putting these facts together we get

dim R(|T|) = dim R(Up) < dim R(T) = dim R(|T|)

We conclude that R(Up) = R(T) and U : R(|T'|) — R(T) is a bijective isometry between
subspaces of equal dimension. By definition we get

T(v) = (Up - IT|)(v) forallveV .
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We can extend U to a globally defined unitary map U : V' — V because K(T) =
K(|T|) = dim R(T) = dim R(|T|) and dim R(T)* = dim R(|T|)*; therefore there exist
various isometries

Up: R(|T)* — R(T)* .
corresponding to orthonormal bases in these subspaces. Using the orthogonal decompo-
sitions
V =R(T)&R(T))*" = R(T) & R(T)*
we obtain a bijective map
U(v,") = (Un(v), U1 (v))
such that U|T|=Up|T| =T on allof V. O

There is a similar decomposition for operators 7" : V. — W between different in-
ner products spaces; we merely sketch the proof. Once again we define the positive
component |T'| = (T*T)'/? as in (63). The identity

1T Iy =IT@) [} forallveV

holds exactly as in (64), and this induces a linear isometry Uy from M = R(|T|) CV to
N = R(T) C W such that

T =0 7| = [T (1)) ]I

where |T|p = (restriction of |T| to M).

The fact that Up is only defined on R(|T) is irrelevant, as it was in Theorem 7.5,
but now Uy cannot be extended unitary map (bijective isometry) from V' to W unless
dim(V') = dim(W). On the other hand since |T| is self-adjoint we have

R(IT|) = K(IT)* = K(T)*

and can define U = 0 on K(T) to get a globally defined “partial isometry’ U :V — W

KD e
M=g@<r) | Wjection =R(TH
= erd | o - BWH
KCr) } i [ |

T wE T (W =

‘ cm the nduced (semetry

Tawe W 2 N=RT) fiom M = N =RD) jundofine!
on RO

Figure 6.11. The maps involved in defining a polar decomposition T' = Uy - |T| for
an arbitrary linear map T : V' — W between different inner product spaces. Here we
abbreviate M = K(T)* C V and N = R(T) C W; Up : M — N is an induced isometry
such that T'= Up - |T|.

such that K(U) = K(T'), R(U) = R(Up) = R(T), and

Ul =0 Ulkryr = Ulrgr)) = Vo
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The players involved are shown in the commutative diagram Figure 6.11.

The singular value decomposition is a useful variant of Theorem 7.5.

7.6 Theorem (Singular Value Decomposition). Let T : V — W be a linear operator
between complex inner product spaces. There exist nonnegative scalars

AM>...>N >0 (r = rank(7T))

and orthonormal bases {ey, ..., e.} for K(T)* CV and {f1,..., f-} for R(T) C W such
that

T(e;))=Nifi for1<i<r and T=0onK(T)=K(T)**

The \; are the eigenvalues of |T| = (T*T)'/? counted according to their multiplicities.
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Chapter V. The Diagonalization Problem.

V.1 The Characteristic Polynomial.

The characteristic polynomial p4(z) of an n x n matrix is defined to be
pa(x) = det(A—2xI)  (z an indeterminate)

This is a polynomial in K[z]. In fact det(A — «I) is a polynomial combination of the
entries in (A — zI), so it follows that p4(z) does determine a polynomial in the single
unknown z; furthermore deg(pa) = n. Given a linear operator T : V' — V on a finite
dimensional space V' and a basis X we have

[T - :Z?I]xx = [T]xx - xIan (n = dnn(V))
so we may define a characteristic polynomial for 7" in the obvious way.
pr(z) = det(T — 2I) = det ([T]xx — ©Luxn) (z an indeterminate)

The discussions for operators and matrices are so similar that nothing is lost if we focus
on matrices for the time being.
Next observe what happens if we write out the characteristic polynomial p 4,

(37) pa(z) =det(A —zl) =co(A) + c1(A)x + ... + ¢, (A)z"”

In this formula the coefficients ¢;(A) are scalar-valued functions from M(n,K) — K.

1.1. Lemma. Fach coefficient c,(A) in (37) is a similarity invariant on matriz space
e (SAS™Y) = cx(A)  for all A€ M(n,K), S € GL(n,K)

Furthermore, if we identify M(n,K) with n*-dimensional coordinate space K" wvia the
correspondence A — (a11, ..., Q1nj .- Gnyy---,ann), each coefficient ¢;(A) is a polyno-
mial function of the matriz entries: there is a polynomial F; € K[x] = K[z1,...,z,2]
such that ¢;(A) = Fi(all, aia,. .. ,ann).

Proof: We have

det (S(A—2D)S™') = det(SAS™' —2557") = det(SAS™! —z1)
co(SAS™) + 1 (SAS™ )z + ...+ (SASTH)a™

while at the same time

det (S(A—=2I)S™1) = det(S)-det(A — aTI)-det(S~)
= det(A—zI) = co(A) +c1(A)x + ...+ cp(A)z"

for all € K. Since these are the same polynomial in K[z] the coefficients must agree,
hence ¢;(SAS™!) = ¢;(A).

The polynomial nature of the coefficients as functions of A € K" follows because
det(A — zI) is a polynomial combination of entries (A — xI);;; the coefficients ¢ (A) are

then polynomial functions of the a;; when like powers of the unknown “x” are gathered
together. [J
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It is interesting to examine how the coefficients cj(A) are obtained from entries in A.
Starting from the original definition of the determinant in Chapter IV,

n

det(B) = > sgn(o) - (Hbz‘,au)) ;

gES, =1
if we take B = A — 21 we have
(a11 — ) aiz : ain
arz (a2 —x) . azn
B=A—zl =
anil ) . (apn —2)

It is clear that the only template yielding a product by (1)..-bpe(n) involving ™ is the
diagonal template corresponding to the trivial permutation o = e; furthermore, in ex-
panding the product [[,(a;; —«) we must take the “—z” instead of “a;” from each factor
to get the power ™. Thus ¢,(A) = (—1)" is constant on matrix space (and certainly a
similarity invariant).

We claim that

det(A—2aI) = (=1)"z" + (terms of lower degree)

(38) = (=D"" 4 (=) Tr(A) 2" + ..+ det(A) - T

To get the coefficient of 2! observe that a product [], b; »(;) involving 2"~! must come
from a template having (n — 1) marked spots on the diagonal, but then all marked spots
must lie on the diagonal and we are again dealing with the diagonal template (for o = e).
In expanding the product [[,(a;; — =) we must now select the “—2” from n — 1 factors
and the “a;;” from just one. Thus

Cn1(A) = (1" 1) a4y = (—1)" ' Tr(A)
i=1

as in (38). Determining the other coefficients is tricky business, except for the constant
term which is

ag(A) = det(A)

This follows because every template yields a product that contributes to this constant
term. However if a template marks a spot on the diagonal we must select the “a;;” term
rather than the “z” from that diagonal entry (a;; —x). It follows that the constant term
in (38) is:
n

Z sgn(o) - H ;,0(i) = det(A)

o€Sn =1
as claimed. We leave discussion of other terms in the expansion (38) for more advanced

courses.

Factoring Polynomials. It is well known that if a nonconstant polynomial f(x) in
K[z] has a root o € K, so f(a) = > 1, c;a’ =0, then we can factor f(z) = (z — a)-g(z)
by long division of polynomials, with deg(g) = deg(f)—1. In fact, applying the Euclidean
algorithm for division with remainder in K[z]: if P,Q € Kz] and deg(Q) > 1 we can
always write

P(z) = A(z)Q(x) + R(z)  (with remainder R =0 or deg(R) < deg(Q))
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Taking P to be any nonconstant polynomial in K[z] and Q = (z — «), we get f(z) =
A(z) - (x — a) + R(x) where R(z) is either the zero polynomial, or R(z) is nonzero with
deg(R) < deg(x — o) = 1 —i.e. R(x) is then a nonzero constant polynomial R = ct. If
a € K is a root of f, replacing « by « everywhere yields the identity

0= f(a) = A(@)-(a — @) + R(a) = 0+ R(a) = R(a)

Since R = ct, this forces R(x) = 0 and f(r) = A(x)(z — «) with no remainder — i.e.
(x — «) divides f(x) exactly.

If a; is a root of f we may split f(z) = (z — a1) - g1(x). If we can find a root as
of g1(x) in K we can continue this process, obtaining f(z) = (z — a1)(x — a2) - g2(z).
Pushing this as far as possible we arrive at a factorization

S

J(@) = [[@ - ) - glx)

i=1

in which g(x) has no roots in K. We say that f splits completely over K if g reduces
to a constant polynomial, so that f(z) = ¢[[;—, (z — ;). There may be repeated factors,
and if we gather together all factors of the same type this becomes

f(z) = cH(x — ;)™ (a; € K)
j=1

The roots {a1,...,a,} are now distinct and the exponents m; > 1 are their multiplici-
ties as roots of f(z); the constant ¢ out front is the coefficient of the leading term c,z"

in f(x).
1.2. Corollary. A nonconstant polynomial f(x) € K[z] can have at most n = deg(f)

roots in any field of coefficients K. More generally the sum of the multiplicities of the
roots in K is at most n.

Proof: If f,g # 0 in K[z] (so they have well defined degrees) we know that
deg(f(z) + g(z)) = deg(f(2)) + deg(g(z))
But, deg ([[/_,(z — ;)™ ) = 320 my, so
r = #(distinct roots) < (my1 + ...+ m,) + deg(g) = deg(f) O

1.3. Exercise. If f(z),h(z) are nonzero polynomials over any field, explain why the
“degree formula”

deg(f(z)h(z)) = deg(f(x)) + deg(h(z))
is valid.

1.4. Exercise. Verify that if f(z) = [[;_,(x — o) - g(z) and g(z) has no roots in K,
then the roots of f in K are {aq, ..., a,}.
Note: Repetitions are allowed; f(z) might even have the form (z — a)" - g(z).)

1.5. Definition. The distinct roots {a1,...,ar} in K of a nonconstant polynomial and
their multiplicities are uniquely determined, and the set of roots is called the spectrum
of the polynomial f and is denoted by spg(f).

Over the field K = C of complex numbers we have:

1.6. Theorem (Fundamental Theorem of Algebra). If f is a nonconstant polyno-
mial in Clz] then f has a root a € C, so that f(a) = 0.
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1.7. Corollary. Every non constant f € C[z] splits completely over C, with
T
f(a:):c~H(:1:—ai)m" where m; +...+m, =n
i=1

Proof: Since f has a root we may factor f = (z — 1) - g1(x). Unless g1 () is a constant

it also has a root, allowing us to write f = (z — a1)(x — a2)gz(x). Continue recursively.
O

Over K = R or Q, things get more complicated and f(x) might not have any roots
at all in K. For example if f(z) = 22 + 1 over R, or f(z) = 2% — 2 over Q since Q
does not contain any element « such that a? = 2 (there is no “square root of 2” in Q).
Nevertheless since R C C we may regard any f € R[z] as a complex polynomial that
happens to have all real coefficients. All real roots « remain roots o + 0 in C (lying on
the real axis), but enough new roots appear in the larger field to split f completely as

f(z) ZC-H(x—ai) with o; € C

It is important to realize that the new non-real roots enter in “conjugate pairs.”

1.8. Lemma. If f(x) is nonconstant in R[x] and z = = + iy is a complex root when we
identify R C C and R[z] C Clx], then the complex conjugate Z = x — iy s also a root.

Proof: There is nothing to prove if z is real (y = 0). Otherwise, recall that conjugation

Ay
Z2%n4 m'v

%

[}
<

-
o

[

¥

]

-

<

Figure 5.1. Non-real roots of a polynomial with real coefficients come in conjugate pairs
z =x + 1y and Z = x — iy, mirror images of each other under reflection across the z-axis.

has the following algebraic properties.
21 tza=7Z1+2%2 and Z122 = Z122

Then

2 =7z" forallne€Z and 2 € C

Hence if 0 = f(z) = 32, ¢;jz? with ¢; real we have

) =5 () = ;7

and

Hence, Z is also a root in C. O

The real roots of f € R[x] are not subject to any constraints; in fact, all the roots might
be real. The number of distinct non-real roots is always even.
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1.9. Example. If f € K[z] is quadratic,

f(z) =ax® +bx+c

the quadratic formula continues to apply for all fields except those of “characteristic 2,”
in which 2 = 1+ 1 is equal to 0 (for insatnce K = Z5). Except for this, the roots are

_ —bx Vb —dac

given by:

QUADRATIC FORMULA:

If the |/~ fails to exist in K the proper conclusion is that f(z) has no roots in K. If
K = @Q or R this formula gives the correct roots in C even if there are no roots in K.

Discussion: Complete the square. Adding/subtracting a suitable constant d we may

write
9 9 b c
ar” +bxr+c = a(x —l——x—i——)
a a

= a-(wz—l—gx—i—d)

To make 22 + (b/a)x + d a “perfect square” of the form (x + k)% = (2% + 2kz + k?), we
must take k = b/(2a) and d = k? = (b*/4a?). Then ¢ — ad = ¢ — (b*/4a?), so that

with a

2+

+ (¢ —ad)

b\2 c b2
2
0=ax —l—ba:—l—c:a(x—k%) —|—<a—@):a.(
This happens if and only if
b\2 b? — 4ac
ale+ ) = (=)
if and only if
(w+i)2_b2—4ac
2¢7  4a?
if and only if
—b=£ Vb2 —4dac 0
r=— """
2a

# 0,

2a

+b
T4 —
2a

)+ (

a[(2+ 2o va)+ (£ )]

4ac — b?

4a

1.10. Example. Here are some examples of factorization of polynomials.

1. 22 — 1 = (z — 1)(x + 1) splits over R, with two roots +1,—1 each of multiplicity
one. On the other hand z2 + 1 has no roots and does not split over R, but it does

split over C, with 22 + 1 = (z —4)(x + ).

2. w2 4 2z + 1 splits over R as (x — 1)2, but there is just one root, of multiplicity 2;

3. 23 — 2?4+ 2 —1 has aroot z =1 in R. Long division yields a quadratic,

P-4t —1=(@—-1*+1)

Over R, there is just one root A\; = 1 with multiplicity m(\1) = 1; over C we get
2?2+ 1 = (z +1i)(z — i) so there are two more roots roots Ay = i, A\3 = —i in the

larger field C.

4.2t —1=@2-1)(2*+1) = (2 + 1)(z - 1)(z +i)(z —i).
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5. 2% + x + 1 has just one real root \; because it is a strictly increasing function of
x € R, and since it goes to oo as * — oo it must cross the x-axis somewhere.
But \; is not so easy to write as an explicit algebraic expression involving sums,
products, quotients, and cube roots. Such formulas exist, but are algorithms with
possible branch points rather than simple expressions like the quadratic formula. A
numerical estimate yields the real root A\ = —0.6823+70. There is a conjugate pair
of complex roots Ao = 0.3412 4 1.615¢ and A3 = 0.3412 — 1.615¢, which could be
found by (numerically) long dividing f(x) by (x — A1) and applying the quadratic
formula to find the complex roots of the resulting quadratic.

V.2. Finding Eigenvalues.

If V is a finite dimensional vector space we say A € K is an eigenvalue for a linear
operator T : V' — V if there is v # 0 such that T (v) = Av. For any A € K the A-
eigenspace is By = {v € V : (T'— Al)v = 0}. This vector subspace is nontrivial if and
only if A is an eigenvalue. The set of distinct eigenvalues is called the spectrum spg (7))
of the operator. When A = 0 the eigenspace Ex—o(T') is just ker(T) = {v € V : T'(v) = 0}
and when A\ = 1 we get the subspace of fized vectors Ex—1(T) = {v : T(v) = v}.

The connection with determinants now emerges: A € K is an eigenvalue if and only if

ker(T — M) # (0) < (T — M) is singular < det(T — ) =0

Thus the eigenvalues are the roots in K of the characteristic polynomial pr € Klz].

2.1. Definition. If T : V — V is a linear operator on a finite dimensional vector space
then spg (T) is the set of distinct roots in K of the characteristic polynomial pr(z) =
det(T —xI). We define the geometric multiplicity of an eigenvalue to be dim(E)); its
algebraic multiplicity is the multiplicity of \ as a root of the characteristic polynomial,
so that pr(z) = (x — X)™ - g(x) and g(z) does not have A as a root.

2.2. Lemma. Over any field K,
(algebraic multiplicity of X) > (geometric multiplicity)

Over K = C, the sum of the algebraic multiplicities of the (distinct) eigenvalues in
spe(T) = {1, ., A} is m(A1) + ... +m(\) =n = dime(V).

Proof: Every eigenspace F) is T-invariant because (T'— A\ )T'(v) = T(T — Al )v = 0 for

v € E,. This eigenspace has a basis of eigenvectors X, = {e1,...,eq}, with respect to
which
A 0
A
[T]XA =
0 A

(diagonal). Extending X to a basis X = {e1, ..., €4, €441, ..., € } for all of V| we get

A 0
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which implies that

2.3. Lemma. If A is of the form

()

where B and C' are two square matrices, then det(A) = det(B) - det(C).

Proof: If B is m x m, a sequence of Type II and III row operations on rows Ry, ..., R,
puts this block in upper triangular form; similar operations on rows R, 41, ..., R, puts
block C' in upper triangular form without affecting any of the earlier rows. The net result
is an echelon form A’ = [B’,*;0,C"] for which det A’ = det(B’) - det(C"). Each of the
determinants det(A’), ..., det(C”") differs from its counterpart by a + sign; furthermore,
the same moves that put B and C in upper triangular form also put A in upper triangular
form when applied to the whole n x n matrix. We leave the reader to check that the sign
changes cancel and yield det(A) = det(B) - det(C). O

This can also be seen by noting that if a template contributes to det(A), every column
passing through block B must be marked at a spot in B; otherwise it would marked at a
spot below B, whose entry is = 0. Likewise for the rows that meet block C, so a template
contributes < it has the form in Figure 5.2.

. g i *
Combribigdng 7
A= Tewmplakes ans . —
0 o

Figure 5.2. If A is a block upper-triangular square matrix, then det(A) = det(B)-det(C)
and the only templates that contribute to det(A) are those whose marked spots lie entirely
within the blocks B and C.

Applying Lemma 2.3 we can complete the proof of Lemma 2.2. We now see that
pr(z)=det(T —zl)=AN—2)" - Q(x) where Q(z) = det(B —z 1)
Obviously deg(Q(z)) = n —m and pr(x) has A as a root of multiplicity at least m, so

(algebraic multiplicity of A) > m = dim(FE)) as claimed. O
It might still be possible for (z — A) to divide Q(x), making the algebraic multiplicity

3 i\ > The operator L, : R? — R2

has dim (Ex=1) = 1, but pr(\) = (A — 2)? so the algebraic multiplicity is 2.
The following example illustrates the complete diagonalization process.

larger than dim (EA) A good example is A =
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2.4. Example. Let T = L4 : R?® — R? with
4 0 1
A= 2 3 2
1 0 4

If X = {ej1, ez, e3} is the standard basis in R® we have [T)xx = [La]xx = A as in Exercise
4.13 of Chapter II, so

det(A —xI) = det 2 3—z 2

1 0 4-=z
[(4—2)3—2)(4—2)+0+0] —[(3—2)+0+0]
= -2 +112% — 392 + 45

pa(z)

We are looking for roots of a cubic equation. If you can guess a root «, then long divide
by z — a to get pr(x) = (x — ) - (quadratic); otherwise you will have to use a numerical
root-finding program. Trial and error reveals that x = 3 is a root and long division by
(x — 3) yields

—22 482 —15
r—3) —2® 112> -39z +45

—z3 4322

82 —39x 445

82 —24x
—15z +45
—15z +45
0

Then
—2® +112? =392 +45 = (x—3)(—2? + 8z — 15)

= —(z-3)(z—5)(r—3) = —(z—3)*(x—-5) ,
so sp(A) = {3,5} with algebraic multiplicities my—3 = 2, my—5 = 1. To determine the
eigenspaces and geometric multiplicities we must solve systems of equations.

Eigenvalue \; = 3: We must solve the matrix equation (A—3I)X = 0. Row operations
on [A — 31|0] yield

1 0 110 1 0 110
[A-3r|0)]= 2 0 2{0 ] =] 0 0 0]0
1 0 110 0 0 0]O0
Solutions: x5, x3 are free variables and z; = —xz3, so
—I3 0 -1
X = T and FEh—g=ker(A—3)=R| 1 | +R 0
3 0 1

Thus A = 3 has geometric multiplicity dim (E)\Zg) =2

Eigenvalue Ay = 5: Solve matrix equation (A—5I)X = 0. Row operations on [A—51 | 0]
yield

-1 0 110 10 —1]0
[A-5I10]=| 2 -2 2|0 |—=[0 1 —2]0
1 0 -1]0 00 010
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Solutions: x3 is a free variable; xo = 2x3, ©1 = x3. So

I3 1
X = | 2z3 and Eh_s =ker(A—5I)=R| 2
T3 1

Thus A = 5 has geometric multiplicity dim (EA:5) =1

We showed earlier that the span M = resp(r) EA(T) of the eigenspaces of a linear
operator is actually a direct sum M = Ey, @ ... @ E,,.. In the present situation M =
E\—3 ® E)_5 is all of V since the dimension add up to dim(V) = 3. Taking a basis
Y = {f1,..,f3} that runs first through E\_3 = Rf; @ Rf,, and then through E)_5 = Rfj,

we obtain a diagonal matrix

3 0|0
Tlyy=| 0 3]0
0 05

Once we have found the diagonalizing basis
Q) = {fl = (07 170)7 f = (_1707 1) , f3 = (1727 1)}

we determine an invertible matrix @ such that QAQ™! = [T|yy = diag(3,3,5). To find
Q recall that

[Ty = lidlyx - [T)xx - idlxy = [idyx - A [idxy = QAQ™!

Here [id]xy = Q! and [id]gx = [id];%, and by definition [id]yx is the transpose of the
coefficient array in the system of vector identities

f1 = [1d]f120+82+0
f, = [i[dfz=—-e+0+e3
f3 = [ld] fg:e1+2e2+e3
Thus,
0 -1 1
Q'=[ldxy=|1 0 2
0 1 1

and @ = (Q~1)~! can be found efficiently via row operations.

0 -1 1|1 0 0 1 0 2/0 1 0 100—}1—11
1 0o 201t 0)—=(011{00 1 ]|=]010—-35 0 3
1 1
0 1 1]l0 0 1 00 1|5 0 3 001%0%
Thus
LAl 2 2 -2
| —-= 0 = 1
Q= 2 2 | =3 -1 0 1
1 1 1 0 1
z U 3
and
300
QAQ'=[ 0 3 0
0 0 5



as expected. That completes the “spectral analysis” of A. O

The same sort of calculations determine the eigenspaces in C? when A € M(n, R) is
regarded as a matrix in M(n, C).

2.5. Example. Diagonalize the operator L4 : K? — K? where

=(505)

over C and over R (insofar as this is possible).

Discussion: The characteristic polynomial of A (or Ly) is

m(A):da( S ) 2 N2+ N A= AN = N

The only root (real or complex) is A = 0 so spr(A4) = spc(A) = {0}. Its algebraic
multiplicity is 2, but the geometric multiplicity dimg ( £ A:o) is equal to 1. The outcome
is the same over C and R.

Eigenvalue A = 0. Here Ey—o = ker(A). Row operations on [A | 0] yield

2-A 4 0 . 2 4 10 . 2 410
-1 -2-X10 -1 =20 0 00

Solutions: In solving (A — M) X = AX =0, x2 is a free variable and z; = —2x2 so

) )
X:( Iz’z’) and EH:K-( 1)

Since there are no other eigenvalues, the best we can do in trying to find a simple matrix
description [T]yg is to take a basis 9 = {fi,fo} that passes first through Ey—o: let
fi = (—2,1) and then include one more vector f; ¢ Kf; to make a basis. We have

[Txx = < _21 _42 )

with respect to the standard basis X = {e1, ez} in K? (recall Exercise 4.13 of Chapter
IT). With respect to the basis @ = {f, f2} the matrix has block upper-triangular form,

Ty = (o )

But this operator cannot be diagonalized by any choice of basis. O

2.6. Exercise. We have shown that there is a basis ) = {fi, f2} such that

A== 5 )

(a) Prove that b must be 0, so
0 a
=(53)

(b) Explain how to modify the basis 2 to get a new basis 3 such that
0 1
[T]33 - ( 0 0 )
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2.7. Example. The matrix

[ cos(f) —sin(0) roa
A= ( sin(f)  cos(6) > (6 real)

yields an operator L 4 : R? — R? that you will recognize as a rotation counter clockwise
about the origin by 6 radians. Describe its eigenspaces over R and over C.
Solution: Over either field we have
B B cos(f) — X —sin(6)
pa(A) = det(A—AI) = det ( sin(6) cos(6) — A
= (cos(8) — )\)2 +sin?(0) = cos?(#) + sin*(A) — 2\ cos() + A?
= A —2\cos(d) +1

This is zero only when

2 0) + \/4cos?(0) — 4
A= cos(t) 5 cos*(6) = cos(f) £ \/cos?(0) — 1

= cos(f) +iy/1 — cos2(f) = cos(f) + isin(f) = e*%

The roots are non-real (hence a conjugate pair as shown earlier in Figure 5.1), and they
lie on the unit circle in C because |e**?| = sin?(#) + cos?(#) = 1 for all §. When 6 = 0 or
7w we have A = +1 4 i0 (real), and in this case A = I or —I. In all other cases A has no
real eigenvalues at all, but it can be diagonalized as

e 0
[Lalyy = ( 0 i )

for a suitably chosen complex basis 9) = {fi, fo} in C2. To find it we need to determine
the eigenspaces of L4 in C2.

Eigenvalue: \; = e? = cos(#) + isin(f).

B cos(f) — e  —sin(f) [ —isin(f) —sin(h)
A=A = < ssin(@) cos(Z)—ew ) - ( sifl(ﬁ) —issin(H) )

— o) (30T

Now,(A—)\I)X—O<:>BX—OwhereB_< —
0
0

—i—lO_}l—iO_)l—i
1 -0 1 =20 0 0

Solutions: Here x5 is a free variable and x7 = ixzs. So,

il‘g )
X_((E2> and Ekl_eit_c'(l)

For A1, (algebraic multiplicity) = (geometric multiplicity) = 1.

! _1. ) Row operations yield:

The discussion for the conjugate eigenvalue Ay = e~ = cos(f) —i sin() is almost the
same, with the final result that Fy\_, -« = C - col(—i,1) Combining these observations
we get

(CQZE)\:eiB B E\_-i0 =C- ( i >69(C' ( _12 > =Ct, o Cf;y
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Thus, with respect to the basis
Y ={f; =col(i, 1), fz = col(—i, 1) }
we have

e 0
[LA]QJQJ:( 0 it ) O

As mentioned, the span M = ZAespK(A) E) is a direct sum Ey, @ ... ® E), and a
suitable chosen basis partially diagonalizes A, with matrix

:

[T]@@ = ' ALy wd

™ ™

0 0 B

To proceed further and determine the structure of the lower right-hand block B we
would have to develop the theory of nilpotent operators, generalized eigenspaces, and
the Jordan decomposition of a linear operator over C. We must leave all that for a
subsequent course. However the following observation can be useful.

2.8. Proposition. If dimg(V) =n and T : V — V has n distinct eigenvalues in K,
then T is diagonalizable and V' is the direct sum @), Ex,. of 1-dimensional eigenspaces.

Proof: Since Z/\esp(T) E), is a direct sum and each A; has dim (EA) > 1, the dimension
of this linear span must equal n, so V = @/\iesp(T) E,,. O

In some sense (at least for complex matrices), the “n distinct eigenvalues condition”is
generic: If entries a;; € C are chosen at random, then with “probability 1”7 the matrix
A = [a;;] would have distinct eigenvalues in C, so the characteristic polynomial would
split completely into distinct linear factors

palx)=c-||(x=N) .

.

i=1

Unfortunately, in many important applications the matrices of interest do not have n
distinct eigenvalues, which is why we need the more subtle theory of “generalized eigen-
values” developed in Linear Algebra II, as a backup when diagonalization fails.

2.9. Exercise. What happens to sp(7') when you replace
(a) T — T (b) T—cT+1I (¢) T—1I+4cT
with ¢ # 07

V.3 Diagonalization and Limits of Operators.

We begin by defining limits lim A, = A of square matrices over K = R or C; limits

n—oo

T, — T could similarly be defined for linear operators on a finite dimensional vector
space V over these fields.

3.1. Definition. For K = R or C we may define pointwise convergence, or “sup
norm convergence” of matrices in M(N,K)

Iim A, =A or A,— Aasn— o0
n—oo
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to mean that each entry in A, converges in C to the corresponding entry in the limit
matriz A:

—0 inCasn— 0

(39)

for each 1 <i,5 < N, where A, = [GE;L)]'

Later we will examine other notions of matrix (or operator) convergence. In making the
present definition we are, in effect, measurng the “size” of an N x N matrix by its “sup-
norm,” the size of its largest entry:

[Alloo = max{|ai;| : 1 <4,5 < N}

This allows us to define the distance between two matrices in M(N, K) to be d(A, B) =
||A = Bl|oo, and it should be evident that the limit A,, — A defined in (39) can be recast
in terms of the sup-norm:

(40) A, —wAasn—o00 < |4y —A|lc —0asn— co.
The sup norm on matrix space has several important properties (easily verified):

3.2. Exercise. If A, B € M(N,K) prove that:

(a) |A]lco = Al - |A]|so, for all A € K,

(b) TRIANGLE INEQUALITY: [|[A + Blloo < || Alloo + || B||oo;

(¢) MULTIPLICATIVE PROPERTY: ||AB|lco <7 - ||Alloo * | Blloo-
Hint: Use the Triangle Inequality in C, which says |z & w| < |z| + |w] for z,w € C.
A number of theorems regarding sup-norm limits follow from these basic inequalities.

3.3. Exercise. If A,, —» A and B,, — B in the sup-norm, and \,, — A in C, prove that:
(a) A, +B,— A+B
(b) A,B — AB and AB,, — AB;

C Aan — AB. Thus matrix multiplication is a “'ointly continuous” operation on
J
its two inputs.

(d) If @ is an invertible matrix then QA,Q~' — QAQ~!. Hence every similarity
transformation A — QAQ ™! is a continuous operation on matrix space.

() M4, — MA.
Hint: In (¢) add and subtract A, B, then apply the triangle inequality.

The triangle inequality has a “converse” that is sometimes indispensable.

3.4. Proposition (Reverse Triangle Inequality). For A, B € M(N,K) we have
[114loe = 1Blloe | < 14 = Blloo
Proof: By the Triangle Inequality
[A+ Bllos < [|Alloc + | Bl
Thus
[Alloc = |[A = B+ Blloc < |4 = Bllo » +[|Bll
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so that || Allcc — || Blleo < ||A— Bl|s- Reversing roles of A, B we also get || Bllco — || Ao <
||A— Bl|so- Since the absolute value of a real number is either |c| = ¢ or —¢, we conclude
that

[14]los = 1Blloc | < 14~ Bllow T

As an immediate consequence we have
3.5. Corollary. If A, — A in M(n,C) then ||Ap|lco — [|Allec in R. O

3.6. Exercise. If A in M(n,C) is an invertible matrix and A,, — A in the sup-norm,
prove that

(a) det(A,) — det(A);
(b) A,;' — A~! in the sup norm.
Hint: Recall Cramer’s Rule for computing A~! for a nonsingular matrix A.

Application #1: Computing the Exponential ¢! of a Matrix. We

will show that the exponential series
=1
et =>" HA’c (A € M(N,C))
k=0

converges in the sup-norm, which means that the finite partial sums of the series

A2 n
S,=T4+A+=—+.. +=— neN
2! n!
converge to a definite limit e# in matrix space:

1Sy —e?loo — 0 as n— oo

This is not so easy to prove, but if D = diag(A1,...,An) is a diagonal matrix
A1 0
A2
D =
0 AN
it is quite obvious that the partial sums .S,, converge in the sup-norm,
An
T+ A+ + 0
n! \n
Dr T+ 4.+
Sn:I+D+...+—' = n
n:
An
0 L+ +...+ =
n!
eM 0
er?
— ) as n — oo
0 e

because e* = 220:0 2% /k! is absolutely convergent for every complex number z € C.

Therefore S, — e” in the sup-norm and
eM 0
[eS) k 6)\2
= |
e’ = — = lim S, =
k=0
0 e
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A Digression: The Cauchy Convergence Criterion in Matrix Space. For ma-

trices that are not diagonal we must prove there actually is a matrix e to which the
matrix-exponential series converges in sup-norm,

1S, — e?|oe — 0 as n — oo .

This follows because M(N,K) equipped with the sup-norm || - | has the following
completeness property, similar to completeness of R™ and C™ in the Euclidean norm

N

1/2 .
lz]l2 = <Z|zk|2) for z = (z1,...,2y) in CV |
k=1

or completeness of the number fields K = R and C.

THEOREM (CAUCHY CONVERGENCE CRITERION). A sequence {A,} in
M(N,K) converges to some limit Ay = limn—ooApn in the || - ||oo-norm if
and only if the sequence has the Cauchy property

|Am — Anllooc — 0 eventually as  m,n — oo

To be precise, this property means: Given any r > 0 we can find a cutoff
M > 0 such that

|[Am — Anlloo <7 for allm,n>M

Statement (41) is much stronger than saying successive terms in the sequence get close,
with ||An4+1 — Anl] — 0 as n — oo; to verify the Cauchy criterion you must show that all
the terms far along in {4, } are eventually close together as n — oo.

When you try to prove A,, — Ap by examining the distances |4, — Aol you must
actually have the prospective limit Ay in hand, and that limit might be very hard to
guess. The Cauchy criterion gets around this problem. You don’t need to identify the
value of the limit whose existence is assured in (41), because the Cauchy criterion can be
verified by inspecting the terms of the given sequence {A, }. Similarly in R, the Integral
Test of Calculus shows that the the partial sums

1

1 oo
S, =1+ P +...+ — of the Harmonic Series Z 1/n?
n=1

have the Cauchy property, and hence by the completeness property (41)

exists. It is a lot harder to identify this limit in “closed form,” and show it is exactly
72 /6. We will see one way to do this in Chapter VL.

As for the matrix exponential series 2 A" /k! we now show that its partial sums
Sp = > n_o A¥/k! have the Cauchy property in || - [[oo-norm. Then by completeness of

M(N, C) the partial sums actually have a limit, which we name “e4”
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Proof: To verify the Cauchy property for {S,,} we may assume m > n. By the Triangle
Inequality and the multiplicative property (c) of Exercise 3.2 we have

gk S NEAL
1Sm = Salloe = I 3= Frllee <D =3
k=n+1 n+tl

By the Ratio Test the Taylor series for f(z) = e” converges (to e”) for all z € R:

SR Y

because D"{e®} = e” for all z. Taking x = N - || A]| oo, We get

n

NFk|| Ak . NF|| A
Z IL! ll5 _ Z IL! 5 _ Nl < 56 asn — oo |
k=0 k=0

hence for m > n:

- NAOOk s NAook
0< 1S — Sulloo < 3 Al 5= (N JlAflo0)”

k! k! 0
n+1 k=n-+1
as n — oo. Thus, {S,} is Cauchy sequence for the || - ||oo-norm and the matrix-valued
series Y ;2 ) A¥/k! converges in || - ||so-norm for every matrix A. O

In general, it is a difficult task to directly compute the sum of a convergent series
such as e? = oo o A™/n! For instance, consider how one might try to evaluate e when

a=( %3

Computing higher and higher powers A* is computationally prohibitive, and how many
terms would be needed to compute each entry of e with an error of at most 1 x 10~°
(6-place accuracy)?

As mentioned earlier, computing e is easy if A = D = diag(\1, ..., Ay) is diagonal.
Then,
eM 0
Dn 0 e
Sp=I1+D+...+— — , =eP
0 erN

We now show that e*4 can be computed in closed form for all ¢ € R , for any A that
is diagonalizable over R or C.

3.7. Example. Compute €' (¢ € R) for the matrix
1 -1
=5
4 0

Solution: First observe that A is diagonalizable, with QAQ~! = 0 -1 )= D for

suitably chosen (). The eigenvalues are the roots of the characteristic polynomial

palz) = det(l_‘GA 2__1)\>:()\— A-1)—6
= M-3\+2-6=X-3A-4=A-4)\+1) ,

so sp(A) = {4, —1}. The eigenspaces are computed by row reduction:
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e Eigenvalue \ = 4:

-an=( ié)%(é

Solutions of (A — AI)X =0 are

1
1 1
e F)on( L) -m

e Eigenvalue A = —1:

aon=(5 )= (0 )
o (1) -

Thus K? = Ex_y ® Ex——1 and Q) = {f; = (1,-3), £ = (1,2) } is a diagonalizing basis in
K2. On the other hand, from our discussion of “change of basis” in Chapter II we have

S Wi
v

==

Solutions of (A — AI)X =0 are X € K- <

4 0 . .
D = (5 %)= Lalow = dr Lalus- o
= [idlpx - A [id]xg
Since
i = er—3e (where X = {e1, e} = standard basis in K2)
fo = e1+2e =2

we see that [id]xg) = < _13 ; > Then QAQ™! = D taking Q7' = [id]xy = < _13 ; >7

and since det(Q 1) =5 we get Q = (Q~ 1)~ ! = é . ( g _11 ) Now

— -1
{0299, = #-@D0@'pQ ... QDY) -a D

for k =0,1,2..., hence by (d) of Exercise 3.3 we get

A=A &S @QTIDQF iQ”DkQ
o k! k! o k!
k=0 k=0 k=0
k

= (X T e=07P

k= '

4
eA—Q1<eO 691 >Q

which exhibits e? as a product of just three explicit matrices.
Similarly, for t € R we compute et4

4t 4t
tA 1 [ e 0 . I 1\ (e 0 .
¢ =0 (o et)Q_<—3 2)(0 et
1 2% 437 ettt ) T (2 1N\ L. (3
5\ —6et +6et 342t ) B -6 3 5 6
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We conclude that



Setting t = 0, we get ¢” = I; setting t = 1, we get the answer to our original question

1,2 -1\ 1 31
A_ ~ 4. e
6_5e<—6 3>+5e <6 2) =

Application #2: Solving Linear Systems of Differential Equations.

In the next application we see why one might want to compute the matrix-valued function
B(t) = et ¢ : R — M(N,C). First we must sketch some additional properties of the
exponential map on matrices (mostly without proofs).

1. If A and B commute then

EXPONENT LAw: 418 =4 . B

In particular, e is always invertible, with (e*)™! = e=4. Futhermore,

ONE-PARAMETER GROUP Law: e(3t9)A4 = esA . ¢t4 for gll st € R

and et is the inverse of e for t € R.

Proof (sketch): We give an informal proof involving rearrangement of a matrix-valued
double series. But beware: rearrangement and regrouping of series are delicate matters
even for scalar-valued series, and a proof that would pass muster with analysts would
require considerably more detail — see any text on Mathematical Analysis.

The series e = > 77 A¥/k! and eP = Y72 B*/{! are sup-norm convergent. Ex-
panding the product of the two series term-by-term (which in itself requires some justi-
fication!) we get

eheB = (iAk/k!)-(iBf/z!)z %% Ak B!
k=0 =0 o

k,6>0
1 (k+0!
= E . A®B
S, e+l R

= Z %( Z ) AkBZ) where () = (binomial coefficient)
n=0 k=0

= Z %(A + B)"  (Binomial Formula)
n=0

= B O

A

2. DIFFERENTIATION LAW. The derivative of ¢(t) = e'? erists and is continuous,

with p
E(em) = A-et? forallteR

Proof: Using the Exponent Law we get

d (t+At)A _ tA
—(etA) = lm &~
dt At—0 At
(At)A _ I
T AR Y} . (HFADA _ tA (AD)A
Alyg()( A7 (since e ee )
(At)A _ I
_ . ¢ tA
= (fim =)
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Using the norm properties listed in Exercises 3.2 -3.3 it is not hard to show that

2
A = LH—(At)A—F%

At)?
(2_!)A2+...) = At(A+O(At)

A 4) T
— At-(A+

where the matrix-valued remainder O(At) becomes very small compared to At

10(AY) —0 asAt—0.
|At]
Thus,
eADA T At
in the || - ||co-norm as At — 0, proving the formula. O

Any system of n first order constant coefficient linear ordinary differential equations

in n unknowns can be written in matrix form as
dy e e -

(42) i A-y(y) with initial condition y(0) = c
where y(t) = (y1(t),...,yn(t)) is a vector-valued function of ¢, and the n x n matrix A
provides the coefficients of the system. It is well known that once the initial value c is
specified there is a unique infinitely differentiable vector-valued solution y(t) if we regard
y(t) as an n x 1 column vector. The solution can be computed explicitly as

(43) y(y) = e - y(0) =ec fort e R
In fact,
d d d
d_}t’ = E(em«:) = E(etA)-c:AetA~c:A~y(t) ,
and when ¢ = 0 we get y(0) = c because €4 = I,,,,. We must of course compute e**

to arrive at y(¢) but in the previous example we have seen how that might be done, at
least when the coefficient matrix can be diagonalized.

3.8. Example. If A = —16

vector-valued differential equation

_21 > determine the unique solution of the first order

dy 1
E_A-y(t) such that yg = y(0) = ( 0 )

Likewise for the initial value yg = ( 0 > Then find all solutions of

1

d
d_}t’ =A-y(t) for an arbitrary initial value yo = ( Zl )
2

Solution: Earlier we found that

QAQl_(é _01) for Q=
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and showed that

A_ QDPQ' _ 1. D _Lta (2 -1 -1
e’ =e =Q "-e Q—5e <—6 3 +e

S W
Do

)

Taking e*” in place of e, we got (with little additional effort):

1 2 -1 1 3 1
tA -4t P
e —56 (—6 3 )+5e <6 2) forallt € R

Taking yo = e1 = (1,0) we get a solution:

- () ()

If yo = e3 = (0,1) we get another solution:

o= ()i (3)

For an arbitrary initial condition y(0) = ¢ = c1e1 + caeq, it is obvious that the
solution of dy/dt = A - y(t) with this initial condition is the same linear combination of
the “basic solutions” y;(t) and y2(¢) namely:

y(t) = cyi(t)+ coya(t)

= el () e () el (3 ) ra (s )]

(Check for yourself that y(0) = c1e1 + caes = c.)

The full set of differentiable maps f : R — C? such that df/dt = A - f(t) is a 2-
dimensional subspace M in the oco-dimensional space C* (R, C?) of infinitely differentiable
vector valued maps:

M = C-span{yi(t),y2(t)} = {c1y1 +c2y2 : c1,¢2 € C}

and the “basic solutions” y1,y2 are a vector basis for M. One should check that y1, y2
are linearly independent vectors in C*°(R,C?). But if there were coefficients ay, as such
that a1y1(t) + azy2(t) = 0 in C?, and we take any convenient base point (say t = 0), we
would then have the following vector identity in C2:

(o) = 20(2)+()1+2(3)+(3)]
= 3(0)+5(5)-(3)

ae] + ageq = 0

U

0412012:0

as required. [

A similar discussion holds for equations dy/dt = A - y(t) when A is n x n (and
diagonalizable). If {y1(¢),...,yn(t)} C C*(R,C") are the “basic solutions,” whose initial
values are y;(0) = ey (the standard basis vectors in C™), then a solution with arbitrary
initial value y(0) = >"7_, crer € C™ is obtained by taking the same linear combination

y(t) =C1y1 (t) +... .+ CnYn(t) :
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of basic solution y(t). As above, the yy are linearly independent vectors in C*°(R, C™):
if 0 =) cryr(t) in C*(R,C") for all ¢, then (taking ¢t = 0) > crer = 0 in C™; thus,
1 =cg=...=c, =0 because y;(0) = e, by definition. We conclude that the {yx(¢)}
are a basis for the full set of solutions (with arbitrary initial value) of the equation
dy/dt = A-y(t).

M

=A- f(t) for allteR} (f:R—=C")
L yn(t)}

o, df
{ fece: 0

t),.
which has dimension dim¢(M) =n. O

= C-span{y:(
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Chapter VII. Nondiagonalizable Operators.

VII-1. Basic Definitions and Examples.

We continue the convention of previous chapters. writing dim(V') = |V| where appropri-
ate Nilpotent operators present the first serious obstruction to attempts to diagonalize a
given linear operator.

1.1. Definition. A linear operator T : V — V is nilpotent if T* = 0 for some k € N;
it s unipotent if T = I + N with N nilpotent.

Obviously T is unipotent < T — I is nilpotent.

Nilpotent operators cannot be diagonalized unless T is the zero operator (or T = I,
if unipotent). Any analysis of normal forms must examine these operators in detail.
Nilpotent and unipotent matrices A € M(n,F) are defined the same way. As examples,
all strictly upper triangular matrices (with zeros on the diagonal) as well as those that
are strictly lower triangular, are nilpotent in view of the following observations.

1.2. Exercise. If A has upper triangular form with zeros on and below the diagonal,
prove that

0 0 . 0 0 0 *
A? = 0 A3 = o1,
0 0 0
0 0

etc, so that A" =0. O

Matrices of the same form, but with 1’s on the diagonal all correspond to unipotent
operators.
We will see that if N : V — V is nilpotent there is a basis X such that

0 *
[N]x = .
0 0
but this is not true for all bases. Furthermore, a lot more can be said about the terms
(%) for suitably chosen bases.

1.3. Exercise. In M(n,F), show that the sets of upper triangular matrices:

1 *
(a) The strictly upper triangular group N = . . with entries
0 1
in
a1 *
(b) The full upper triangular group in M(n,F), P =
0 Qn.n

with entries in F such that [];-, a;; # 0.



are both subgroups in GL(n, F), with det(A) = [}, a;; # 0 for elements of either group.
Verify that A" and P are closed under taking products and inverses. [

1.4. Exercise. Let A = ( 8 (1) ) in M(2,F). This is a nilpotent matrix and in any

ground field the only root of its characteristic polynomial
pa(X) = det(A — ) = \?

is A = 0. There is a nontrivial eigenvector e; = (1,0), corresponding to eigenvalue A = 0,
because ker(A) = F - e; is nontrivial (as it must be for any nilpotent operator). But you
can easily verify that scalar multiples of e; are the only eigenvectors, so there is no basis
of eigenvectors. A cannot be diagonalized by any similarity transformation, Regardless
of the ground field F. O

“Stable Range” and “Stable Kernel” of a Linear Map. If T : V — V is a linear
operator on a finite dimensional vector space (arbitrary ground field), let K; = K (T%) =
ker(T%) and R; = R(T%) = range(T") for i = 0,1,2,---. Obviously these spaces are
nested

0)CKICKyC---CK; CKij1 C---

VORI DRy D---DR, DRiy1 2+,

and if dim(V) < oo they must each stabilize at some point, say with K, = K, 11 = ---
and Ry = Rgy1 = --- for some integers r and s. In fact if r is the first (smallest)
index such that K, = K, ;1 = --- the sequence of ranges must also stabilize at the same
point because |V| = |K;| + |R;| at each step. With this in mind, we define (for finite
dimensional V)

R, = ﬂ R, =R, = R,41 = --- (Stable range of T')
1=1

Ko = |JKi=K, =K1 = (Stable kernel of T')
1=1

1.5. Proposition. V = R ® K, and the spaces Roo, Koo are T-invariant. Further-
more Riv1 # R; and K11 # K; fori <r.

Note: This splitting is sometimes referred to as the “Fitting decomposition” (after a
guy named Fitting).

Proof: To see there is a non-trivial jump R;41 S R; at every step until 7 = r if suffices to
show that R,11 = R; at some step implies R; = R; for all j > ¢ (a similar result for kernels
then follows automatically). It suffices to show that R; = R;11 = Rit1 = Rit2. Obvi-
ously, R;12 C R;y1 for all ¢; to prove the reverse inclusion R;+1 C R;jyo , let v € Ri41.
Then there is some w; € V such that v = T (w;) = T(T%(w1)). By hypothesis
Riy1 = TY(V) = R; = T'(V) so there is some wy € V such that T%(w;) = T (wy).
Thus
v =T (wy) = T(T"(w1)) = T(T"(w2)) = T""*(w2) € Riyo

SO, Ri—i—l Q RH_Q, Ri = Ri+1 = RH_Q, and by induction Ri = Ri+1 == ROO

For T-invariance of R = R, and Ko = K,, T maps R; — R;y1 C R; for all 4;
taking i = r, we get T(Re) = Roo. As for the kernels, if v € K; 1 then 0 = T (v) =
T(T(v)). As a consequence, T'(v) € K; and T(K;11) C K; for all i. For i > r, we have
K;=Kijt1 = Ky, 30 T(K) = Koo as claimed.

To see V = Koo @ Roo we show (i) Reo + Koo = V and (i) Re N Koo = {0}. For
(1), if v € Roo = R, there is some w € V such that T"(w) = v ; but if v € Koo = K,



then T"(v) = 0 and hence T"(v) = 0. Consequently T?"(w) = T"(v) = 0. We now
observe that T : R, — R;y1 is a bijection for ¢ > r so ker(T|g,) = ker(T|r..) = {0}.
In fact, if ¢ > r then R; = R;11 and T : R; — R;y1 is a surjective linear map, and if
T : R; = R;4+1 = R; is surjective it is automatically a bijection. Now in the preceding
discussion v = T"(w) € R, and T" : R, — Ra, = R, is a bijection, so

0=T%(w) =T"(I"(w)) =T"(v)
Then v = 0, hence Roo N Ko, = {0}
For (i1) = (i), we know
R + Kool = [Rp + Ki| = Ry + K| — [K; N Ry
|Koo| + |[Roo| = [Kr|+ Ry = [V]
(by the Dimension Theorem). We conclude that R + Koo =V, proving (7). O

1.6. Lemma. Tk is a nilpotent operator on Ko and T|g.. is a bijective linear map
of Reo — Roo. Hence, every linear operator T on a finite dimensional space V , over any
field, has a direct sum decomposition.

T = (T|Rso) ® (T|Kw)

such that Tk, is nilpotent and T'|r_ bijective on R.
Proof: T"(K) = T"(ker(T")) = {0} so (T|k.. )" = 0 and T|k_, is nilpotent of degree
< r, the index at which the ranges stabilize at Ro.
VII-2. Some Observations about Nilpotent Operators.
2.1. Lemma. If N : V — V is nilpotent, the unipotent operator I + N is invertible.
Proof: If N¥ = 0 the geometric series I + N + N2 + ...+ N*1 4+ .. =3 (N is
finite and a simple calculation shows that

(I-N)YI+N+---+N-H=T-Nt=T.
Hence

(1) (I-N)'=I+N+---+N1 O

if NF=0. O

2.2. Lemma. If T :V — V is nilpotent then pr(X\) = det(T — AI) is equal to (—1)"\"
(n =dim(V)), and A = 0 is the only eigenvalue (over any field F). [It is an eigenvalue
since ker(T) # {0} and the full subspace of A = 0 eigenvectors is precisely Ex—o(T) =
ker(T) ].

Proof: Take a basis X = {e1, - ,e,} that runs first through K (T) = K; = ker(T'), then
augments to a basis in Ky = ker(T?), etc. With respect to this basis [T]xx is an upper

triangular matrix with zero matrices blocks on the diagonal (see Exercise 2.4 below).
Obviously, T'— AI has diagonal values —\, so det(T' — AI) = (=1)"A\"™ as claimed. O

Similarly a unipotent operator 7" has A = 1 as its only eigenvalue (over any field) and its
characteristic polynomial is pr(x) = t (constant polynomial = 1). The sole eigenspace
E\=1(T) is the set of fized points Fix(T) = {v : T'(v) = v}.

2.3. Exercise. Prove that

(a) A nilpotent operator T is diagonalizable (for some basis) if and only if T' = 0.

(b) T is unipotent if and only if T is the identity operator I =idy O



2.4. Exercise. If T : V — V is a nilpotent linear operator on a finite dimensional
space let X = {ey,...,e,} is a basis that passes through successive kernels K; = ker(T"),
1 <i < d=deg(T). Prove that [T]x is upper triangular with m; x m; zero-blocks on
the diagonal, m; = dim(K;/K;_1).

Hints: The problem is to devise efficient notation to handle this question. Partition the
indices 1,2,...,n into consecutive intervals Ji,...,Jg (d = deg(T)) such that {e; : j €
J1} is a basis for K1, {e; : i € J1 U Ja} is a basis for Ky, etc. Matrix coefficients T;; are
determined by the system of vector equations

T(ei) =Y Tie; (1<i<n=dim(V))
j=1
What do the inclusions T'(K;) C K,;_; tell you about the coefficients T;;7 O

Let T : V — V be nilpotent. The powers T% eventually “kill” every vector v # 0, so
there is an m € N such that {v,T(v),---,T™ 1(v)} are nonzero and T™(v) = 0 . The
nilpotence degree deg(T) is the smallest exponent d = 0,1,2,--- such that T¢ = 0.

2.5. Proposition. Let T : V — V be nilpotent and vo # 0. If vo, T (vo), -+ , T™ (vo)
are all nonzero and T™(vg) = 0 define W (vg) = F—span{vg, T'(vg), -+, T™ Y(vo)}. This
subspace is T-invariant and the vectors {vo, T'(vg), -+ ,T™ 1(vg)} are independent, hence
a basis for this “cyclic subspace” determined by vy and the action of T'.

Proof: The {T%(vo) : 0 < k < n — 1} span W (vg) by definition. They are independent
because if 0 = cg + 1T (vg) + -+ + cm_1T™ (vg) for some choice of ¢, € F, then

0= Tmil(()) = Tmil(CO’UO + ClT(Uo) —+ -+ Cmfleil(’Uo))
= Conil(’Uo)—FCl'O—|—"'+Cm71'0,

which implies ¢y = 0 since T~ !(vg) # 0 by minimality of the exponent m. Next, apply
T™~2 to the original sum, which has now the form ¢;T(vg) + -+ + cp_1T™ *(vg); we
get

Tm72(0) = Tmiz(clT(’Uo) + -4 Cm_leil(’Uo)) = Cleil(’Uo) +0+---40
and then ¢; = 0. We can apply the same process repeatedly to get co = ¢y =co =--- =

Cm—1 — 0. [l

Obviously W (vg) is T-invariant and Ty = T'|y(y,) is nilpotent (with degree m =
deg(Tp) < deg(T)) because for each basis vector T%(vg) we have Tg™ (T*(vo)) = T*(T™ (vo))
0; but in fact deg(Tp) = m because Tg" ' (vg) # {0}. Now consider the ordered basis

X={e1 = Tmfl(vo),eg = Tmfz(vo), ceyem =g} in Wivg) .

Since T'(ex4+1) = ey, for each k > 1 and T'(e1) = 0, the matrix [T]x x has the form

01 0 0
0 0 1
0 0 0

T]x = .
) .o 1
0 - - -0 0

The action on these ordered basis vectors is :

T T T T T
O—e1¢—ep¢— - —ep_1$—en="1



The “top vector” e, = vg is referred to as a cyclic vector for the invariant subspace
W (vg). Any matrix having the form

010 0
0 0 1
0 00
. . 1
O - - - 0 0

is called an elementary nilpotent matrix.

Cyclic Vectors and Cyclic Subspaces for General Linear Operators. To put
this in its proper context we leave the world of nilpotent operators for a moment.

2.6. Definition. If dim(V) < oo, T : V — V is a linear operator, and W C 'V a
nonzero T-invariant subspace, we say W is a cyclic subspace if it contains a “cyclic
vector” vog € W such that W = F-span{vg, T'(vo), T*(vo), - - - }.

Only finitely many iterates T%(vg) under the action of T' can be linearly independent, so
there will be a first (smallest) exponent k = k(vg) such that {vo, T'(vo), -+, T* (vg)}
are linearly independent and T*(vp) is a linear combination of the previous vectors.

2.7. Proposition. LetT : V — V be an arbitrary linear operator on a finite dimensional
vector space. If vg € V' is non-zero there is a unique exponent k = k(vg) > 1 such that
{wo, T(vo), -+, T (vo)} are linearly independent and T*(vo) is a linear combination of
these vectors. Obuviously,

W= ]F_Spa“n{Tj (UO) : j =0,1,2,-- } = ]F_Spa“n{U07 T(”O)? e 7Tk_1(UO)}

and diim(W) = k. Furthermore, T(W) C W and W is a cyclic subspace in V.

Proof: By definition of k = k(vo), T*(vg) is a linear combination T*(vg) = Z;:é c;T7(vo).
Arguing recursively,

k-1
T w) = T(THw)) = DT (o)
=0
= (cx_1T"(vp)) + (linear combinations of vy, T'(vo), - , T* " (vp) )
Since we already know T%(vg) lies in F-span{vg, T'(vo), -+ , T* 1(v0)}, so does Tk (vp).

Continuing this process, we find that all iterates T%(vg) (i > k) lie in W. By definition
v, T(vo), -+, T* 1 (vg) are linearly independent and span W, so dim(W) = k. O

When T is nilpotent there is a simpler alternative description of the cyclic subspace W
generated by the action of T on vy # 0. Since T? = 0 on all of V when d = deg(T), there

is a smallest exponent [ such that {vo, T (vo),---,T* 1(vg)} are nonzero and T*(vg) =
T**(vg) = 0 for all i > 0. These vectors are independent and the next vector T¢(vg) = 0
lies in F-span{vg, T'(vg),--- ,T* (o)}, so £ is precisely the exponent of the previous

lemma and C = F-span{vg, T'(vo), -+, T " *(vo)} is the cyclic subspace generated by vg.
XII-3. Structure of Nilpotent Operators.

Resuming the discussion of nilpotent operators, we first observe that if T : V — V is
nilpotent and nonzero the chain of kernels K; = ker(7"),

{0}=Ky S K =ker(T)S K2 G- S Kq=V  (d=deg(T))



terminates at V' in finitely many steps. The difference sets partition V' ~ (0) into disjoint
“layers”

V~0)=(Kg~Kig1) U U(K;~K;—1)U---U (K ~ Ky)

where Ky = (0). The layers K; ~ K;_;1 correspond to the quotient spaces K;/K; 1,
and by examining the action of T' on these quotients we will be able to determine the
structure of the operator 7'

3.1. Exercise. If vy is in the “top layer” V ~ K41, prove that F-span{7"(vg) : j > 0}
has dimension d and every such vy is a cyclic vector under the iterated action of 7" on
w. O

Since dim(Kg—1) < dim(K4) = dim(V'), K4_1 is a very thin subset of V and has “measure
zero” in V when F = R or C. If you could pick a vector vg € V' “at random,” you would
have vg € V ~ Ky_; “with probability 1,” and every such choice of vy would generate
a cyclic subspace of dimension d. “Unsuccessful” choices, which occur with “probability
zero,” yield cyclic subspaces W (vg) of dimension < d.

We now state the main structure theorem for nilpotent operators .

3.2. Theorem (Cyclic Subspace Decomposition). Given a nilpotent linear operator
T :V — V on a finite dimensional vector space V, there is a decomposition V =
Vi&--- &V, into cyclic T-invariant subspaces. Obuviously the restrictions T; =T
nilpotent, with degrees

v, are

m; = dim(V;) = (smallest exponent m such that T™ kills the cyclic generator v; € V;)

These degrees are unique when listed in descending order my > mo > --- > m, > 0
(repeats allowed), and >"._; m; = dim(V).

While it is nice to know such structure exists, it is equally important to develop a con-
structive procedure for finding suitable cyclic subspaces Vi, .-+, V,.. This is complicated
by the fact that the cyclic subspaces are not necessarily unique, unlike the eigenspaces
E\(T) associated with a diagonalizable operator. Any algorithm for constructing suitable
V; will necessarily involve some arbitrary choices.

The rest of this section provides a proof of Theorem 3.2 that yields on an explicit
construction of the desired subspaces. There are some very elegant proofs of Theorem
3.2, but they are existential rather than constructive and so are less informative.

3.3. Corollary. If T : V — V is nilpotent, there is a decomposition into cyclic spaces
V=V&... 0V, so there is a basis X such that [T]x consists of elementary nilpotent
diagonal blocks.

Byl 0 O
0 | By |0
0 0 O
[T]x =
0
with
01 0 0
0 0 1
B, = 0O 0 O .
1
0 0 0



We start with the special case in which T has the largest possible degree of nilpotence.

3.4. Lemma. If T is nilpotent and deg(T') = dim(V'), there is a cyclic vector in V and
a basis such that [T)x has the form B; of an elementary nilpotent matriz.

Proof: If deg(T) = d is equal to dim(V), the spaces K; = ker(T?) increase with
|Ki+1] > 14 |K;| at each step in the chain {0} S KiC---CKy_1C Kyg=V. There are
d = dim(V') steps so we must have |K;+1| = 1+ |K;|. Take any vector vg € V ~ Ky_;.
Then T%(vg) = 0 but by definition of Kyq_1, v, T(vg),--- ,T% 1(vg) are all nonzero, so
vg is a cyclic vector for the iterated action of 7. [

If T:V — V is nilpotent of degree d, the idea behind proof of Theorem 3.1 is to look
at the kernels K; = ker(T%).

V=Ki7?Ki17 7 Ky7 K =ker(T) 7 {0}

As the kernels get smaller, more of V' is “uncovered” (the difference set V ~ K and the
quotient V/K; get bigger) and the action in V/Kj reveals more details about the full
action of T on V.

It will be important to note that T'(K;) C K;_1 (since 0 = T%(x) = T T(x))
and T'(z) € K;_1). Furthermore, x ¢ K; implies that 0 # T%(z) = T*~}(T(z)) so that
T(x) ¢ K;—1. Thus

(2) T maps KfL'Jrl ~ Kl into Kz ~ Kifl for all 3.

But it is not generally true that T(K;) = K,;_.

3.5. Definition. Let T : V. — V be an arbitrary linear map and W a T-invariant
subspace. We say that vectors ey, -+ e, in'V are:

1. Independent (mod W) if their images €1,- -+ , €y, in V/W are linearly indepen-
dent. Since Y, cie; =0 in V/W if and only if >, cie; € W in V', that means:
ZcieieW:clz---zcmzo (c; €TF)

=1

2. Span V (mod W) if F-span{e;} = V/W, which means: given v € V, there are
c; € F such that (U > ciei) eEW,orv=>3,_,ce inV/W.

3. A basis for V (mod W) if the images {€;} are a basis in V/W , which happens if
and only if 1. and 2. hold.

3.6. Exercise. Let W C R® be the solution set of system

r1+T3 = 0
1 —x4 = 0

and let {e;} be the standard basis in V = R>.
1. Find vectors vy, vy that are a basis for V' (mod W).

2. Is X = {e1, ea,€3,v1,v2} a basis for V' where vy, v9 are the vectors in (1.)?

3. Find a basis {f1, f2, f3} for the subspace W. O
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Figure 7.1. Steps in the construction of a basis that decomposes vector space V into cyclic
subspaces under the action of a nilpotent linear operator 7' : V' — V. The subspaces K; are
the kernels of the powers T* for 1 < i < d = deg(T), with K; =V and Ko = (0).

3.7. Exercise. Let T': V — V be an arbitrary linear map and W a T-invariant
subspace. Independence of vectors fi,--- , f, mod a T-invariant subspace W C V im-
plies the independence (mod W) for any smaller T-invariant subspace W/ C W C V. O

Proof of Theorem 3.2. Below we will construct two related sets of vectors Fy, Fa, F3, - - -
and & = F) C & C & C--- C &, such that &, is a basis for V aligned with the kernels
Kig=V 2Ky 122K =ker(T) D {0}. When the construction terminates, the
vectors in &, will be a basis for all of V' that provides the desired decomposition into
cyclic subspaces.

(InrTIAL) STEPL: Let Fi = & = {e; : @ € index set I;} be any set of vectors in
V ~ K41 that are a basis for V' (mod K4_1), so their images {€;} are a basis in
V/Ki_1. Obviously the index set I has cardinality |I1| = |V/Kq4_1| = |V| — |K4-1]|, the
dimension of the quotient space.

You might feel more comfortable indicating the index sets I, I, - - - being constructed
here as consecutive blocks of integers, say Iy = {1,2,--- ,s1}, Ia = {s1 + 1,--- , 82} etc,
but this notation becomes really cumbersome after the first two steps. And in fact there
is no need to explicitly name the indices in each block. From here on you should refer
to the chart shown in Figure 7.1, which lists all the players that will emerge in our
discussion.

STEP 2: The T-images T'(F1) lie in the layer T(V ~ Kg4_1) C K4-1 ~ K4_2, as noted
in (2). In this step we shall verify two assertions.

Cramv (i): The vectors in T(F1) = {T(e;) : i € 1} C Kq—1 ~ K4_2 are
independent (mod Kg4_2).

If these vectors are not already representatives of a basis for K;_1/ K42 we can adjoin
additional vectors Fo = {e; : i € Is} C K4-1 ~ Kg_o chosen so that T(F;) U Fa
corresponds to a basis for K4_1/Ky_o; otherwise we take Fo = (.

CLAM (ii): The vectors & = Fo U [E; UT(F1)] = & U [T(F1) U F| are a
basis for all of V' (mod Kg_2).



Remarks: In Linear Algebra I we saw that if W C V and {es, - ,e.} is a basis for W,

we can adjoin successive “outside vectors” e,y1,- - ,es to get a basis for V. (These can
even be found by deleting some of the vectors in a pre-ordained basis in V.) Then the
images {€-41, - ,€s} are a basis for the quotient space V/W. That is how we proved

the dimension formula |V| = |W| 4 |V/W]| for finite dimensional V.] O

Proof: Claim (i). If > ,; a;T(e;) = T(D_;c;, aiei) =0 (mod Kg—2) then ), ; aie;
is in Kg_o and also lies in the larger space K;_1 2 K4_2. But by definition vectors in
F1 ={e; : i € I} are independent (mod K,_1), so we must have a; = 0 for i € I,
proving independence (mod Ky_1) of the vectors in T'(Fy).

Proof: Claim (ii). Suppose there exist coeflicients al(-l), a§2), b; € F such that
(3) Z al(-l)ei + Z a§2)ei + Z biT(e;) =0 (mod Kq—2),

i€l i€lr i€l

This sum lies in K4_o, hence also in the larger subspace K41, and the last two terms
are already in K4_1 because Fo UT(F1) C Kg_1 ~ K4—o. Thus

Z az(-l)ei =0 (mod Kq-1) ,
i€l

and since the e;, i € I, are independent (mod Ky_1) we must have az(-l) = 0 for all
i € I,. Now the sum (3) reduces to its last two terms, which all lie in Ky_;. But by
construction, Fa U T(F7) is a basis for K41 (mod Kj_2), which implies agz) = 0 for
1 €Iy and b; =0 for i € I. Thus & = FU[T(F1)UFo] is an independent set of vectors
(mod Kd,Q).

It remains to show & spans V' (mod Ky_2). If v € V is not contained in K;_; there
is some v € F-span{F;} such that v —v; =0 (mod K4_1), so v — vy € K4—1. If this dif-
ference is lies outside of Kj_o we can find some vy € T'(F;)UFz such that v = (v1 +v3) €
Kg—2. Thus v = v; + vy (mod Ky_»2), and since vy + vo € F-span{F; UT(F;) U Fa},
statement (ii) is proved. O

That completes Step 2. Further inductive steps fill in successive rows in Figure 7.1.
They involve no new ideas, but things can get out of hand unless the notation is carefully
managed. Below we include a complete discussion of the general inductive step in this
process, which could be skipped on first reading. It is followed by a final paragraph
proving uniqueness of the multiplicities m; (which you should read).

The General Inductive Step in Proving Theorem 3.2. This should probably be
read with the chart from Figure 7.1 in hand to keep track of the players.

Continuing the recursive construction of basis vectors: at step r we have defined sets
of vectors F; C Kg_;+1 ~ Ky4—; for 1 <14 < r with the properties & = F; and

Er =& U[T N F)U---UT(F_1) UF,]
is a basis for V/K;_,. At the next step we take the new vectors
T Y F)UT 2 (F) U UF, C Kgpi1~ Kqp
created in the previous step and form their T-images
TM(Fi)U--UT(F) € Kooy ~ Ky 1

To complete the inductive step we show:



1. These vectors are independent (mod Kg—,—_1)

2. We then adjoin additional vectors F,+1 € Kg4— ~ Kq_r—1 as needed to produce
a basis for K4,/ Kq__1, taking F,1 = 0 if the vectors T"(Fy) U --- UT(F,) are
already representatives for a basis in Ky—,/K4—r—1. The vectors

Erp1 =& UT(F)U...UT(F) U Fryd]
will then be a basis for V' (mod K4_,_1).

Proof details:

1. If the vectors T"(F1) U --- U T(F,) are not representatives for an independent set
of vectors in Ky_,/K4_,_1 there are coefficients {cl(-l) i1 e}, ,{cgr) cie I}

such that

ST ) ot Y T() =0 (mod Ky )
i€l i€l

So, this sum isin K4, and in Kq_,.. But T""*e; :i € [;1}U---U{e; :i € I,.} are
independent vectors (mod K,4—.) by hypothesis, and are a basis for Kq_,y1/Kq—r.
We may rewrite the last congruence as

T[ Z DT e) + ..+ Z cz(-T)el-] =0 (mod Kg—r—_1)
= i€,

So, T[--+] € Kg—r—1, hence [---] € K4_, too. By independence of the e; (mod

K4_,), we must have cl(-j) = 01in F for all 4, j. Thus the vectors T"(F1)U---UT(F;)
are independent (mod Ky_,_1) as claimed.

2. To verify independence of the updated set of vectors
Erp1 =& UT(F)U-- - UT(F) U Frpd]

in V/K4_—_1, suppose some linear combination S = S’ + 5" is zero (mod Ky4_,_1)
where S’ is a sum over vectors in &, and S” a sum over vectors in T"(F1)U- - -UF,41.
Then S =0 (mod K4_,_1) implies S = 0 (mod K4_,), and then by independence of
vectors in &, (mod Ky_,), all coefficients in S’ are zero. The remaining term S” in
the reduced sum lies in K4, ~ K4_,_1, and by independence of T"(Fy)U- - -UF, 41
in Kg_/K4—r—1 all coefficients in S” are also zero. Thus &,11 C V corresponds
to an independent set in Kq—,/Kq—r_1.

Dimension counting reveals that

V/Kia| = |F
|Ka—1/Kq—2| = |T(F)|+|F| = |F1]+|Fel
(4) :
|Kag—r/Kq—r—1| = |Fil+...+|Frq1]

Thus |V/Kq—r—1| = |V/Ka—1| + -+ |Ka—r/Ki—r—1| is precisely the number |€, 1| of
basis vectors appearing in the first » + 1 rows from the top of the chart in Figure 7.1).
But this is also equal to dim(V/Vy_,_1), so .41 is a basis for V/V;_,_; and Step(r+1)
of the induction is complete.

The Cyclic Subspace Decomposition. A direct sum decomposition of V' into cyclic
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subspaces can now be read out of Figure 7.1, in which basis vectors have been constructed
row-by-row. Consider what happens when we partition into columns. For each e; € F,
(i € I), we have e;, T(e;), T%(e;), -+, T% (e;) # 0 and T%e;) = 0, so these vectors
span a cyclic subspace E(e;) such that T'|g,) has nilpotent degree d with e; as its cyclic
vector. Since the vectors that span E(e;) are part of a basis &; for all of V', we obtain a
direct sum of cyclic T-invariant subspaces @;c;, £(ei) €V (|11 = |F1| subspaces).

Vectors e; € Fy (i € I) generate cyclic subspaces E(e;) such that dim (FE(e;)) =
deg(T'|g(e,)) = d — 1; these become part of

@E(el)® @ E(eQ) )
icly in€l2

etc. At the last step, the vectors e; € Fy (i € I;) determine T-invariant one-dimensional
cyclic spaces such that T'(Fe;) = (0), with nilpotence degree = 1 — i.e. the spaces
E(e;) = Fe; all lie within ker(7T'). The end result is a cyclic subspace decomposition

(5) (P EE)e (P Een)e...o( P Ee)
1€ i2E€12 iq€lg

of the entire space V, since all basis vectors in &, are accounted for. (Various summands
in (5) may of course be trivial.)

Uniqueness: A direct sum decomposition V = @;:1 E; into T-invariant cyclic sub-
spaces can be refined by gathering together those E; of the same dimension, writing

V:

P-

Hi where Hi = @{Ez : dim(E;) = deg(T'|E;) = k}
k=1

for 1 <k <d=deg(T).

3.8. Proposition. In any direct sum decomposition V = @;:1 E; into cyclic T-
invariant subspaces, the number of spaces of dimension dim(E;) =k, 1 <k < d = deg(T)
can be computed in terms of the dimensions of the quotients K;/K;_1. These numbers
are the same for all cyclic decompositions.

Proof: Let us regard Figure 7.1 as a d x d array of “cells” with C;; the cell in Row(?)
(from the top) and Col(j) (from the left) in the array; the “size” |C;;| of a cell is the
number of basis vectors it contains. Note that

(i) |Cij] = 0 if the cell lies above the diagonal, with j > %, because those cells are
empty (others may be empty too).

(13) |Ci;] = |F;| for all cells on and below the diagonal in Col(j) of the array. In
particular |Cj1| = |Fi| for all nonempty cells in Col(1), |Cj2| = |Fa| for those in
Col(2), etc.

By our construction, it is evident that vectors in the nonempty cells in Row(r) of Figure
7.1 correspond to a basis for the quotient space Kyq_,/K4—,—1. Counting the total
number of basis vectors in Row(r) we find that

dim(Kd—r/Kd—r—l) = |Cr1| +...+ |Cr+l,7‘+1| = |]:1| +...+ |]:r+1| )

We may now recursively compute the values of |C).;| and |F;| from the dimensions of the
quotent spaces K;/K;_1. But as noted above, each e; € F, lies in the diagonal cell Cg
and generates a distinct cyclic space in the decomposition. [

That completes the proof of Theorem 3.2.

Remarks. To summarize,
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1. We define K; = ker(T") for 1 < d = i nilpotence degree of T'.

2. The following relations hold.

& = F1 CV ~ Ky 1 determines a basis for V/K4_1,
E&H = & U [T(]ﬁ) U .7:2] CV ~ K45 determines a basis for V/Ky_o,

Erp1 = SU[TT(FHUT Y F)U-- UF41] CV ~ K4, determines a basis for V/Kq_,_1
i = EqrU[TTHF)U- - UT(Fao1) U Fa] is a basis for all of V. O

In working examples it usually helps to start by determining a basis B(®) = BWu. . .uB®
for V aligned with the kernels so that BM) is a basis for K1, B?) determines a basis for
K5/K1, etc. This yields a convenient basis in V' to start the construction.

3.9. Example. Let V =TF% and T : V — V the operator T' = L4,

T(z1,---,25) = (0,23 + 24,0, 23, 21 + 24)

whose matrix with respect to the standard basis X = {e1,--- ,e5} in F° is
000 0O
0 01 1 0
A=[Tlx=| 00 0 0 0
00100
100 10

Show that T is nilpotent, then determine deg(7") and the kernels
V=Ki2>Kq 12 --2K; 2{0}

Find a basis ) such that [T']g) has block diagonal form, with each block B; an elementary
nilpotent matrix. This is the Jordan canonical form for a nilpotent linear operator.

Discussion: First find bases for the kernels K; = ker(T"%). We have

Ky =ker(T) = {x:x34+24=0, 23=0, 21 +x4 =0}
= {x:izy=23=0,21+24=0} = {z:21 =23 =24 =0}
= {(05I270507$5) 1 T2,T5 € F} = F—span{eg,%}

Tteration of T yields

T(x) = (0,234 24,0,23,21 + 4)
T?(x) = T(T(x)) = (0,23,0,0,x3)
TB(X) = (Oa 70)

for x € F5. Clearly T is nilpotent with deg(T) = 3, and

|Ki|=2: K = F-span{es,e5} = {x: 21 =23 =24 =0}
|Ko| =4: Koy = ker(T?) = {x : 23 = 0} = F-span{ey, €2, €4, 5}
|[K3| =5 K3 =T°

In this example, ¥ = {ea, e5;e1,e45e2} = BD UBR UBG is an ordered basis for V
aligned with the K; running through (0) € K; C Ky C K3 = V. From this we can
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determine the families i, Fa, F3 of Theorem 3.2.

STEP 1: Since |K3/K>| = 1 any nonzero vector in the layer K3 ~ Ko = {x : 23 # 0}
yields a basis vector for K5/K>. We shall take F; = {e3} chosen from the standard basis
X, and then & = {es} too. (Any x with z3 # 0 would also work.)

STEP 2: The image set T'(F1) = T'(e3) = ez + e4 lies in the next layer

Ky~ Ky = {x:x3=0}~F-span{es, es}
= {x:x3 =0 and z1,z4 are not both =0}

Since |T'(F1)| = 1 and dim(K2/K;) = |K2| — |Ki| = 4 — 2 = 2, we must adjoin one
suitably chosen new vector x from layer Ko ~ K3 to T(F1) to get the desired basis for
KQ/Kl. Then ]:2 = {X} and

Ey = (fl U T(Fl)) UFs = {63,62 =+ 64,X}

&5 is a basis for V/K» as in first inductive step of Theorem 3.2.

A suitable vector x = (x1,...,25) in Ky ~ Ky, x = (21,2, T3, 24, 25) must have
23 = 0 (so x € K3) and x1, 3,24 not all zero (so x ¢ K;). This holds if and only if
(x3 = 0) and (z1, x4 are not both 0). But we must also insure that our choice of x makes
{es, e2 + e4,x} independent (mod K7). The following lemma is helpful.

3.10. Lemma. Let V = TF", W a subspace, X = {v1,--- ,v,} vectors in V, and let
M = F-spanf{vy,--- ,v.} (sor =|V/W|). Let Y = {w1, -+ ,wn_r} be a basis for W.

Then the following assertion are equivalent.
1. X determines a basis for V/W.
2. 9QUX ={v1, - ,0p, W1, ,Wn_r} IS a basis for V.
3. V=W & M (direct sum of subspaces).

Proof: In Linear Algebra I we showed that the images T1, - - - , U, are a basis for V/W
if and only if {v1,--- .0, } U9 are a basis for V. It is obvious that (i1) < (i4:). O

3.11. Corollary. In the setting of the lemma the “outside vectors” vy, -+ v, € V.~ W
are a basis for V. ((mod W), so the images {v1,--- ,0,} are a basis for V/W, if and only
if the n x n matrix A whose rows are Ry = vy, , R, = vy, Rpy1 = w1, , Ry = wp—pr
has rank equal to n.

Armed of this observation (and the known basis {es, e5} for K1), we seek a vector x =

(z1,...,25) with 21,24 not all equal to 0, such that
es3 0 0 1 0 O
ey + ey 0 1 0 1 0
A= ($1,$2,0,£L‘4,$5) = r1 T2 0 Ty4 Ts
es 0O 1 0 0 O
es 0O 0 0 0 1

has Rowrank(A) = 5. Symbolic row operations put this into the form

Tr1 T2 0 Ty4 Tp
0 1.0 0 O
o 0o 1 0 o |,
0 0 0 1 O
0 0 0 0 1

which has rank =5 if and only if z; # 0.
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Thus we may take e; as the additional vector we seek, and then
Fi= {63} T(]:l) = {62 + 64} F3 = {61} R

and & = [fl UT(Fy )] UJFz. That completes Step 2. (Actually any x with 21 # 0, 23 =0
would work.)

STEP 3: In the next layer K7 ~ K we have the vectors
T2(]:1) = {T2(€3) = T(eg + 64) = e9 + 65} and T(]:Q) = {T(el)} = {65}

Since, |K;/Kp| = |K1| = 2 there is no need to adjoin additional vectors from this layer,
so F3 = (). The desired basis in V is

E3=F1U[T(F)UF|U[T*(FI)UT(F)] = {es;e2 + eq,e1;e2 + €5,e5}
The iterated action of T" sends
e3 = T(ez) =ea+eq — T?(e3) =ea+e5 and e — T(er) = es
The cyclic subspaces are

Ey = T -span{es, T(es), T%(e3)} = {es, €2+ es, €2+ €5}
E, = F-span{e;,T'(e1) = es}

and V = E; @ E3. With respect to this basis [T]x has the block diagonal form

01 0(0 O
0 0 1(0 O
[Tx] = 00 010 O
0 0 0|0 1
0 0 0[O0 O

each diagonal block being an elementary nilpotent matrix. The number and size of such
blocks are uniquely determined but the bases are not unique, nor are the cyclic subspaces
in the splitting V = F; & Es. 0O

3.12. Exercise. Let W be the 3-dimensional subspace in V = F® determined by the
equations

0

0

xr, — 2I2 + T3
3{E1 + 5ZE3

which is equivalent to the matrix equation Ax = 0 with
1 -2 1 0

A= ( 3 0 5 -1 )
(a) Find vectors {v1, va,v3} that are a basis for W.

(b) Find 2 vectors {v4,vs} that form a basis for V' (mod W).

(c) Find two of the standard basis vectors {ey, €2, 3, €4, €5} in F> that are a basis for
V (mod W).

3.13. Exercise. Do either of the vectors in

f1:2€1—362+63—|—64 f2:—€1+262—|—563—264
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in IF® lie in the subspace W determined by the system of the previous exercises? Do these
vectors form a basis for F5 (mod W)? O

3.14. Exercise. Which of the following matrices A are nilpotent?

000 01 2 1 2 -1 5 -6 —6
@100 ®»|oo3] @©f -1 -2 1 @ -1 4 2
01 0 0 0 O -1 -2 1 3 -6 4

If A is nilpotent, find a basis for F? that puts A into block diagonal form with elementary
nilpotent blocks. What is the resulting block diagonal form if the blocks are listed in
order of decreasing size? [

3.15. Exercise. If Ny, Ny are nilpotent is Nj N> nilpotent? What if N7 and Ns
commute? [

3.16. Corollary. If Nj, N, are nilpotent operators Ny : V — V and their commutator
[Nl,NQ] = N1N2 - N2N1 is =0.

(a) Prove that linear combination ¢; N1 4+ ¢o N2 are also nilpotent.

(b) If Ny,---, N, are nilpotent and commute pairwise, so [N;, N;] = 0 for i # j, prove
that all operators in F-span{Ny,--- , N,.} are nilpotent. [

3.17. Exercise. Let V = P,(F) be the space of polynomials f = Y1 c;z* € Fla] of
degree < n.

(a) Show that the differentiation operator
D:V—=>V,Df =df/de=c +200x 4+ -+n-cpa™ !
is nilpotent with deg(D) =n+ 1 (Note: dim(V) =n+1).

(b) Prove that any constant coefficient differential operator L : V. — V of the form
a1D + asD? + -+ - + a,, D" (no constant term agl) is nilpotent on V.

(c) Does this remain true if a nonzero constant term cot is allowed? O

3.18. Exercise. In the space of polynomials P,,(R) consider the subspaces

Vi = {f:f(z)=f(—xz), the even polynomials}
Vo = {f:f(—z)=—f(x), the odd polynomials }

Prove that these subspaces are invariant under differentiation, and that P, is their direct
sum V3 @ Vo, O

3.19. Exercise. Show Tr(A) = 0, for any nilpotent linear operator A : V. — V of a
finite dimensional space. Is the converse true? [

VII.4 A Review of the Diagonalization Problem.

We will give a general structure theorem for linear operators 7' over a field F large
enough that the characteristic polynomials pr = det(T' — xI) splits into linear factors
f(x) =c - T[}_;(x — a;)™ in Flz]. This is always true if F = C, but pr need not split
over other fields; and even if pr(z) does split, that alone is not enough to guarantee T is
diagonalizable. In this section we briefly review diagonalizability of linear operators over
a general field F, which means that there is a basis of eigenvectors in V' (or equivalently
that the eigenspaces E\(T) span V so V = >, Ex(T)). If you already have a good
understanding of these matters you may want to skip to Section VII.5 where we discuss
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the generalized eigenspaces that lead to the Jordan Decomposition. However, you should
at least read the next theorem and its proof since the techniques used are the basis for
the more complicated proof that generalized eigenspaces are independent, part of a direct
sum decomposition of V.

Diagonalization.

4.1. Definition. Let T : V — V be a linear operator on vector space over F. If
A € F, the M-eigenspace is Ex = {v €V : (T — A)v = 0}. Then A is an eigenvalue
if Ex(T) # {0} and dimg (Ex(T)) is its geometric multiplicity. We often refer to
spp(T) ={A € F: E) # {0}} as the spectrum of T over F.

4.2. Exercise. Show that every eigenspace F) is a vector subspace in V that is T-

invariant. If X = {e1, -+ ,ep,--+ ,e,} is a basis for V that first passes through E), show
that the matrix of T takes the form

A0 Ofx*x =
. . * *

[T)x = 0 0 A *
0 0 O|x =
0 0 0

The geometric multiplicity of A is dim(Ex(T)). We have already seen that when F =R
the operator T' = (90° rotation acting on R?) has no eigenvalues in R, so spg(T) = 0.

An operator T is diagonalizable if there is a basis X = {e1, -+ ,e,} consisting of
eigenvectors e;, so T'(e;) = \;e; with respect to this basis. Then [T]x has the diagonal
form

A1 0
[T)x = -
0 An
in which there may be repeats among the \;. Conversely, any basis such that [T]x takes

this form consist entirely of eigenvectors for 7. A more sophisticated choice of basis
vectors puts [T]x into block diagonal form. First a simple observation:

4.3. Exercise. If T : V — V is a linear operator on a finite dimensional space, show
that the following statements are equivalent.

(a) There is a basis in V consisting of eigenvectors.

(b) The eigenspaces for T span V', so that

Note: There actually is something to be proved here: (b) requires more care selecting
basis vectors than (a). O

So, if T is diagonalizable and {A1,..., A} are its distinct eigenvalues in F, may choose a
basis of eigenvectors e; that first runs through E),, then through E),, etc. It is obvious
that this choice yields a “block disagonal” matrix

)\1 Im1 Xm1 O

Tx = ’ A2 faxme .

16




in which m; = dim (Ey,(T)). O
These observations do not quite yield the definitive characterization of diagonalizability.
DIAGONALIZABILITY CRITERION. A linear operator T on a finite dimen-

(6) sional space is diagonalizable over F < V is the DIRECT SUM of its distinct
eigenspaces: V = @._, Ex, (T).

The implication (<) is trivial, but in the reverse direction we have so far only shown
that (diagonalizable) = V is spanned by its eigenspaces, so V = 3_"_, E),(T) and every
v has at least one decomposition v = Y. v; : wg with v; € Ej,(T). In a direct sum
@, Ex, (T) the decomposition is unique, and in particular 0 =), v; with v; € E,(T) =
each term v; = 0.

4.4. Exercise. Finish the proof of the Diagonalizability Criterion (6). If V =73, Ex,(T)
prove that every v € V has a UNIQUE decomposition v = ), v; such that v; € E),(T).
O

4.5. Proposition. If {\;,--- , A} are the distinct eigenvalues in F for a linear operator
T :V — V on a finite dimensional vector space, and if the eigenspaces Ey, span V, then
V is a direct sum Ey, @ --- €D E),. Furthermore,

1. dim(V) = Y";_, dim(Ey,) = Y_;_, (geometric multiplicity of \;)
2. T is diagonalizable over F.

Proof: Since V = ). E\, every vector in V has a decomposition v = >_'_, v; with
Vi € E\,(T), so we need only prove uniqueness of this decomposition, which in turn
reduces to proving that the v; are “independent” in the sense that

O=v1+-+v withy, €E)\, 2 v=-=0v.=0

Note that for p, A € F, the linear operators (T'— AI), (T — pul) commute with each other,
since I commutes with everybody. Now suppose > ._, v; = 0 with T'(v;) = A;v;.
Fix an index i and apply the operator S = [[,_;(T' — A;I) to the sum. We get

(7) 0=5(0) =53 v) =2 S)
k=1 k=1
But if k& # i, we can write
S(oe) = [[(T = eDyor = [ [T (@ = AeD) |- (T = M)ve =0
£ CH#k,i
Hence the sum (7) reduces to
0= S(x)=Sw)+0+-+0=][[ (@ = AeD)v;
i

Observe that we may write (T'—A\¢) = i) = (T — X;) + (A — A¢)1, for all £, so this becomes
(8) 0=[JIT )+ = A)f]vi =0+ [ TN — Ao)] v

i i

(because (T — A;)v; = 0). The constant ¢ = [],,(A\i — A¢) must be nonzero because
Ae # X\i. Therefore (7) = v; = 0. This works for every 1 < i < r so the v; are
independent, as required. [

4.6. Exercise. Let V be finite dimensional, {1, -, A} the distinct eigenvalues in F
for an F-linear operator T : V — V. Let E = Y_._, E\, be the span of the eigenspaces.
(E C V). Show that
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(a) E is T-invariant .
(b) T|g is diagonalizable. O

4.7. Exercise. Let T : V — V be an linear operator on a finite dimensional vector
space over F, with n = dimp(V'). If T has n distinct eigenvalues, prove that

(a') V= @?:1 E)\z"
(b) The eigenspace are all one-dimensional, and
(c) T is diagonalizable. O

4.8. Exercise. If a basis X for V passes through the successive eigenspaces Ex, (T'), - - , Ex,.(T),
and we then adjoin vectors outside of the subspace F = Z)\iGSP(T) E,,(T) to get a basis
for V, explain why the matrix of T has the form

me-| 0 0 (]| -
0 0 0 * %
0 0 0 *

where m; = dim(E)y,(T)). O

4.9. Definition. If T : V — V is linear operator on a finite dimensional vector space,
every root o € F of the characteristic polynomial pr(x) = det(T — x I) is an eigenvalue
for T, so pr(z) is divisible (without remainder) by (x — «).Repeated division by (z — )
may be possible, and yields a factorization pr(x) = (z — o)™ Q(x) where Q € Flx] does
not have « as a root, and thus is not divisible by (x — «). The exponent m,, is the alge-
braic multiplicity of the eigenvalue .

Now suppose F is an algebraically closed field (every nonconstant polynomial f € F|x]
has a root a € F), for example F = C. It follows that every f over such a field splits

completely into linear factors f = ¢-[[,_; (x — ;) where a1, - - -, o, are the roots of f(z)
in F (repeats allowed). If T': V' — V is a linear operator on a finite dimensional vector
space over such a field, and Aq,..., A, are its distinct eigenvalues in F, the characteristic

polynomial splits completely
pr(z) =det(T —zl) =c- H(x — A"
j=1

where m; = the algebraic multiplicity of A; and >, m; = dim(V').

4.10. Corollary. LetT : V — V be a linear operator on a finite dimensional space V
over F = C. If the characteristic polynomial

pr(z)=det(T —zI)=c- H(m — )™
j=1

has DISTINCT roots (so m; =1 for all j), then r = n = dimc(V) and T is diagonalizable.

Algebraic vs Geometric Multiplicity.

4.11. Proposition. If A € F is an eigenvalue for linear operator T : V — V, its alge-
braic multiplicity as a root of pr(x) = det(T — x I) is > (geometric multiplicity of \) =
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dim E)\.
Proof: Fix an eigenvalue A\. Then E = E)(T) is T-invariant and T|g = A -idg. So, if

we take a basis {e1,--- e} in Ey and then add vectors e, 41, -+ , e, to get a basis X
for V, we have
Mopscm | *
Tx = (m = dim(Bx(T))
0 *
Here m is the geometric multplicity of A and the characteristic polynomial is
(A—x) 0
. *
0 (A—2x)
pr(z) = det
(am+1,m+l - I) *
0
* (ann — )
This determinant can be written as
(9) det(T —2I) = > sgn(m) - (T = aD)1 (1) -+ (T = D)y r(n)

TESy

Each term in this sum involves a product of matrix entries, one selected from each row.
If the spots occupied by the selected entries in (9) are marked with a “0,” the marked
spots provide a “template” for making the selection, and there is one template for each
permutation m € S,,: in Row(i), mark the entry in Col(j) with j = 7 (¢).

The only n x n templates that can contribute to the determinant of our block-upper
triangular matrix (T'—z ) are those in which the first m diagonal spots have been marked
(otherwise the corresponding product of terms will include a zero selected from the lower
left block). The remaining marked spots must then be selected from the lower right block
(¥) — i.e. from Row(i) and Col(j) with m + 1 < i,j < n, as indicated in the following
diagram.

O 0

0 (]

0 o -
O

Thus pr(x) = det(T — 1) has the general form (x — A)™ - G(x), in which the factor G(x)
might involve additional copies of A\. We conclude that

(algebraic multiplicity of )\) >m = ( geometric multiplicity of )\) ,

as claimed. O

4 0 1
4.12. Example. Let T = L, : R? — R3, with 4 = ( 2 3 2 ) If X = {e1,ea,e3} is
1 0 4
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the standard Euclidean basis then [T]x = A and the characteristic polynomial is

4—z 0 1
det(A — zT) =det 2 3—-z 2

1 0 4—x
= [d-2)3—-2)4—2)4+04+0]—-[B3—2)+0+0]
= (12-Tz+2¥)(4—-2)-3+x
= 48— 28z 4422 — 120+ 722 — 2 -3+«
= —2®+112%2 -39z + 45

pr(z)

To determine sp(T') we need to find roots of a cubic; however we can in this case guess a
root A and then long divide by (x—\). After a little trial and error it turns out that A = 3
is a root, with pr(3) = =27 +99 — 117+ 45 = 0 and pr(z) = —(z — 3)(2? — 8z + 15) =
—(z = 3)%(z - 5).

EIGENVALUES in F = R (or F = Q) are Ay = 3, A2 = 5 with algebraic multiplicities
myp = 2,me = 1. For the geometric multiplicities we must compute the eigenspaces
E\, (T).

CAsE 1: A = 3. We solve the system (A — 31)x = 0 by row reduction.

10 1]0 0 10
A-31]=(20 20| = 0 o0olo
1 0 1[0 0 0 0fO0
Columns in the row reduced system that do not meet a “step corner” correspond to
free variables in the solution; thus x4, x3 can take any value in F while z; = —z3. Thus
Ex—3 = ker(A—3I) = {(—vs,v2,v3) : v3,v3 € Fu; = —v3}

F-(-1,0, 1) @F-(0,1,0) = F(—e1 +e3) @ Fes

These vectors are a basis and 2 = dim(Fx—3) = (geometric multiplicity) = (algebraic
multplicity).

CASE 2: A =5. Solving (A — 5I)v = 0 by row reduction yields

-1 0 110 -1 0 1]0 0 —1]0
[A-5I]=| 2 -2 2|0 | —=| 0 -2 4]0 |—>| o -2 0
1 0 -1]0 0 0 0]0 0 0 0]0

Now there is only one free variable x3, with o = 2x3 and 1 = x3. Thus
Ey—5 = {(x3,2x3,23) 23 € F} = F-(1,2,1)
and
1 = dim(Ex=5) = (geometric multiplicity of A = 5) = (algebraic multiplicity).

DIAGONALIZATION: A basis ) consisting of eigenvectors is given by

Ji=—e1tes Ja=e2 Js=e1+2e+e3.
and for this basis we have
3 0]0
Tly=| 0 3|0
0 0|5
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while [T]x = A with respect to the standard Euclidean basis {e;}.

It is sometimes important to know the similarity transform SAS™! = [Ty that effects
the transition between bases. The matrix S can be found by writing

[Tlyy = [doTeidlyy = [id]yz - [T]xx - [idzxy
= [id]gjx -A- [id]xgj
Then S = [id]yx, with Sxg = S~! because
[ld]xg) . [ld]g)x = [ld]_’{g{ = IS><3 (3 X 3 identity matrix)

(All this is discussed in Chapter I1.4 of the Linear Algebra I Notes.)

The easiest matrix to determine is usually S~' = [id |xg which can be written down
immediately if we know how to write basis vectors in ) in terms of those in the standard
basis X in F3). In the present example we have

id(f1) = —e1+0-ex+e3 -1 0 1
id(f2) = O+ea+0 = St =[idxy = 0 1 2
id(fg) = e +2e+e3 1 0 1

It is useful to note that the matrix [id]xy is just the transpose of the coefficient array in
the system of vector identities that express the f; in terms of the e;.

We can now find the desired inverse S = (S~!)~! by row operations (or by Cramer’s
rule) to get

1 1

-2 0 3

S=1 -1 1 -1

1 1

2 2

and then

300

SAS™' =10 3 0

00 5

as expected. That concludes our analysis of this example. O

4.13. Exercise. Fill in the details needed to compute S.

4.14. Example. Let A = ( _21 _42 ) with F = R or C. Then
2_ (-2 0 3 _
A= ( 0 0 and A° =0,

so with respect to the standard basis in F? the matrix of the map T = L4 : F?2 — F? is
[T]x = A and the characteristic polynomial is:

o 2—x 4 o 2 )
det(A—:z:I)—det< 1 _2_$>——4+:1: +4==x

Thus, A = 0 is a root (over R or C) with (algbraic multiplicity) = 2, but the geometric

multiplicity is dim (E)\:O) = 1. When we solve the system (A — A\)x = Ax = 0 taking
A =0 to determine Ex—g = ker(L4), row reduction yields

2-A 4 o _ (2 4o\  ([1] 2]0
-1 —2-X]0 -1 =20 0 0]0
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For this system x5 is a free variable and x1 = —2z4, so
E)\:() =F. (—2, 1) =F. (261 — 82) 5

and dim (Ey—o) = 1 < (algebraic multiplicity) = 2. There are no other eigenvalues so
the best we can do in trying to reduce T is to find a basis such that [Ty has form

0| =
0]
by taking Q) = {f1, fo} where f1 = (2,1) = 2e1+e3 and f is any other vector independent
of fl'
However, T is a nilpotent operator (verify this), so we can do better with a slightly
different basis 3 that puts A into the Jordan canonical form for nilpotent operators (as
in Theorem 3.2). In the present example this is

[T]5 = ( @ @ ) (an elementary nilpotent matrix)

with two 1 x 1 blocks of zeros on the diagonal. In fact, in the notation of Theorem 3.2
we have kernels (0) C K7 = ker(T') C Ky = ker(T?) = V with

Ki=Exo=F-f and K, =F?

So, if fo is any vector transverse to ker(T), we have T(f2) € ker(T) = F - fi;. But
T(f2) # 0 since fo ¢ K7, and by scaling fo appropriately we can make T'(f2) = f1. Then
3 ={f1, f2} is a basis that puts [T]5 into the form shown above. O

4.15. Exercise. Repeat the analysis of the previous exercise for the matric A =
4 4 -
-1 0 )

That concludes our review of Diagonalization.

VII-5. Generalized Eigenspace Decomposition I.

The Fitting Decomposition (Proposition 1.5) is a first step in trying to decompose a
linear operator T': V' — V over an arbitrary field.

5.1. Proposition (Fitting Decomposition). Given linear T : V. — V on a finite
dimensional vector space over any field, then V.= N & S for T-invariant subspaces N, S
such that T|s : S — S is a bijection (invertible linear operator on S), and T|n : N = N
is milpotent.

The relevant subspaces are the “stable kernel” and “stable range” of T,

Koo = Ki, (Ki=ker(T") with{0}SK S - GK, =K 1=-=Ky)

o

@
Il
A

Ry = Ri, (R; =range(T") with {0} 2Ry Z---2 Ry = Rpy1 = -+~ = Roo)

5

N
Il
-

(see Section VII-1). Obviously, T' = (T|g.,) @ (T|k..) which splits T into canonically
defined nilpotent and invertible parts.

5.2. Exercise. Prove that the Fitting decomposition is unique: If V.= N & S, both T-
invariant, such that T'|y is nilpotent and T'|g : S — S invertible show that N = K (T)
and S = Roo(T). O
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Given a linear operator T' : V' — V we may apply these remarks to the operators
(T — A\I) associated with eigenvalues X in spg(T). The eigenspace FEx(T') = ker(T — \I)
is the first in an ascending chain of subspaces, shown below.

{0} Sker(T — A) = Ex(T) Sker(T = \)? S -+ Sker(T = \)" =+ = Koo (T — \)
5.3. Definition. If A € F the “stable kernel” of (T — \I)

Koo(N) = G ker(T — AI)™

m=1
is called the generalized M-eigenspace, which we shall hereafter denote by My (T).
Thus,
M\(T) = {veV:(T—\)"v=0 for some k € N}
(10) E\(T) = {v: (T — X)v=0}
We refer to any A € F such that Mx(T) # (0) as a generalized eigenvalue for T. But

note that Mx(T) # {0} & Ex(T) # {0} < det(T — AI) =0, so these are just the usual
eigenvalues of T in F.

V)

Generalized eigenspaces have the following properties.

5.4. Lemma. The spaces Mx(T') are T-invariant.

Proof: T commutes with all the operators (T' — A)™, which commute with each other.
Thus, v € M\(T) = (T — M)*v = 0 for some k € N =

(T — AT (v) = T(T — A\)*v = T(0) =0
Hence T'(v) € Mx(T). O

We now show that T'|ps, has a nice upper triangular form with respect to a suitably
chosen basis in M.

5.5. Proposition. Fvery generalized eigenspace Mx(T), X € sp(T), has a basis X such
that the matriz of Ty, 7y has upper triangular form

A *
(T|my]x = ,
0 A
Proof: We already know that any nilpotent operator N on a finite dimensional vector
space can be put into strictly upper triangular form by a suitable choice of basis.
0 *
[N]x = '

Now write
Ty = (T = M)y + M ary
in which V.= My, N = (T — M)|n, and 1|y, is the identity operator on My. Since
[ I3y )x = Imxm for any basis, a basis that puts (T'— AI)|ps, into strict upper triangular
form automatically yields
A *
[Tlan)x = [(T = AD)lar ] + M = ' U
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The most precise result of this sort is obtained using the cyclic subspace decomposition
for nilpotent operators (Theorem 3.2) to guide our choice of basis. As a preliminary step
we might pick a basis X aligned with the kernels

0) S Ky =ker(T) S Ky =ker(T?) S ... S Kg4=V

where d = deg(T'). As we indicated earlier in Exercise 2.4, [T]x is then upper triangular
with zero blocks Z;,1 <i < d = deg(T), on the diagonal. Applying this to a generalized
eigenspace M) (T), the matrix of the nilpotent operator T'— AI becomes upper triangular
with zero blocks on the diagonal. Writing T = (T — M) + Al as above we see that
the matrix of 7" with respect to any basis X running through successive kernels K; =
ker(T — AI)" must have the form

[T|]WA]_’{ = /\Ian+[T—)\I]x

A -[Tos o *
(11) A Enaom |

o R ey

with m; = dim(K;/K;—1) = dim(K;) —dim(K;_1) and n = dim(V') = >, m,. The shape
of the “block upper triangular form” (11) is completely determined by the dimensions of
the kernels K; = K;(T — ).

Note that (11) can be viewed as saying T'|ar, = A\ + Ny where I =idps,, Ay is a
scalar operator on My, and Ny = (T — A\I)|ps, is a nilpotent operator whose matrix with
respect to the basis X is similar to the matrix in (11), but with m; x m; zero-blocks on
the diagonal. The restriction T'|ps, has an “additive decomposition” T|ps, = (diagonal)
+ (nilpotent) into commuting scalar and nilpotent parts,

A * A 0 0 *
Tla, = AT+ Ny = o = - + .
0 A 0 A 0 0

Furthermore, the nilpotent part N, turns out to be a polynomial function of (T| Mk),
so both components of this decomposition also commute with T'|M,. There is also a
“multiplicative decomposition” T'|ps, = (diagonal) - (unipotent) = (M) - U where U is
the unipotent operator (I + Ny ); for the corresponding matrices we have

A * A 0 1 *

0 A 0 A 0 1
Note: The off-diagonal entries (%) in Ny and Uy need not be the same in these two
decompositions.

As we show below, this description of the way T" acts on M) can be refined to provide
much more information about the off-diagonal terms (x), but we will also see that for
many purposes the less explicit block upper triangular form (11) will suffice, and is easy
to compute since we only need to determine the kernels K;.

Now consider what happens if we take a basis ) in M, corresponding to a cyclic
subspace decomposition of the nilpotent operator

Ny = (T = A)|n, = (T|ary) — ALy (Ix = I]a,)
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Then [Al)]y is A times the identity matrix (as it is for any basis in M)) while [Ni]y
consists of diagonal blocks, each an elementary nilpotent matrix N;.

)

[Nl = [(T = A)|my ] =

and
0 1 0
N, =
-1
0 0

of size d; x d;, with N; a 1 X 1 zero matrix when d; = 1. This yields the “Jordan block
decomposition” of T'|y;,

0
(12) [Ty = My ly +[Na]y =

with T; = X - Iy, xa, + (elementary nilpotent) when d; > 1,

Al 0
n:

-1

0 A

The last block in (12) is exceptional. The other T; correspond to the restrictions T'|¢,(x)
to cyclic subspaces of dimension d; > 1 in a cyclic subspace decomposition

M\T)=Ci(\) & ... & Cpr(N)

of the generalized eigenspace. However, some of the cyclic subspaces might be one-
dimensional, and any such C;()) is contained in the ordinary eigenspace Ex(T'). If there
are r such degenerate cyclic subspaces we may lump them together into a single subspace

E = @{Ci(\) : dim(Cs(\)) = 1} € Ex(T) € MA(T)
such that dim(F) = s and T|g = A - Ig. It should also be evident that
s+di+ ...+ dpy = dim (My(T))

This is the Jordan Canonical Form for the restriction (7|, ) of T to a single gen-
eralized eigenspace. If My (T) # 0 the description (12) is valid for any ground field F,
since it is really a result about the nilpotent operator (T' — A)as, . Keep in mind that
the T-invariant subspaces in a cyclic subspace decomposition of M) (or of any nilpotent
operator) are not unique, but the number of cyclic subspaces in any decomposition and
their dimensions are unique, and we get the same matrix form (12) for a suitably chosen
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basis.

VII-6. Generalized Eigenspace Decomposition of 7.

So far we have only determined the structure of T restricted to a single generalized

eigenspace M (T). Several obstacles must be surmounted to arrive at a similar structure
for T on all of V.

e If the generalized eigenspaces My, (T') fail to span V, knowing the behavior of T
only on their span

M= Y M)

Aesp(T)

leaves the gobal behavior of T' beyond reach.

e It is equally important to prove (as we did in Proposition 4.5 for ordinary eigenspaces)
that the span of the generalized eigenspaces is in fact a DIRECT sum,

M= @ M\(T)

Aesp(T)

That means the actions of T on different M) are independent and can be examined
separately, yielding a decomposition T'|p = ®A6sp(T) (T|nry) -

Both issues will be resolved in our favor for operators 7' : V' — V provided that the
characteristic polynomial pr(x) splits into linear factors in F[x]. This is always true if
F = C; we are not so lucky for linear operators over F = R or over a finite field such as
F = Z,. When this program succeeds the result is the Jordan Canonical Decomposition.

6.1. Theorem (Jordan Canonical Form). If T : V — V is a linear operator on a
finite dimensional space whose characteristic polynomial pr(x) = det(T —x I) splits over
F, then V is a direct sum of its generalized eigenspaces

V= P Mm@,

Aesp(T)

and since the Mx(T) are T-invariant we obtain a decomposition of T itself

(13) T= @ Tl

Aesp(T)

into operators, each of which can be put into Jordan upper triangular form (12) by choos-
ing bases compatible with a decomposition of My into T-invariant cyclic subspaces.

Proof that the generalized eigenspaces are independent components in a direct sum
follows the same lines as a similar result for ordinary eigenspaces (Proposition VII-4.5),
but with more technical complications. Proof that they span V' will require some new
ideas based on the Fitting decomposition.

6.2. Proposition (Independence of the My). The span M = 3, . ) MA(T) of
the generalized eigenspaces (which may be a proper subspace in V) is always a direct sum,

M = ®>\Esp(T) My(T).

Proof: Let A1,..., A\, be the distinct eigenvalues in F. By definition of “direct sum” we
must show the components M, are independent, so that

(14) 0=wv1 4+ +uv,, withv; € My, = each term v; is zero.
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Fix an index k. For for each 1 <i <7, let m; = deg(T — )\jI)|MAj. If v, = 0 we're done;
and if vy # 0 let m < my, be the smallest exponent such that (T — ApI)™vr = 0 and
(T — M D)™ Yoy, # 0. Then w = (T — A\.I)™ 1wy is a nonzero eigenvector in E), .
Define
A=][@-xnm (T = x)m
i#k
which is keyed to the particular index A\; as above. We then have

0 = A(0)=0+ Avr  (since Av; =0 for i # k)
= JJ@ =)™ (T =x)" ) = [T =)™ w

i#k i#k
= H (T = M) + (0 — )] “w  (a familiar algebraic trick)
i#k

= H Z (7;) (T — Xe)™ (A — Ai)°w  (binomial expansion of [---]™)
i#k s=0

All terms in the binomial sum are zero except when s = m;, so we get
0=[JIw=x)™] w
i#k

The factor [---] is nonzero because the A; are the distinct eigenvalues of T in F, so w
must be zero. This is a contradiction because w # 0 by definition. We conclude that
every term vy in (14) is zero, so the span M is a direct sum of the M,. O

Further Properties of Characteristic Polynomials. Before takling up the proof
of Theorem 6.1 we digress to develop a few more facts about characteristic polynomi-
als, in order to work out the relationship between sp(7’) and sp(T|g.. ) where Ry, =
Roo(T — M 1I).

*

B
6.3. Lemma. If A € M(n,F) has form A = ( c
0

)wheTeBisrxr and C is

(n—71) x (n—r), then det(A) = det(B) - det(C).
6.4. Corollary. If A € M(n,F) is upper triangular with values c1,...,c, on the diago-
nal, then det(A) = H c;.

i=1

Proof (Lemma 6.3): Consider an n X n template corresponding to some o € S,,. If

any of the marked spots in columns C4,--- ,C, occur in a row R; with r 4+ 1 < i < n,
then a;; = a; o(;) = 0 and so is the corresponding term in 7 ¢ (--+). Thus all columns
Cj,1 < j < r, must be marked in rows Ry,..., R, if the template is to yield a nonzero

term in det(A). It follows immediately that all columns C; with r +1 < j < n must be
marked in rows R; with » +1 < ¢ < n if ¢ is to contribute to

det(4) = Y sgn(o) - [T aioe
i=1

gESy,

Therefore only permutations ¢ that leave invariant the blocks of indices [1, r], [r+1, n] can
contribute. These o are composites of permutations p = olj,] € S and 7 = o[ 41,0] €
Sn_r, with

B B pk) i 1<k<r
o(k) = “XT(Z)_{ rk—r) if r+1<k<n
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Furthermore, we have sgn(o) = sgn(pux7) = sgn(u)-sgn(7) by definition of sgn, because
1, T operate on disjoint subsets of indices in [1,n].
In the matrix A we have
Bk,l = Akyg for 1 S k,g S T
Cre = Apgrpqr forr+1<Ekl<n

so we get

T

det(A) = S sgn(ux 1) (T Biww) - ( 1:[ Cirti))
j=1

(1,7)ES X Spr i=1
= (X sonw) - TIBiwey) - (X son(r)- T Ciri)
LESy i=1 TESn—r J=1

= det(B) -det(C) O

6.5. Corollary. If T : V — V is a linear operator on a finite dimensional vector space
and M C 'V is a T-invariant subspace, the characteristic polynomial pr,, (v) divides
pr(z) = det(T —z 1) in Fzx].

Proof: If M C V is T-invariant and we take a basis X = {e;} that first spans M and
then picks up additional vectors to get a basis for V', the matrix [T]x has block upper

Al *

triangular form < ), and then

A—:z:]| *
[T—,TI]_'{:
0 ‘B—:z:[

But it is trivial to check that A — 2l = [T — 21|y ]35’ where X' = {ey,--- ,e,} are the
initial vectors that span M. Thus det (A — zI)] = det ((T — =I)|as) = prim(x) divides
pr(z) = det(A —I) - det(B —zI). O

6.6. Exercise. Let (V,M,T) be as in the previous corollary. Then T" induces a linear
map T from V/M — V/M such that T'(v + M) = T'(v) + M, for v € V. Prove that the

characteristic polynomial pz(z) = dety a (T — 2I), also divides pr(x) = det(A — zI) -
det(B —zI). O

0|B

6.7. Lemma. If f and P are nonconstant polynomials in F[x] and P divides f, so
f(z) = P(x)Q(x) for some other Q € F[x], then P(x) must split over F if f(x) does.

Proof: If Q) is constant there is nothing to prove. Nonconstant polynomials f # 0 in F|x]
have unique factorization into irreducible polynomials f = [];_, F;, where F; cannot be
written as a product of nonconstant polynomials of lower degree. Each polynomial f, P, Q
has such a factorization P = [[;, P, Q = [[}L, Qj so f = PQ =[] P - [[; Q. Since
f splits over F it can also be written as a product of linear factors f(z) = []/_,(z — o)
where {a;} are the roots of f(z) in I, counted according to their multiplicities. Linear
factors (z — a) are obviously irreducible and the two irreducible decomposition of f(x)
must agree. Thus P (and @) are products of linear factors and P(z) splits over F. [

This lemma has a useful Corollary.

6.8. Corollary. If the characteristic polynomial pr(z) of a linear operator T : V — V
splits over F, so does pry,, for any T-invariant subspace W C V.
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Over F = C, all non-constant polynomials split.

Proof of Theorem 6.1. T has eigenvalues because pr splits and its distinct eigenvalues
{A1,--+, A} are the distinct roots of pr in F. Recall that Ey # {0} & M) # {0}.

Pick an eigenvalue A1 and consider the Fitting decomposition V = K., & Roo with
respect to the operator (T — A\ I), so K is the generalized eigenspace M), (T) while
R is the stable range of (T'— A1I). Both spaces are invariant under T'— A1 I, and also
under T since A\;I commutes with 7. It will be important to note that

A1 cannot be an eigenvalue of T|g._,

for if v € Ry is nonzero then (T'— A\ I)v =0 = v € Koo N R = {0}. Hence sp(T|r_.) C
{2, -+, A\ )

We now argue by induction on n = dim(V'). There is little to prove if n = 1. [There
is an eigenvalue, so E)\ =V and T = Al on V.] So, assume n > 1 and the theorem has
been proved for all spaces V' of dimension < n and all operators 7" : V' — V' such that
det(T” — AI) splits over F. The natural move is to apply this inductive hypothesis to
T' = T|gr_ (17— 1) since dim(R) = dim(V) — dim(My,) < dim(V) = n. But to do so
we must show pp splits over F. [If F = C, every polynomial in C[z] splits and this issue
does not arise.]

By Corollary 6.8 the characteristic polynomial of T' = T'|r__ splits over F, and by in-
duction on dimension R (T”) is a direct sum of generalized eigenspaces for the restricted
operator T".

RoT)= @ MJT) .
pesp(T”)
where sp(7") = the distinct roots of p|7» in F. To compare the roots of pr and pr/, we
invoke the earlier observation that pys divides pp. Thus the roots sp(7”) = sp(T'|r..)
are a subset of the roots sp(T') of pr(x), and in particular every eigenvalue p for T” is
an eigenvalue for T'. Let’s label the distinct eigenvalues of T' so that

sp(T") = { s A1, s A Csp(T) = {1, -, A}

(with s > 1 because A; & sp(T'|r..), as we observed earlier).

Furthermore, for each p € sp(T”) the generalized eigenspace M, (T") is a subspace of
Rs C V, and must be contained in M, (T) because (T’ — ul)*v =0 = (T — pl)*v =0
for all v € Ry. Thus,

Ro= P MJT)C D MJT)C D MAT)

pesp(T’) pesp(T’) Aesp(T)

(Rs = D, csp(ry Mu(T") by the induction hypothesis). Therefore the generalized
eigenspaces My, A € sp(T), must span V because

V = Ku®Roo = My,(T)®Roe € My, (D) ( P Mu(T")

nesp(T')
(15) C My (T)+( Z M,(T))  (because M, (T") C M,(T))
nesp(T)
C My (T)+( Z M\(T)) €V (because sp(T”) C sp(T))
Aesp(T)

Conclusion: the M) (T), X € sp(T), span V so by Proposition 6.2 V' is a direct sum of
its generalized eigenspaces. That finishes the proof of Theorem 6.1. [
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It is worth noting that
sp(T") ={A2,...,A\r} and My, (T') = M),(T) for2<i<r.

Since M, (T") € M, (T) for all p € sp(T’), and My, (T)NV' = (0), A; cannot appear in
sp(T”); on the other hand every p € sp(7”) must lie in sp(T).

Consequences. Some things can be proved using just the block upper-triangular form
for T rather than the more detailed Jordan Canonical form.

6.9. Corollary. If the characteristic polynomial of T : V. — V splits over F, and in
particular if F = C, there is a basis X such that [T]x has block upper triangular form

0

(16) T)x =

with blocks on the diagonal

)\i *
T, =
0 A
of size m; x my; such that
1. Ai,..., A\ are the distinct eigenvalues of T.

2. The block sizes are the algebraic multiplicities m; of the \; in the splitting of the
characteristic polynomial pr(t) (see the next corollary for details).

3. pr(x) = (=1)" - [[j=y(x = X)™ withn =my + - - +m,..

The blocks T; may or may not have off-diagonal terms. [

6.10. Corollary. If the characteristic polynomial of an n x n matriz A splits over F,
there is a similarity transform A — SAS~', S € GL(n,F), such that SAS™! has the
block upper-triangular form shown above.

6.11. Corollary. If the characteristic polynomial of T : V. — V splits over F, and in
particular if F = C, then for every X € sp(T) we have
(algebraic multiplicity of ) = dim(My) = m;

where m; is the block size in (16)).

Proof: Taking a basis such that [T]x has the form (16), [T — «I]x will have the same
form, but with diagonal entries A; replaced by (A; — z). Then

det[T — x[]x = H ()\j _ x)dim(M/\j) = pT(x)

j=1
since the block T} correspond to T'| My, - Obviously, the exponent on (A; — z) is also the
multiplicity of A; in the splitting of the characteristic polynomial pr. [0

6.12. Corollary. If the characteristic polynomial of an n X n matriz A, with distinct
eigenvalues spp(A) = {A1,..., \.}, splits over F then
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1. det(A) =TI, \**, the product of eigenvalues counted according to their algebraic
multiplicities m;.

2. Tr(A) = Y71, mi);, the sum of eigenvalues counted according to their algebraic
multiplicities m;.

3. More generally, if F = C there are explicit formulas for all coefficients of the
characteristic polynomial when we write it in the form

n

pa(r) =det(A—xl) = Z(—l)ici(z‘l) i

i=0
If eigenvalues are listed according to their multiplicities m; = m(X\;), say as p1, ..., fin
with n = dim(V),
MIZ'--:lez)‘l ﬂm1+1:--~:/14m1+m2:)‘2 etc

then ¢, = 1 and

Cn—1 = Z,uj = TI‘(A),
j=1

Cn—k

Do Mg M

J1<...<Jk

o = H1c...-pn =det(A)

These formulas fail to be true if F = R and pr(z) has non-real roots in C.

6.13. Corollary. If the characteristic polynomial of an n x n matriz A splits over F,
then T : V — V is diagonalizable if and only if

(algebraic multiplicity) = (geometric multiplicity) for each X € sp(T).

Both multiplicities are then equal to dim(Ey(T)).

Proof: E) C M, for every eigenvalue, and by the previous corollary we know that
(geometric multiplicity) = dim(E)) < dim(My) = (algebraic multiplicity) .

Furthemore, My = ker(T — M)V for large N € N. Writing V = My, @ ... ® M,_, the
implication (<) follows because

(algebraic multiplicity) = (geometric multiplicity)
dim(E),) = dim(M,,) for all ¢
My, = E), since M)y, D E),

4

V= @ E), and T is diagonalizable.

=1

4

For (=): if T is diagonalizable we have V = @;_, E\,, but Ex, C My, for each i.
Comparing this with the Jordan decomposition V = @_, My, we see that My, = Ej,.
O
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6.14. Corollary. If A is an n x n matriz whose characteristic polynomial splits over I,
let X be a basis that puts [T)x into Jordan form, so that

0 A1 0

(17) [Tx = : with T; =
. o1
: ) Y
Then with respect to the same basis the powers I,T,T?,--- take form:
T 0 A1 0
(18) [Tk]x = : with T; =
: 1
0 Tk 0 i
k
Proof: [TF]x = ([Tz].’{) for k=0,1,2,---. O

In (18) there may be blocks of various sizes with the same diagonal values A;.
These particular powers [T*] = [T]* are actually easy to compute. Each block 7; has
the form T; = \; I + N; with N; an elementary nilpotent matrix, so we have

K2

k
Tk = Z (f) Ne=d Nij (binomial expansion) ,
j=0

with N7 = 0 when j > deg(N;).

6.15. Exercise. If N is an r X r elementary nilpotent matrix

0 1 0 0 0 1 0

N = - show that N? = 1 ,
-1 0
0 0 0 0

Each new multiple of N moves the diagonal file of 1’s one step to the upper right, with
N" =0 at the last step. O

6.16. Exercise. If the characteristic polynomial of T': V' — V splits over F, there is a
basis that puts [T]x in Jordan form, with diagonal blocks

Al 0
A= XN+N =
1
0 A
Compute the exponential matrix
Exp(tA) = et = — A"
= n
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fort € F.
Hint: If A and B commute we have eAT5 = ¢4 . ¢B; apply the previous exercise.
Note: Since N is nilpotent the exponential series is a finite sum. [

The Spectral Mapping Theorem. Suppose A is an n X n matrix whose characteristic
polynomial splits over F, with

pa(@) =det(A—zl)=c-[[i —2D)™  ifsp(T) = {A1,..., A} .
i=1
Examination of the diagonal entries in the Jordan Canonical form (16), or even the upper
triangular form (17), immediately reveals that

sp(T*) = the distinct entries in the list of powers A¥, ... Ak

Be aware that there might be repeated entries among the A, even though the \; are
distinct. (Devise an example in which sp(T*) reduces to a single point even though sp(7)
contains several distinct points.)

Therefore the characteristic polynomial of T* is the product of the diagonal entries
(A¥ — ) in the Jordan form of (T* — x I),

pri(z) = det(TF — 1) = 1_[()\iC —z)™ . (where m; = dim(My,(T)) .
i=1
More can be said under the same hypotheses. If f(t) = ag + a1t + ast? 4+ -+ apt™

is any polynomial in F[t] we can form an operator f(7') that maps V' — V to obtain a
natural corresponding ® : F[t] — Homp(V') such that

d(t)=1, ®@t)=T, &(F)=1"

and
O(fi+fo) = @(f1) +P(f2) (sum of linear operators)
O(f1-fa) = P@(f1)o®(f2) (composition of linear operator)
O(ef) = c-2(f) forallceF

I.e. ® is a homomorphism between associative algebras. With this in mind we can prove:

6.17. Theorem. (Spectral Mapping Theorem). If the characteristic polynomial of
a linear operator T : V. — V splits over F, and in particular if F = C, every polynomial
F(t)=3",a;it" in F[t] determines an operator ®(f) in Homg(V, V),

o(f) =Y al"
=0

The correspondence ® : F[t| — Homp(V') is a unital homomorphism of associative alge-
bras and has the following SPECTRAL MAPPING PROPERTY

(19) sp(f(T)) = f(sp(T)) = {f(2) : z € sp(T)}
In particular, this applies if T is diagonalizable over F.

Proof: It suffices to choose a basis X such that [T]x has block upper-triangular form

Tl 0 )\1 *

Tx = : with T, =
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of size m; x m; since [T*]x = [T]% (matrix product) for k =0,1,2,---. Hence
[f(T))x = f([T]x) = aol + ar[T]x + - + am[T]%

because f(A) = apl + a1 A+ -+ a,, A™ for any matrix A.

As in the previous corollary, it follows that [f(T)]x is made up of blocks on the diago-
nal, each of which is upper-triangular with diagonal values f(\;); then the characteristic
polynomial of f(T) is

prery (@) = det(F(T) —a ) = [J(FO) =2 )™, mi = dim(My,) -
i=1
This is zero if and only if z = f(\;) for some i, so sp(f(T)) = {f(N) : 1 <i <r} =
f(sp(T)). Obviously the characteristic polynomial of f(T") splits over T if pr(¢) splits.

Here \; € sp(T') = f(N\i) € sp(f(T)), but the multiplicity of f(\;) as an eigenvalue
of f(T') might be greater than the multiplicity of A; as an eigenvalues of T' because we
might have f(\;) = f(\;), and then p = f(\;) will have multiplicity at least m; + m; in
sp(F(T)).

Another consequence is the Cayley-Hamilton theorem, which can be proved in other
ways without developing the Jordan Canonical form. However this normal form suggests
the underlying reason why the result is true, and makes its validity almost obvious. On
the other hand, alternative proofs can be made to work for arbitrary F and T', without
any assumptions about the characteristic polynomial py(x). Since the result is true in
this generality, we give both proofs.

6.18. Theorem. (Cayley-Hamilton). For any linear operator T : V. — V on a finite
dimensional vector space, over any I, we have

pr(T) = [pT(t)lt:T] = 0 (the zero operator in Homg(V,V)) |

Thus, applying the characteristic polynomial pr(x) = det(T — x I) to the linear operator
T itself yields the zero operator.

Proof: If pr(z) splits over F we have pr(x) = [[\_; (\i — )™, where m; = dim(My,)
and {\1,---,\.} are the (distinct) eigenvalues in spyp(7T). We want to show that

T

0= = x0™ = [pr(@)],_,]

i=1
But V.= @,_, My, and (T — X\;I)™(M,,) = (0) [Given a Jordan basis in M),, A =
[(T" = Ail)|m,, ]x conmsists of elementary nilpotent blocks N; on the diagonal; the size
d; x d; of such a block cannot exceed m; = dim(My,), so N;lj = N =0 for each j]
Hence H;Zl (T — \I)™ (M) = (0), so the operator pr(T) is zero on each My, and on
allof V. O

If pr does not split over F, a different argument shows that pr(T)v =0 for all v € V.

Alternative Proof (6.18): The result is obvious if v = 0. If v # 0 there is a largest
m > 1 such that v, T(v), T?(v),--- ,T™ !(v) are linearly independent. Then

W = F-span{T*(v) : k € N} = F-span{T*(v) : 0 < k <m — 1}

and {v,T(v), -, T™ 1(v)} is a basis for the cyclic subspace W. This space is clearly
T-invariant, and as we saw before, p(ry,,) divides pr, so that pr(x) = p(r),)(z) - Q(z) for
some Q € F[z]. We now compute p(r|,,)(z). For the basis X = {v,T(v),--- , 7™ *(v)}

34



we note that 7™ (v) = T(T™1(v)) is a unique linear combination of the previous vectors
TH(v), say
T7(0) + ama T M) + -+ a1 T(v) + agv =0 .

Hence,

0 0 —ag -z 0 —ag

1 . —ai 1 . —ai
(T\w], = . : and  [(T—z1)|w], =

0 1 —am_1 0 1 —z—am_1

6.19. Exercise. Show that
i) (@) = det(Tlw — 2 D)x = (=1)"(t" + am-1t™ ' + -+ art + ag) . O

It follows that p(p,,)(T") satisfies the equation
1w (T)v = (—l)m(T”(v) +am AT W)+ + a1 T(v) + aov) =0
by definition of the coefficients {a;}. But then
pr(T)v = Q(T) - [periw)(T)v] = Q(T)(0) = 0 .

(Recall that W = F-span{T*(v)} as in Propositions 2.5 and 2.7.) Since this is true for
all v € V, pp(T) is the zero operator in Homp(V, V). O

Remarks: If T : V — V is a linear operator on a finite dimensional vector space the
polynomial Q(x) = 2™ + ay—12™ 1 + --+ + ag in F[z] of minimal degree such that
Q(T) = 0 is called the minimal polynomial for T. The polynomial function of T defined
above by substituting x =T

T 4+ a1 T V4 -+ a1 T+ agl =0

is precisely the minimal polynomial for T'. The Jordan form (12) can be used to determine
the minimal polynomial, but the block upper-triangular form (11) is too crude for this
purpose. (The problem is that the nilpotence degree deg(N) of a nilpotent matrix will
be greater than the degree of the minimal polynomial unless there is a cyclic vector in
v,) d

6.20. Example. Let T: V — V be a linear map on V = R* whose matrix with respect

to the standard basis X = {e1,--- ,e4} has the form
7T 1 2 2 1 1 2 2
1 4 -1 -1 1 -2 -1 -1
A=[Tx = 901 5 _1 so that A—6I = o 1 -1 -1
1 1 2 8 1 1 2 2

After some computational work which we omit, we find that
pr(t) = det(A — ) = (x — 6)* = * — 4(623) + 6(6222) — 4(63x) + 6* ,

so spg(T) = {6} with algebraic multiplicity m = 4. Thus V = My_¢(T) and (T — 61) is
nilpotent. We find Ky = ker(T'—6I) = Ex—6(T") by row reduction of [T'—6I]|x = [A—61],

11 2 2 1 2 2
0 -3 -3 -3 0 1 1
[A—6I] — 0 3 3 3 — 0 T 0 o
0 0 0 0 0 0O 0 0
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N =iy
(4 (i):- €,
Kz
eY=TeW)ee -2, rey oy
Ky VT -
©) =, e =T(e)= Jewdey ~ley < ey e aneg e,
X, =

Figure 7.2. The version of Figure 7.1 worked out in Example 6.20. Although there are three

columns, Column 2 is empty and has been deleted in the present diagram. All the basis vectors
(2)
J

e’ are shown

Thus,

K, = {v=(-s—t,—s—t,s,t):stecR}
R—span{fl(l) = —e1 —e3 +e3, f2(1) =—e1 —ex+teq}
R—span{(—l, _17 15 O) ’ (_15 _15 07 1)}

and dim(K;) = 2. Next row reduce ker(A — 61 )2 to get

0 3 3 3 RIS

_RrT12
A-6I=> o 6 6 6|0 0o o0 o
0 3 3 3 0 0 0 0

The first column (which meets no “step corner”) corresponds to free variable x1; the
other free variables are x3,74. Thus Ky = ker(A — 61)? is

Ky = {v=(a,-b—¢b,c):a,b,ceR}
= R-Span{ﬁ@) =€1, 2(2) = €3 — €2, f352) =e4 —e2} = R-span{e;,e3 — e, €4 — €2}

and dim(K5) = 3. Finally (A —61)% =0, so deg(T' — 61 ) =3 and K3 = V.
We now apply the procedure for finding cyclic subspaces outlined in Figure 7.1.

Step 1: Find a basis for V mod K. Since dim(V/K>) = 1 this is achieved by taking

any v € V ~ Kj. One such choice is egl) = ey = (0,1,0,0), which obviously is not in K.

Then compute its images under powers of (T' — 61),
eV = (T—6Del) = (1,-2,1,1) = e —2es+e5+ 4 € Ko ~ K
eV = (T—6I)2" = (3,3,-6,3) = 3(e1 + 3 — 2e3 + e4) € Ky ~ {0}
Step 2: There is no need to augment the vector
eV = (T —6Del = (1,-2,1,1) € K,

to get a basis for Ko/K1, because dim(Ko/K;) = 1.

Step 3: In K7 ~ {0} we must augment egl) =(T - 6[)2651) to get a basis for K7 /K =
K. We need a new vector egg) € K, ~ {0} such that eg?’) and eél) are independent
mod Ky = (0) — i.e. vectors that are actually independent in V. We could try 653) =
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(=1,-1,0,1) = —e; — €2 + e4 which is in K; ~ Kj. Independence holds if and only if

the matrix M whose rows are egl) and e§3) has rank = 2. But row operations yield

CEEHNEIER

-1 -1 0 1 0 -2 2

which has row rank = 2, as desired.
Thus {T2(e§1)),T(e§1)), egl) ; egg)} is a basis for all of V' such that

Ch R-span{7? (egl)), T(egl)), egl)},
C2 = Respan{e(”}

are independent cyclic subspaces, generated by the vectors egl) and eg‘o’). The ordered

basis §) = {T? (egl)), T(egl)), egl) ; egg)} puts [T']y in Jordan canonical form

Basis vectors T2(e§1)) and egg) are eigenvectors for the action of T and Er—¢(T) =
F—span{eg?’), T2(e§3))} is 2-dimensional. O

6.21. Exercise. Find the Jordan canonical form for the linear operators 7' : R™ — R"

whose matrices with respect to the standard bases X = {e1,--- ,e,} are
100 01 O
01110 -1
PN 00100 0
(a) A= -1 4 2 (b) B =
3 _6 4 00010 O
001 01 -1
0 00 0O0 1

The Minimal Polynomial for T : V' — V. The space of linear operators Homp(V, V) =
M(n, F) is finite dimensional, so there is a largest exponent m such that I, T,T2,..., T™ 1
are linearly independent. Thus there are coefficients ¢; such that 7™ + 2?:01 ;17 =0
(the zero operator). The monic polynomial

m—1
™+ Z c;x’ in Flz]
§=0

is the (unique) minimal polynomial my(z) for this operator. Obviously d = deg(mr)
cannot exceed n? = dim (M(n, IF)), but it could be a lot smaller. The minimal polynomial
for a matrix A € M(n,F) is defined the same way, and it is easy to see that the minimal
polynomial my(z) for a linear operator is the same as the minimal polynomial of the
associated matrix A = [T]x, and this is so for every basis X in V. Conversely the minimal
polynomial m4(x) of a matrix coincides with that of the linear operator L, : F* — F”
such that L(v) = A - v (matrix product).

Computing my(z) could be a chore, but it is easy if we know the Jordan form for T,
and this approach also reveals interesting connections between the minimal polynomial
mr(x) and the characteristic polynomial pp(z) = det(T" — 2 I). We have already seen
that the characteristic polynomial is a “similarity invariant” for matrices (or for linear
operators), so that
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A similarity transformation, A — SAS™! yields a new matriz with the same
characteristic polynomial, so pgas-1(x) = pa(x) in Flx] for all invertible
matrices S.

(See Section II.4 of the Linear Algebra I Class Notes for details regarding similarity
transformations, and Section V.1 for invariance of the characteristic polynomial.) The
minimal polynomial is also a similarity invariant, a fact that can easily be proved directly
from the definitions.

6.22. Exercise. Explain why the minimal polynomial is the same for:
1. A matrix A and the linear operator L4 : F™" — F™.

2. A linear operator T': V' — V on a finite dimensional vector space and its matrix
A = [T]x with respect to any basis in V' [

6.23. Exercise. Prove that the minimal polynomial m4(z) of a matrix A € M(n,F) is
a similarity invariant: mgag-1(x) = ma(x) for any invertible n x n matirx S. O

We will use Example 6.22 to illustrate how the minimal polynomial can be found from
the Jordan form, but first let’s compute and compare m4(z) and p4(z) for a diagonal

matrix. If
:

A= where I, = k x k identity matrix.
0 Arlg

s

The characteristic polynomial obviously depends only on the diagonal values of A, is
pa(z) = H;Zl(/\j — 2)%; in contrast, we will show that the minimal polynomial is the
product of the distinct factors,

T

ma(e) =[Oy -2,

Jj=1

each taken with multiplicity one —i.e. for diagonal matrices, m 4 () is just pa(x), ignoring
multiplicities.

ADD MORE TEXT RE: MIN POLYN ?
VII-7. The Jordan Form and Differential Equations.

Computing the exponential e = >l %A" of a matrix turns out to be important in
many applications, one of which will be illustrated below. This is not an easy calculation
if you try to do it by summing the series. In fact, computing a product of n x n matrices
seems to require n® multiplication operations on matrix entries and computing a high
power such as A2%0 directly could be a formidable task. The computing effort can be
reduced somewhat through clever programming, but it can be done by hand for diagonal
matrices, and for elementary nilpotent matrices (see Exercises 6.15 - 6.16), and hence for
any matrix that is already in Jordan Canonical form. For a linear operator T : V — V
the Jordan form is obtained by choosing a suitable basis in V; for a matrix A this amounts
to finding an invertible matrix S such that the similarity transform A — SAS~! puts
A into Jordan form. Similarity transforms are invertible operations that interact nicely

with the matrix-exponential operation, with

(20) SeAg1 = SAST for every A € M(n,C) .
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Thus if we can determine the Jordan form B for A, we can compute e” in four simple
steps,

A — Jordan form B = SAS™!

5 B =SAST (a calculation that can be done by hand)

= e =8 leBg =5 B (because B = SAS™!)

Done. Note that e” will have block upper-triangular form if D has Jordan form.

This idea was illustrated for diagonalizable matrices and operators in the Linear
Algebra I Notes, but in the following example you will see that it is easily adapted to
deal with matrices whose Jordan form can be determined. Rather that go through such
a calculation just to compute e”, we will go the extra parsec and show how the ability
to compute matrix exponentials is the key to solving systems of constant coefficient
differential equations.

Solving Linear Systems of Ordinary Differential Equations.
If Ae M(n,F) for F=Ror Cand x(t) = (z1(t),...,x,(t)) is a differentiable function
with values in F”, the vector identity

d
(21) d—’t‘:A-x(t) x(0) = ¢ = (c1,...,cn)
is a system of constant coefficient differential equations with initial conditions x(0) = ¢k
for k = 1,...,n. There is a unique solution for all —co < t < oo, given by x(t) = ¢4 - c.
This follows because the vector-valued map x(t) is infinitely differentiable, with
d
E(em) =A-e forallteR,
from which we get
d d
d_)tc = E(e“‘) c=Ae c=A-x(t) .

Solving the differential equation (21) therefore reduces to computing e*4, but how do
you do that? As noted above, if A has a characteristic polynomial that splits over F (or
if F = C), we can find a basis that puts A in Jordan canonical form. That means we
can, with some effort, find a nonsingular S € M(n,F) such that B = SAS~! consists of

diagonal blocks
o

|

each having the form

A 1 0

By, = = M + Ny,
-1
0 Ak

where A, € spp(A), and Ny, is either an elementary (cyclic) nilpotent matrix, or a 1 x 1
block consisting of the scalar Ak, in which the elementary nilpotent part is degenerate.
(Recall the discussion surrounding equation (12)). Obviously,

o0 oo k

tk t -1

tAg—1 __ k -1 _ kg—1 _ _tSAS

Setsh=5( Y pAM)sTh = 3 SsARsT = :
k=0 k=0
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but SA*S—1 = (SAS—1)" for k =0,1,2..., s0

etBl O
ok —1\k
th(SAS :
SetASfl _ E ( ) _ _ etB
k! :
k=0 0 otBr
Here etB = etfMHN) — otAl . otN hecause eATE = e4 . ef when A and B commute, and

then we have

t2 td—l
Lt 5 - (d—1)!

('B
|
D
>
o~
)\.
—
| W
—
|
(9]
_|H.m

[u—
N

of size d x d. These matrices can be computed explicitly and so can the scalars e'*. Then
we can recover e*4 by reversing the similarity transform to get

etA _ SfletBS

which requires computing two products of explicit matrices. The solution of the original
differential equation

d
d_Dt( = Ax(t) with inital condition x(0)=c

is then x(t) = e*4 - ¢, as above.

7.1. Exercise. Use the Jordan Canonical form to find a list of solutions A € M(2,C)
to the matrix identity

A2+ T=0 (the “square roots of —1I) ,

such that every solution is similar to one in your list.
Note: SA2S~! = (SASH2. O
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Chapter VIII. Complexification.
VIII-1. Analysis of Linear Operators over R.

How can one analyze a linear operator T': V' — V when the characteristic polynomial
pr(x) does not split over F? One approach is via the “Rational Canonical form,” which
makes no attempt to replace the ground field F with a larger field of scalars K over which
pr might split; we will not pursue this topic in these Notes. A different approach, which
we will illustrate for F = R, is to enlarge F by constructing a field of scalars K O FF; then
we may in an obvious way regard F[z] as a subalgebra within K[z], and since K O F
there is a better chance that f(z) will split into linear factors in K[z]

d
(22) flz)=c- H(iﬂ — i)™ with ¢ and p; in K.
j=1

It is in fact always possible to embed F in a field K that is algebraically closed, which
means that every polynomial f(x) € K[z] splits into linear factors belonging to Klz], as
in (22).

The Fundamental Theorem of Algebra asserts that the complex number field is alge-
braically closed; but the real number system R is not — for instance 22 + = + 2 € R[z]
cannot split into linear factors in R[z] because it has no roots in R. However, it does
split when regarded as an element of C[z],

:102+:E+1=(x—z+)-(x—z_)—(:v—%(—14—1’\/5))-(964-%(—1—2'\/5))

where i = /—1 . In this simple example one can find the complex roots z4+ = %(—1:&1’\/5)
using the quadratic formula.

Any real matrix A € M(n,R) can be regarded as a matrix in M(n,C) whose entries
happen to be real. Thus the operator

La(x)=A-x (matrix multiplication)

acting on n X 1 column vectors can be viewed as a linear operator 7' : R" — R", but also
as a “complexified” operator T¢ : C* — C™ on the complexified space C" = R™ + iR".
Writing vectors z = (21, - - - , 2,) with complex entries z; = x; +1y; (z;,y; € R), we may
regard z as a combination z = x + ¢y with complex coefficients of the real vectors x =
(z1,...,2p) and y = (y1,-..,¥Yn) in R™. The complexified operator Tx € Homc(C", C")
can then be expressed in terms of the original R-linear map 7' : R® — R™,

(23) Te(x +iy) = T(x) +iT(y), Tc € Home(C™,C™) for z,y € V.

The result is a C-linear operator T¢ whose characteristic polynomial pr.(¢) € C[t] turns
out to be the same as pr(t) when we view pr € R[t] as a polynomial in C[¢] that happens
to have real coefficients. Since pr, () always splits over C, all the preceding theory applies
to Tg. Our task is then to translate that theory back to the original real linear operator
T:R" — R"™.

1.1. Exercise. If T is a linear operator from R" — R™ and T¢ : C" — C” is its
complexification as defined in (23), verify that the characteristic polynomials pr(t) € RJ[t]
and pr.(t) € C[t] are “the same” — i.e. that

pre(t) = pr(t)
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when we identify R[t] C C[t].
Hint: Polynomials in F[t] are equal < they have the same coefficients in F. Here, pr,. has

coefficients in C while pr has coefficients in R, but we are identifying R = R 4+ ¢0 C C.
O

Relations between R[t] and C[t]. When we view a real coefficient polynomial f(t) =
Z;’TL:O a;t! € R[t] as an element of C[t] it can have complex roots as well as real roots,
but

When we view f(t) € Rlz] as an element of C[z], any non-real roots must
occur in conjugate pairs z4 = (u £ iv) with u and v real. Such eigenvalues
can have nontrivial multiplicities, resulting in factors (t — z4)™ - (t —z_)™ in
the irreducible factorization of f(t) in C[t].

In fact, if z = x + iy with x,y real and if f(z) = 0, the complex conjugate Z = © — iy is
also a root of f because

fz) = Zajij :Zajgzz%zj :m:o
Jj=0 j=0 J

(Recall that z+w =z 4w, zZw =% -w, and ()~ = z for z,w € C.)
Thus, #(non-real roots) is even, if any exist, while the number of real roots is unre-
stricted, and might be zero. Thus the splitting of f in C[t] can written as

S

i = e Tle=mym—mm - I ¢=r)™
j=1 k=r+1

(24) = c [[lt=pm)t-mp]™ - I t—r)m™
j=1

k=r+1

where the p; are complex and nonreal (7 # p), and the r; are the distinct real roots
of f. Obviously n = deg(f) = >, 2m; +>_7_, ., m;. Since f has real coefficients,
all complex numbers must disappear when the previous equation is multiplied out. In
particular, for each nonreal conjugate pair p, @ we have

(25) Qu(t) = (t = p)(t — ) = t* — 2Re(p) + |u|*
a quadratic with real coefficients. Hence,

T

Fy=c [T —rim - TT(@Qu @)™

r+1 Jj=1

is a factorization of f(¢) into linear and irreducible quadratic factors in R[¢], and every
f € R[t] can be decomposed this way. This is the (unique) decomposition of f(¢) into
irreducible factors in R[t]: by definition, the @, (t) have no real roots and cannot be a
product of polynomials of lower degree in R[t], while the linear factors are irreducible as
they stand.

1.2. Definition. A nonconstant polynomial f € F[t] is irreducible if it cannot be fac-
tored as f(t) = g(t)h(t) with g, h nonconstant and of lower degree than f. A polynomial
is monic if its leading coefficient is 1. It is well known that every monic f € F[t] factors
uniquely as [[5_, hj(t)™ where each h; monic and irreducible in F[t]. The exponent
m; > 1 is its multiplicity, and this factorization is unique.

The simplest irreducibles (over any F) are the linear polynomials at +b (with a # 0 since
“irreducibility” only applies to nonconstant polynomials). This follows from the degree
formula
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DEGREE FORMULA:  deg(gh) = deg(g)+deg(h) for all nonzero g, h € F[t].

If we could factor at +b = g(t)h(t), either g(t) or h(t) would have degree 0, and the other
would have degree 1 = deg(at 4+ b). Thus there are no nontrivial factorization of at + b.
When F = C, all irreducible polynomials have degree = 1, but if F = R they can have
degree =1 or 2.

1.3. Lemma. The irreducible monic polynomials in R[t] have the form
1. (t—r) withr € R, or

2. t2 + bt + ¢ with b> — 4c < 0. These are precisely the polynomials (t — p)(t — ) with
wu a non-real element in C.

Proof: Linear polynomials at + b (a # 0) in R[t] are obviously irreducible. If f has the
form of (2.), the quadratic formula applied on be applied to f(t) = t*> + bt + ¢ in C[z] to

find its roots
—b+Vb% —4c _ —bEivic— b2
2 B 2

My L=
There are three possible outcomes:

1. f(x) has a single real root with multiplicity m = 2 when b? — 4c¢ = 0 and then we
have f(t) = (t — 3b)%;

2. There are two distinct real roots r4 = %( — b+ Vb2 — 40) when b2 — 4c > 0, and
then f(t) = (¢ —r4)(t —7_);

3. When the discriminant b? — 4c is negative there are two distinct conjugate nonreal
roots in C,
b+ Vb2 —4 —b—ivdc—b?
p= = g (= VED),
in which case f(t) = (t — p)(t — &) has the form (25) in R[t].
The quadratic f(t) is irreducible in R[] when f(¢) has two nonreal roots; otherwise it

would have a factorization (t — r1)(t — r2) in R[¢] and also in C[t]. That would disagree
with (z — p)(x — 1), contrary to unique factorization in C[¢], and cannot occur. O

Complexification of Arbitrary Linear Operators over R. We now discuss com-
plexification of arbitrary vector spaces over R and complexifications T¢ of the R-linear
operators T': V' — V that act on them.

1.4. Definition. (Complexification). Given an arbitrary vector space V over R
its complexification V¢ is the set of symbols {z = = + iy : x,y € V} equipped with
operations
z+w = (x+iy)+(u+tiv) = (z+u)+i(y+v)
(a+1ib)-z = (a+id)(z+iy) = (ax—0by)+i(bz+ay), fora+ibeC
Two symbols z = (x +iy) and 2’ = (' +14y’) designate the same element of Ve & o' = x
and y' =vy.

1. The real points in V¢ are those of the form V + 0. This set is a vector space
over R (but NOT over C), because

(c+10)- (x +1i0) = (cz)+10 force R,z eV
(x41i0)+ (' +i0) = (z+2')+1i0 for z,a’ €V.

Clearly the operations (+) and (scale by real scalar c+10) match the usual operations
iV when restricted to V + 0.
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2. If T : V = V is an R-linear operator its complexification T¢ : Vo — Vi is defined
to be the map

(26) Te(z +iy) = T(x) +iT(y), v,y €V,
which turns out to be a C-linear operator on V.

We indicate this by writing “Ic =T +1T.”

1.5. Exercise. If My,..., M, are vector spaces over R prove that the complexification
OfV:M1@...@MTiSVC:(Ml)C@...@(MT)C. O

1.6. Exercise. Prove that V¢ is actually a vector space over C. (Check each of the
vector space Axioms.)

Hint: In particular, you must check that (z122) - w = z1 - (22 - w), for 21,22 € C and
w € Vg, and that (¢ 4 i0)scdot(z + i0) = (c-x) + 40 for ¢ € R, so V + {0 is a subspace
over R isomorphic to V. O

1.7. Example. We verify that

1. Tt is in fact a C-linear operator on the complex vector space V.

2. When we identify V' with the subset V + ¢0 in V¢ via the map j : v — v 440, the
restriction T¢|v4i0 gets identified with the original operator T in the sense that

Tc(v+1i0)=T()+i-0 forallveV .
Thus the folowing diagram is commutative, with Tcoj=joT
v L v+icw

T I Tc with Tcoj=joT .
vV L v+ioc e

Discussion: Commutativity of the diagram is immediate from the definitions of V¢
and Tg. The messy part of proving (1.) is showing that Tc(z - w) = z - Tg(w) for
z € C,w € V¢, so we will only do that. If z =a+ b € C and w = u +iv in V¢ we get

Te((a +ib)(u +iv)),= Te((au — bv) + i(bu + av))
= T(au— ) +iT(bu+ av) = aT(u) — bT (v) + ibT (u) + iaT(v)
= (a+1b) - (T(u) +iT(v)) = (a+1b)-Te(u+iv) O

1.8. Example. If {e;} is an R-basis in V, then {é; = ¢; 4+ i0} is a C-basis in V¢. In
particular, dimg (V) = dim¢(Ve).

Discussion: If w = v +iw (v, w € V) there are real coeflicients {c¢;}, {d;} such that
w= (che])H(Zd e;) =3 (ej +id;)(e; +1i0)
J

so the {€;} span Vg. As for independence, if we have
O—i—iO:széj:Z(cj—i—id) (ej +1i0) = (Zc]e])—i—z(Zde])

in V¢ for coefficients z; = ¢; + id; in C, then Ej cjej =0 = Zj d;e;, which implies
¢; =0 and d; = 0 because {e;} is a basis in V. Thus z; =0 for all j. O

1.9. Example. If V =R" then Vg = R™ 4+ iR" is, in a obvious sense, the same as C™.
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If A e M(n,R), we get a R-linear operator T' = L 4 that maps v — A -v (matrix product
of n x n times n x 1), whose matrix with respect to the standard basis X = {e;} in R" is
[T)x = A. If {¢; = e; +i0} = 9 is the corresponding basis in V¢, it is easy to check that
we again have [T¢lyy = A — i.e. T¢ is obtained by letting the matrix A with real entries
act on complex column vectors by matrix multiply (regarding A as a complex matrix
that happens to have real entries). O

1.10. Definition (Conjugation). The conjugation operator J : Vo — Vi maps
T+ 1y — x —1y. It is an R-linear operator on V¢, with

Je-w)y=c-J(w) ifc=c+i0eR,
but is conjugate linear over C, with
J(z-w) = z-J(w) forzeC,welg
J(wy +wz) = J(wr)+ J(ws)
Further properties of conjugation are easily verified from this definition:
1. J?=JoJ=id, soJ ' =J.

(27) 2. w € V¢ is a real point if and only if J(w) = w .

w:x+20andm

3.
2 21

= y+10, if w=2z+4yin V.

The operator J can be used to identity the C-linear maps S : Vo — V¢, of real type,
those such that S = Te = T + T for some R-linear T: V — V.

1.11. Exercise. Whether F = R or C, a matrix in M(n,F) determines a linear operator
Ly : F* — F". Verify the following relationships between operators on V' = R™ and
Ve =C" =R™ +iR"™.

1. fF =R, (LA)C =La+iLla:C" — C™is the same as the operator L4 : C* — C™
we get by regarding A as a complex matrix all of whose entries are real.

2. Consider A € M(n,C) and regard C" as the complexification of R™. Verify that
L4 :C" — C" is of real type < all entries in A are real, so A € M(n,R).

3. If S and T are R-linear operators on a real vector space V, is the map
(S+1iT): (z+iy) = S(x) +iT(y)
on V¢ a C-linear operator? If so, when is it of real-type? O

1.12. Exercise. If T :V — V is an R-linear operator on a real vector space, prove
that

1 (Te)" = (T%),  forall ke N
2. eTt) = (eT)

1.13. Lemma. IfT :V — V is R-linear and Tt is its complexification, then T¢
commutes with J,

C on Vg O

JTc =TeJd  (or equivalently JTcJ = Tc¢).

Conversely, if S : Vo — Vi is any C-linear operator the following statements are equiva-
lent

1. S=Tc =T+ T for some real-linear T : V — V.
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2. SJ=JS.
3. S leaves invariant the R-subspace of real vectors V +1i0 in V.
Proof: For (1.) = (2.) is trivial:
JTed(x +iy) = JTc(z—iy) = J(T(2) +iT(—y)) = J(T(x) —iT(y))
= T(z) +iT(y) = Te(z +1iy)

For (2.) = (3.), suppose SJ = JS. We have w € V 440 if and only if w = %(w + J(w)),
and for these w we have

S(w) = 3(S(w) + S(J(w)) = 3(J(S(w)) + S(w)) .

By the properties (27), S(w) is a vector in V + 40.

For (3.) = (1.), if S leaves V 440 invariant then S(x +10) = T'(z) + 40 for some uniquely
determined vector T'(z) € V. We claim that T : x — T'(z) is an R-linear map. In fact, if
c1,c2 € R and vy,v9 € V, we have

S((lebl + 021172) + ZO) = T(clxl + 025172) + 10,
while S (being C-linear) must also satisfy the identities
S((crw1 + caw) +10) = S((crx1 +140) + (c2x2 +140)) = S(c1z1 +i0) + S(c2x2 + i0)
= S((er +1i0) - (x1 +30) + (cg +i0) - (x2 +30))
= (1 +10) - (Tz +10) + (c2 +90) - (T'(x2) + @0)
= (ClT(CL'l) + CzT(.’L‘g)) + 10

Thus T is R-linear on V. Furthermore, S = Tt because

Te(x +1y) T(z)+ 1T (y) = (T(x)+10) + (T (y) + ¢0)
S(x +10) +14S(y +i0) (by C-linearity of S and definition of T')

= S((x+i0) +i(y+i0)) = S(z +iy)

Thus S : Ve — C is of real type if and only if JS = SJ, and then S = (S|y4i0))e. O

An Application. The complexified operator T acts on a complex vector space V¢ and
therefore can be put into Jordan form (or perhaps diagonalized) by methods worked out
previously. We now examine the special case when T¢ is diagonalizable, before taking
up the general problem: If Tt : Vo — V¢ is diagonalizable, what can be said about the
structure of the original R-linear operator T': V — V7

We start with an observation that holds for any R-linear operator 7' : V' — V', whether
or not T¢ is diagonalizable.

1.14. Lemma. If pr(t) = Z;-n:o a;jt’ (aj € R), then pr. = pr in the sense that
pr(t) = 3_j o (aj +40)t7 in C[t] D R[t].

Proof: Earlier we proved that if X = {e;} is an R-basis in V' then Q) = {€; = e; +i0}
is a C-basis in V¢, and that [T]x = [Tc]y because

Tc(é;) = Tele; +140) = T(ej) +4iT(0 Ztk] ex) + i0
= Z(th + ’LO ek + ZO Ztk]e]
k
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Thus [Tc]ij = ti; = [T]ij. Subtracting tI and taking the determinant, the outcome is the
same whether F =R or C. O

Hereafter we write pr for pr. leaving the context to determine whether pr is to be
regarded as an element of R[z] or C[z]. As noted earlier, pr always splits in C[z], but
might not split as an element of R[z]. Furthermore, the nonreal roots in the factorization
(24) come in conjugate pairs, so we may list the eigenvalues of T¢ as follows, selecting
one representative p from each conjugate pair u,

(28) :ulvmv" : huTam; A’I“+15' te 7)\55 with )\’L real and Hj #,UJ_J .

and repeating eigenvalues/pairs according to their multiplicity in pr. ().

Now assume Tt is diagonalizable, with (complex) eigenspaces Ey,, E,;, Eg in V¢
that yield a direct sum decomposition of V¢. Now observe that if p # 7 then w € V¢ is
an eigenvector for p if and only if J(w) is an eigenvector for & because

(29) Te(J(w)) = J(Te(w)) = J(pw) = 7 (w)

Hence, J(E,(Tt)) = Ez(Tc) and J is an R-linear bijection between E,,(T¢) and E5(1c).
Observe that J(E, ® Ey;) = E,, ® Ey even though neither summand need be J-invariant
(although we do have J(E)) = E) when A is a real eigenvalue for T¢). The complex
subspaces F, @ Fry; are of a special “real type ”in V¢ owing to their conjugation-invariance.

1.15. Definition. If W is a C-subspace of the complexification Vo =V + 1V, its real
points are those in Wg = W N (V +i0). This is a vector space over R that determines
a complex subspace (Wgr)c € W by taking C-linear combinations.

(Wr)c =Wr+iWr CW

In general, Wr + iWg can be a lot smaller than the original complex subspace W. We
say that a complex subspace W C V¢ is of real-type if

W = Wgr +iWr

where Wg = W N (V +140) is the set of real points in W.
Thus a complex subspace of real type W is the complexification of its subspace of real
points Wrg.

Subspaces of real type are easily identified by their conjugation-invariance.
1.16. Lemma. A complex subspace W in a complezification Vo =V 4+1iV is of real type
if and only if J(W)=W.
Proof: W = Wg + iWg so J(W) = Wg — iWg = Wg + iWg since Wg = —Wg, proving
(=). Conversely, for (<) : if J(W) =W and we write w € W as w =z + iy (z,y € V),
both

Yw+J(w) =z +i0, and %(w — Jw)) = y—i0

are in V 410, and both are in Wg = WN(V +1i0). Since w = (x+1i0) +i(y +i0) = x +1y,
we conclude that w € Wgr + iWg, so W is of real type. [

The spaces W = E,, @ E; (and W = E) for real \) are obviously of real type since
J(E,) = Ez. We now compare what is happening in a complex subspace W with what
goes on in the real subspace Wx. Note that Tt (Wg) C Wg because

Tc(Wr) = Tc(Wn(V+10)) = Tc(W)NTe(V +10)
C Wn(T(V)+i0) C Wn(V+i0) = Wg
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Case 1: X € sp(T¢) is real. Proposition 8.17 below shows that Ex(T¢) = (EA(T))(C if
A € R. We have previously seen that an arbitrary R-basis { f;} for Ex(T") corresponds to
a C-basis f; = f; +140 in (EA(T))(C = E\(Tc). But

Te(f;) = A+ J3 = A+ (f; +0) = Mf; +40.,
since f; € Ex(Tc), while

Te(fy) = (T +iT)(f; +i0) = T(f;) +10 .
Hence T'(f;) = Af; and T' = T¢|(g, (1)+i0) is diagonalizable over R.

1.17. Proposition. If T : V — V is a linear operator on a real vector space and \ is a
real eigenvalue for Te : Vo — Vi, then A € spr(T) and

Ex(Tc) = Ex(T) +iBEA(T) = (Ex(T))c

In particular, dimc(EX\(T)) = dimg(Ex(T)) for real eigenvalues of T.
Proof: A\ +1i0 € spc(Tc) N (R +40) if and only if there is a vector u 4 iv # 0 in V¢ such
that Te(u+iv) = (A+1i0)(u+iv) = Au+ilv. But because Te(u+iv) = T'(u) +4T (v) this
happens if and only if T(v) = Av and T'(u) = Au, and since at least one of the vectors
u,v € V is nonzero we get A + i0 € spe(Tc) N (R +i0) C spr(T).
Conversely, suppose z + iy € E)\(T¢) for real A. Then

Te(x +iy) = (A +10)(x +iy) = Az +idy

but we also have
Te(z +iy) = Te(x +10) + iTe(y +1490) = T(x) +iT(y)

because T is C-linear. This holds if and only if T'(x) = Az and T(y) = Ay, so that

x+iy € Ex(T)+iEx(T) = (Ex(T))c . O
1.18. Corollary. We have spe(Tc) N (R 4 i0) = spg(T) for any R-linear operator
T:V =V on a finite dimensional real vector space.

1.19. Exercise. Let Vo =V + iV be the complexification of a real vector space V and
let S : Vo — Vi be a C-linear operator of real type, S = Tg = T+4¢T forsomeT : V — V.
Let W = Wr + ¢Wgr C V¢ be a complex subspace of real type that is S-invariant. Verify
that

(a) S(Wgr+i0) S (Wr+i0) and  (b) Slwiio) = (Tlwe) +40. O

This will be the key to determining structure of an R-linear operator 7' : V" — V from
that of its complexification T¢ : Vo — V.
Consider now the situation not covered by Case 1 above.

Case 2: Nonreal conjugate pairs y,7i. The space E, ; = E,(Tc) ® Ez(Tc) is of real
type and Tc-invariant; Tc is an operator of real type on V¢ by definition. Let us list the
pairs of non-real eigenvalues p, i according to their multiplicities as in (28), and let

;Y = iy with (a5, € V)

be a C-basis for E,(Tc), so that

d
E Te)=@Cs”  and  Telg, = p-Ip, .
j=1
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Since J(E,) = Fg, we get a matching C-basis in Ez = @?:1 (CJ(f;“)) using (29).

J(f;“)) =t —ix?

J
Then for 1 <i < d = dimc(E,) define the 2-dimensional complex subspaces in E,, 5
Vi =Cf®ecs(f*), j=1,2,--,d = dime(E,(Tc))

These are Tc-invariant and are of real type since they are J-invariant by definition.
Clearly E, & Ey = @;l:l V. We claim that for each V/*, we can find a C-basis consisting
of two real vectors in (V}')r = (VJ“ ) N (V +1i0) (something that cannot be done for the
spaces (Cf;”) or E,, alone).

We prove W = Wr+iWg. If f;“) = x; +1y;, J(f;“)) = x; —1y;, then z; = x; +40 and
y; = y; +140 are in (V}*)g but their C-span includes f;“) and J(f;”)), and is obviously
all of Vj(” ); these real vectors are a C-basis for Vj(” ), They are also an R-basis for the

2-dimensional space (V/*)r = (Rz; + Ry;) + 40 of real points in Vj(“).
Note that x; 4 i0 € (V}*)r can be written as

zj+i0 = (" +J(f")), and similarly
_ 1
yj+lo = Z(fj(u) _J(f;“))) .

As previously noted, Tc (resp. T') leaves V" (resp. (V/)r) invariant.
We now determine the matrix of T; = T'|(y»), with respect to the ordered R-basis
J

X = {x§”), y§”)}. If 4 = a+ib with a, b real and b # 0, then T = a — ib; suppressing the
superscript “u” for clarity, we then have
Te(z; +iy;) = plx; +iy;) = (a+b)(x; +iy;) = (ax; —by;) + i(ay; + bx;)
Te(z; —iy;) = jlx; —iy;) = (a+b)(x; —iy;) = (ax; —by;) — i(ay; + bx;)
Write p in polar form
1, = a+ib = reT? = rcos() + irsin(f) .

Tc and J commute because T¢ is of real type T¢, and since J(zw) = zZJ(w) for z € C we
get

T(z;) +i0 = Te(w; +i0) = Tc(fj—'—;(fj)) _ TC(fjH;(Tc(fj))

= sl@ri)f;+7((a+ib)f;)
= g l(a+ i) +iy;) +(a—ib) - (; —iy;)]
= (az; —by;)
= xj-rcos(f) —y; - rsin(f)
Similarly, we obtain

T(y;) + i0 = To (=7 (0a)

% ) = (ay; + bxj) = x; - rsin(f) + y; - r cos(0)

We previously proved that [Tc](s,y = [T]{e,} for any R-basis in (Vj(“ ))R, so the matrix
of Ty : (V{')r — (V*)r with respect to the R-basis X; = {z,y;} in (Vj(”))R is

B cos(f)  sin(f)
[T|(VjM)R]3€j - ( —sin(f) cos(6)
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Reversing order of basis vectors yields basis X'i; = {y4, 2/} such that the matrix of

T|(Vj”)m is a scalar multiple r - R() of the rotation matrix R(f) = ( Z?j((zi Ccs)lsr(léi‘) )

that corresponds to a counterclockwise rotation about the origin by # radians, with
0 # 7,0 (mod 27) because u = a + ib is nonreal (b # 0).

Of course, with respect to the complex basis ) = {J(f;”)), f;“)} = {z;—iy;,x;+iy;}
in Vj“ the operator Tc|vju is represented by the complex diagonal matrix

re 0 w 0
o= (57 )= (5 8)

To summarize: we have

v d(p)

e = [D(PcM)]el D (Dv)]

Areal j=1 p#@ nonreal  j=1

(@ Emdel @ (D))

Areal pn#m nonreal  j=1

where
W =cf e C J(fM) = Cal +i0) @ Cy™ +io)

and all the spaces C f]()‘), Vj(” ) are of real type. Restricting attention to the real points
in Vg we arrive at a direct sum decomposition of the original real vector space V into
T-invariant R-subspaces

d(p)
(30) v=[@anls[ O (D))
Areal p#@ nonreal  j=1

We have arrived at the following decomposition of the R-linear operator T': V — V|
when T¢ is diagonalizable. Note: For each complex pair (i, 72) in sp(T¢c), E, @ Ej is of
real type and we claim that (E, @ Ez) N (V +140) = @?(:”1)(1/;-“)]1@. The sum on the right
is direct so dimg(€D,, ; --+) = 2d(p). Since we also have

dimg (E, & Ez), = dimg (E, & Ex) = 2d(p) ,

the spaces coincide.

1.20. Theorem (7¢ Diagonalizable). If T : V — V is R-linear and T¢ is diagonal-
izable with eigenvalues labeled 1, i1, -+, Arg1, -+, As as in (28), there is an R-basis X
such that [T)x has the block diagonal form

0
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where

riR(0k) 0
Ry, = -
0 rpR(0))
for1<k<r, and
Ak 0
Dy, = -
0 Ak

forr+1<k<s.

Here, pj, = e’ are representatives for the non-real pairs (u, 1) in sp(7¢).

When Tt is not diagonalizable, we apply the Jordan Canonical form for T¢.

1.21. Lemma. IfT :V — V is a linear operator on a vector space over R, let u € C
and M, = {w € V¢ : (Tt — pl)*w = 0 for some k € N}. Then w € M,, & J(w) € My,
so that

JM,) =Mz and J(Mg) =M,

Proof: The map ® : S — JSJ = JSJ ! is an automorphism of the algebra of all
C-linear maps Homge(Vg, Vio): it preserves products, ®(S152) = ®(S1)P(S2) because
J? =1 = JS1S2J = (JS1J)(JS2J), and obviously ®(S; + S2) = ®(S;) + ®(S2),
®(cS) = c®(S) for ¢ € C. In particular, ®(S*) = ®(S)* for k € N. Then
k _
J(Te — uD)*)J = (J(Tc — pD)J)* = (JTed — J(uD)J)" = (Tc — @l)*
(JTc = T J because Tt is of real-type by definition), and
J(pI)J(w) = J(p - J(w)) = aJ?*(w) = fiw, for w € Ve
Finally, we have (Tt — pul)*w = 0 if and only if
J(Te —pu)fw=0 < J(Tc—pl)J(J(w)) =0
& (Te-m)fI(w)=0 < J(w) e My .
Hence J(M,,) = Mz, which implies M,, = J(Mz) since J2=1. O

1.22. Theorem (Tt not Diagonalizable). Let T : V — V lie a linear operator on
a finite dimensional vector space over R and let p1, 71,y fhry fry Art1, -+ , As be the
eigenvalues of Tc : Vo — Vi, listed as in (28). Then there is an R-basis for V that puts

[T]x in block diagonal form:
:

T)x = - :

)

in which each block A; has one of two possible block upper-triangular forms:

Al 0
A= . .. 1 for real eigenvalues X of Tt
0 A
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or

A= 0

for conjugate pairs p = ew,ﬁ =e"
Iy

:

where Iy is the 2 X 2 identity matriz and

ro = (Sle) )

Proof: The proof will of course employ the generalized eigenspace decomposition V¢ =
D.cop(r) M=(Tt). As above, we write M),z = M, ® Mg for each distinct pair of nonreal
eigenvalues. The summands M), M, ; are of real type and are Tt invariant, so for each
w we may write M, ; as the complexification of its space of real points

(31) W, = M, 0 (V +i0) .

Here M), ;; = W, +iW), is Tc-invariant. Since T¢ is of real type (by definition), it leaves
invariant the R-subspace V' +10; therefore the space of real points W, is also It invariant,
with Tc|w, +40) = T'lw, . It follows that T¢|as, ;, is the complexification

(Tlw,.) +i(Tlw,)

of Ty, . If we can find an R-basis in the space (31) of real points W, € M, ; for which
T'|w, takes the form described in the theorem, then our proof is complete. For this we
may obviously restrict attention to a single subspace M,  in V¢.

Case 1: A Real Eigenvalue A. If ) is real then

(Te —Nr@+iy) = Tc—-N"T Nz +i(T-Ny]=-
(T — Nz +i(T—NFy forkeN.
Thus, z + iy € M)(T¢) if and only if z,y € Mx(T), and the subspace of real points in
Myx(Tc) = MX(T) + iMx(T) is precisely Mx(T') + 0. There is a C-basis X = {f;} of
real vectors in M) (T¢) that yields the same matrix for T and for its restriction to this
subspace of real points, and we have

Telw, = Tlwy = Tl (1) - and (TS sy = Tlanary -

Case 2: A Conjugate Pair ,7i. The space M, ; = M, (Tc) & My(Tc) is of real
type because J(M,) = Mz. In fact, if v € M, then (Tt — u)*v = 0 for some k. But
TcJ = JT(c, SO

(Te =) J(v) = (Tc = @)* I (Te = p)(v) = -~ = J(Te = p)*(v) = 0 .

Thus M, ; is the complexification of its subspace of real points V,, = M, z(Tc)N(V +10).

By the Cyclic Subspace Decomposiiton (Theorem 3.2) a generalized eigenspace M,
for Tg is a direct sum of Tc-invariant spaces C; that are cyclic under the action of the
nilpotent operator (Tg — uI). In each C; take a basis X; = {fl(j), e ,fg)} that puts
(Tt — pl)|c; into elementary nilpotent form

01 -0 p 1 -0
1 so that [Tc] = 1
0 0 0 [
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For the basis X; we have
(Tc —p)f1 =0 and (Te — ) fj = fj—1 for j > 1,

which implies that Tc(f1) = pf1 and Te(f;) = pfj + fi—1 for j > 1.

If fj =Z; —|—Zyj S W#—F’L'W#, we have f_lj = J(fj) =Z; —’LyJ and TC(fj) = ,ufJ —|—fj,1,
hence

Te(f) = Te(J () = J(Te(fy) = J(ufy + fi-1) = BI(f5) + T (fi-1) -

Since real and imaginary parts must agree we get T¢( fj) =7 f] + fj_l, as claimed.
Writing 1 = a + ib with b # 0 (or in polar form, pu = re?® with 0 ¢ 77Z), we get

T(x;) +iT(y;) = Te(z; +iy;) = Te(fy) = wfi+ fiz
(a+ib)(z; +iy;) + (xj-1 + iy;j—1)
= (CL.IJ‘ — byj) + Z(b.IJ + ayj) + (Ij,1 + ’L'yjfl)
Since pu = re? and 7 = re~% this means
T(x;) = axj—by;+zj_1 = x;-rcos(d) —y;-rsin(f) + z;_1
T(y;) = bxj+ay; +yj—1 = x;j rsin(d) +y; - rcos(d) + yj—1
with respect to the R-basis

1 1 1 1 2 2
{555 )7y§ )7 755511)73/((11)7555 )7y§ )7}

nV,=M,z0(V+i0) = @?:1 VJ(“). Thus the matrix [T]x consists of diagonal blocks
of size 2d; x 2d; that have the form

R I - 0 rRO) L -0
R IQ TR(G) 12
- . I2 N T . _[2
0 R 0 rR(9)

in which I5 is the 2 x 2 identity matrix and
_ ([ a =b\ _ [ rcos(d) -—rsin(h)
R=r-R(0)= ( b a ) B ( rsin(f)  r cos(0)

ifp=a+ib=re?. 0O
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Chapter IX. Bilinear and Multilinear Forms.

IX.1. Basic Definitions and Examples.

1.1. Definition. A bilinear form is a map B : V x V — C that is linear in each entry
when the other entry is held fized, so that

B(az,y) = aB(z,y) = B(x,ay)
B(z1 +x2,y) = B(x1,y) + B(z2,y) foralla €F, zp eV, yp €V
B(z,y1 +y2) = B(z,y1)+ B(x,y2)

(This of course forces B(x,y) = 0 if either input is zero.) We say B is symmetric if
B(z,y) = B(y,x), for all ,y and antisymmetric if B(z,y) = —B(y, z).

Similarly o multilinear form (aka a k-linear form , or a tensor of rank k) is a
map B : V x---xV — F that is linear in each entry when the other entries are held fized.
We write VIOF) = V*® ... @ V* for the set of k-linear forms. The reason we use V*
here rather than V, and the rationale for the “tensor product” notation, will gradually
become clear.

The set V* ® V* of bilinear forms on V' becomes a vector space over F if we define
1. ZERO ELEMENT: B(z,y) =0forall z,y e V ;
2. SCALAR MULTIPLE: (aB)(z,y) = aB(z,y), for « € F and z,y € V;
3. ADDITION: (B; + Bs)(z,y) = Bi(z,y) + Ba(x,y), for z,y € V.

When k > 2, the space of k-linear forms V* @ ... ® V* is also a vector space, using
the same definitions. The space of 1-linear forms (= tensors of rank 1 on V') is the dual
space V* = Homp(V,F) of all F-linear maps ¢ : V — F. By convention the space of
0-forms is identified with the ground field: V(%0 = F: its elements are not mappings on
V. Tt is also possible (and useful) to define multilinear forms of mixed type, mappings
6:Vi x ... xV, = F in which the components V; are not all the same. These forms
also constitute a vector space. We postpone any discussion of forms of “mixed type.”

If 41,05 € V* we can create a bilinear form ¢; ® £ by taking a “tensor product’ of
these forms

0y ®€2(’Ul,1)2):<€1,’Ul>'<€2,1)2> for v,v2 €V

Bilinearity is easily checked. More generally, if £1,--- ,¢; € V* we obtain a k-linear map
fromV x ... x V — F if we let

k
06® . @, o) =[], v)
j=1

We will show that “monomials” of the form ¢, ® ... ® £;, span the space V(9%) of rank-k
tensors, but they do not by themselves form a vector space except when k = 1.

1.2. Exercise. If A:V — V is any linear operator on a real inner product space verify
that
d(v1,v9) = (Avi,v9)  for vy, ve €V

is a bilinear form.
Note: This would not be true if F = C. Inner products on a complex vector space are
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conjugate-linear in their second input, with (z,z-y) =z - (z,y) for z € C; for C-linearity
in the second entry we would need (z,z-y) = z- (x,y). However, ¢ = ¢ for real scalars so
an inner product on a real vector space is a linear function of each input when the other
is held fixed. O

1.3. Example. Let A € M(n,F) and V = F". Regarding elements of F™ as n x 1

column vectors, define
n

B(z,y) =a'Ay = Y Ay
ij=1
where z' is the 1 x n transpose of the n x 1 column vector . If we interpret the 1 x 1
product as a scalar in F, then B is a typical bilinear form on V =F". 0O

The analogous construction for multilinear forms is more complicated. For instance,
to describe a rank-3 linear form B(z,y, z) on V xV xV we would need a three-dimensional
n x n x n array of coefficients {Bj, i,.i5 : 1 <4 < n}, from which we recover the original
multilinear form via

n

B(I, Y, Z) = Z IilyizziSBi17i27i3 for (Ia Y, Z) € F3 .

i1,02,i3=1

The coefficient array is an ntimesn square matrix only for bilinear form (k = 2). For the
time being we will focus on bilinear forms, which are quite important in their own right.

Many examples involve symmetric or antisymmetric bilinear forms, and in any case
we have the following result.

1.4. Lemma. FEvery bilinear form B is uniquely the sum B = By + B_ of a symmetric
and antisymmetric form.

Proof: B, are given by

B(vi,v2) + B(va,v1) and B — B(vi,v2) — B(va,v1)

By (v1,v2) = 5 = 5

As for uniqueness, you can’t have B = B’ with B symmetric and B’ antisymmetric
without both being the zero form. 0O

Variants. If V is a vector space over C, a map B : V x V — C is sesquilinear if it is
a linear function of its first entry when the other is held fixed, but is conjugate-linear in
its second entry, so that

B(z1 + x2,y) = B(x1,y) + B(xz2,y)  and  B(z,y1 +y2) = B(z,51) + B(z,12)
B(ax,y) = aB(z,y) and B(z,ay) = B(z,y)a forall a € C.

This is the same as bilinearity when F = R. The map is Hermitian symmetric if

B(y,z) = B(z,y)

On a vector space over R, an inner product is a special type of bilinear form, one that
is strictly positive definite in the sense that

(32) B(z,z) >0forallz €V and B(z,z)=|z]|*?=0=2=0

Over C, an inner product is a map B : V x V — C that is sesquilinear, Hermitian
symmetric, and satisfies the nondegeneracy condition (32).
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A bilinear form B € V* ® V* is completely determined by its action on a basis
X = {e;} via the matrix [B]x = [B;;] with entries

Bij = B(ei,ej) for 1 S Z,j S n

This matrix is symmetric/antisymmetric if and only if B has these properties. Given
[Blx we recover B by writing x =, w;e;, y = >, yje;; then

Blz,y) = B(ineia Zyjej) = inB(eiazyjej)
= D wiBiy; = [l(Blxly)x .

a 1 x 1 matrix regarded as an element of F. Conversely, given a basis and a matrix
A € M(n,F) the previous equality determines a bilinear form B (symmetric if and only
if B = B" etc) such that [B]x = A. Thus we have isomorphisms between vector spaces
over [F:

1. The space of rank-2 tensors V(%2 = V* @ V* is = M(n,F) via B — [Blx;

2. The space of symmetric bilinear forms is isomorphic to the space of symmetric
matrices , etc.

We next produce a basis for V* @ V* and determine its dimension.

1.5. Proposition. If X = {e;} is a basis in a finite-dimensional vector space V', and
X* = {ej} is the dual basis in V* such that (e}, e;) = dij, then the monomials e ® €}
given by
e; @ej(v1,v2) = (ef,v1) - (€, v2)

are a bases on V* @ V*. Hence, dim(V* @ V*) = n2.

Proof: The monomials €] ® €7 span V* ® V*, for if B is any bilinear form and B;; =
Ble;, ejBZ, then B = Zi)j Bije; ®e; has the same action on pairs ey, e, € V' as the original
tensor B.

Blere) = (Y. By-er@ei)lenen) = > Bylelex) - (€] el)
i,5 ,J
= ZBij5ik5jl = Biy = B(ex, er) ,
4,9
so B = B € F-span{e} ® er}. As for linear independence, if B = > bije;i ®ej =0in
V(02 then f?(x,y) =0 for all z,y, so by = E(ek,eg) =0for1<k{<n 0O

A similar discussion shows that the space V(%) of rank-k tensors has dimension
dim(VO) =dim(V* @ ... @ V*) = dim(V)" =n" .
If X ={e1,...,e,} is a basis for V and {e}} is the dual basis in V*, the monomials
e, ® ... Qe 1<4,...,5»<n

are a basis for V(07

1.6. Theorem (Change of Basis) Given B € V*®@V™* and a basis X in'V, we describe
B by its matriz via (32). If Y = {f;} is another basis, and if

(33) id(f;)=1f= Zskjek for 1<j<n,
k
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then S = [s;;] = [id]xy is the transition matriz for basis vectors and we have

B(fi, fj) = B( Zs;ﬂ-ek y ZS@jeg)
k.t 14

= Zskinéséj = Z(St)ikBMSéj
k2 k,l

= (S*[B]xS)i

([B]Q,))ij

Note: We can also write this as [Bly = P[B]xP", taking P = S* = [id]}y. O

Thus change of basis is effected by “congruence” of matrices A — SASY, with det(S) # 0.
This differs considerably from the “similarity transforms” A~ SAS~! that describe the
effect of change of basis on the matrix of a linear operator T : V' — V. Notethet S* is
generally not equal to S~!, so congruence and similarity are not the same thing. The
difference between these concepts will emerge when we seek “normal forms” for various
kinds of bilinear (or sesquilinear) forms.

1.7. Definition. A bilinear form B is nondegenerate if
Bw,V)=0=v=0 and B(V,v)=0=v=0

If B is either symmetric or antisymmetric we only need the one-sided version. The
radical of B is the subspace

rad(B) ={v eV : B(v,v") =0 for allv' € V} ,

which measures the degree of degeneracy of the form B The B-orthocomplement of a
subspace W C 'V is defined to be

WHE ={veV:Bu,W)=(0)}.

Obviously, W8 is a subspace. When B is symmetric or antisymmetric the conditions
B(v,W) = 0 and B(W,v) = 0 yield the same subspace B-Z. Then nondegeneracy
means that V+# = {0}, and in general V7 is equal to the radical of B.

1.8. Exercise (Dimension Formula). If B is nondegenerate and either symmetric or
antisymmetric, and if W C V is a subspace, prove that

dim(W) + dim (W) = dim(V) a.

The notion of “nondegeneracy” is a little ambiguous when the bilinear form B is neither
symmetric nor antisymmetric: Is there a difference between “right nondegenerate,” in
which B(V,y) = 0 = y = 0, and nondegeneracy from the left: B(z,V) =0 = z =07
The answer is no. In fact if we view vectors z,y € V as n x 1 columns, we may write
B(z,y) = [x]%[Blz[y]x, and if [B]x is singular there would be some y # 0 such that
[Blz[ylx = 0, hence B(V,y) = 0. That can’t happen if B is right nondegenerate so
B right-nondegenerate implies [B]x is nonsingular. The same argument shows B left-
nondegenerate also implies [B]x nonsingular.
But in fact, this works in both directions, so

1.9. Lemma. B is right nondegenerate if and only if [B]x is non singular.

Proof: We have already proved (<) for both left- and right nondegeneracy. Conversely,
if B(V,y) = 0 for some y # 0, then [B]x[y]x # 0 if det([B]x) # 0, and we would have

Blei,y) = €; [Blx [ylx #0
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for some ¢. This conflicts with the fact that [B]x[y]x # 0. Contradiction. [

Thus for any basis X, B is right-nondegenerate < [B]x is nonsingular < left-nondegenerate,
and it is legitimate to drop the “left/right” conditions on nondegeneracy.

Hereafter we will often abbreviate dim(V) = |V, which is convenient in this and
other situations.

1.10. Lemma. If B is a nondegenerate bilinear form on a finite dimensional space V,
and M is a vector subspace, we let M+P = {w: B(V,w) = 0}. Then
|M|+ [MHF = V],

even though we need not have M N M+5 = (0).

Proof: If |[V| < oo any nondegenerate bilinear form B mediates a natural bijection
J :V — V* that identifies each vector v € V with a functional J(v) in V* such that

(J(v), ) = (L,v) forallve Ve V*.

This map is clearly F-linear and J(w) =0 = B(V,w) =0 = w = 0 by non degeneracy
of B, so J is one-to-one and also a bijection because |V| = |[V*|.

In Section II1.3 of the Linear Algebra I Course Notes, we defined the “annihilator”
of a subspace M C V to be

Me={teV*:{ M)=0}
and discussed its properties, indicating that
(M°)° =M and V| =|M|+|M°|

when |V| < co. The annihilator M° is analogous to the orthogonal complement M+
in an inner product space, but it lives in the dual space V* instead of V; it has the
advantage that M° makes sense in any vector space V', whether or not it is equipped
with an inner product or a nondegenerate bilinear form. (Also, orthogonal complements
M+ depend on the particular inner product on V, while the annihilator M° has an
absolute meaning.)

1.11. Exercise. When V is equipped with a nondegenerate bilinear form B we may
invoke the natural isomorphism V' 2= V* it induces to identify an annihilator M° in
V* with a uniquely defined subspace J~1(M°) in V. From the definitions, verify that
M?° C V* becomes the B-orthocomplement M 4B C V under these identifications. [

1.12. Exercise. If B is a nondegenerate bilinear form on a finite dimensional vector
space, and if M is any subspace, prove that

1,B 1,B\L.B
(34) M|+ M8 =V| and (MYE)77 =M.
Hint: Identifiying B-orthocomplements with annihilators, apply the basic properties of
annihilators mentioned in Exercise 1.12. [

If B is degenerate, so the radical rad(B) is nonzero, the role of the radical can be
eliminated for most practical purposes, allowing us to focus on nondegenerate forms.

1.13. Exercise. Let M = rad(B) and form the quotient space V = V/M. Show that

1. B induces a well-defined bilinear form B : V x V — F if we let

B(x+ M,y + M) = B(z,y) forall z,y e V
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2. B is symmetric (or antisymmetric) < B is.
3. Prove that B is now nondegenerate on V/M. [

1.14. Exercise. Given n X n matrices A, B show that
2'By = 2" Ay for all 2,y € F" if and only if A = B. O

IX.2. Canonical Models for Bilinear Forms.

Bilinear forms arise often in physics and many areas of mathematics are concerned with
these objects, so it is of some importance to find natural “canonical forms” for B that
reveal its properties. This is analogous to the diagonalization problem for linear opera-
tors, and we will even speak of “diagonalizing” bilinear forms, although these problems
are quite different and have markedly different outcomes.

In doing calculations it is natural to work with the matrices [B]x that represent B
with respect to various bases, and seek bases yielding the simplest possible form. If a
bilinear form B is represented by A = [B]x we must examine the effect of a change
of basis X — 2), and describe the new matrix [Bly in terms of the transition matrix
S = [id]yx that tells us how to write vectors in the 9)-basis in terms of vectors in X, as
n (32). Thus if X = {e;} and Y = {f;}, S = [si;] is the matrix such that

(35) fi = Zskjek for1<j<n
k

Obviously det(S) # 0 because this system of vector equations must be invertible.
In Theorem 1.6 we worked out the effect of such a basis change: [Bly = S*[B]xS,
which takes the form

(36) [Bly = P[B|xP" if we set P = S" .

We now show that the matrix of a nondegenerate B has a very simple standard form,
at least when B is either symmetric or antisymmetric, the forms of greatest interest in
applications. We might also ask whether these canonical forms are unique. (Answer: not
very.)

The Automorphism Group of a Form B. If a vector space is equipped with a
nondegenerate bilinear form B, a natural (and important) automorphism group Aut(B) C
GLp(V) comes along with it. It consists of the invertible linear maps 7' : V' — V that

“leave the form invariant,” in the sense that B(T(x), T (y)) = B(x,y) for all vectors. We
have encountered such automorphism groups before, by various names. For example,

1. The real orthogonal group O(n) consists of the invertible linear maps 7' on R™
that preserve the usual inner product,

B(x,y) = Z:z:lyZ for x,y € R" .
i=1

As explained in Section VI.5 of the Linear Algebra I Notes, the automorphisms
that preserve this symmetric bilinear form are precisely the linear rigid motions on
Euclidean space, those that leave invariant lengths of vectors and distances between
them, so that

TG = x|l and [T(x)=T(y)| = llx—-yll forx,yeR"
1/2
where ||x|| = (Z?:l |:vi|2) (Pythagoras’ formula).
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2. The unitary group U(n) is the group of invertible linear operators on V = C"
that preserve the (Hermitian, sesquilinear) standard inner product

B(z,w) = Z 2, Wg
k=1

on complex n-space. For these operators the following conditions are equivalent
(see Linear Algebra I Notes, Section V1.4).

TeUn) < B(T(z),T(w))=B(zw)
& |T()] = ||z
& |T(z) -T(w)|| = [z — wl|

for z,w € C", where
1/2 - 2)1/2
|z|| = B(z,2z)'/? = (Z ;] ) (Pythagoras’ formula for complex n-space).
i=1

2.1. Exercise. Explain why U(n) is a closed and bounded subset in matrix space
M(n,C) = C" O

3. The complex orthogonal group O(n,C) is the automorphism group of the bi-
linear form on complex n-space C"

n

B(z,w) = Z 2 W (z,w € C")
k=1

This is bilinear over F = C, but is not an inner product because it is not conjugate-
linear in the entry w because wj appears in B instead of wg; furthermore, not all
vectors have B(z,z) > 0 (try z = (1,4) in C?).

In the present section we will systematically examine the canonical forms and associated
automorphism groups for nondegenerate symmetric or antisymmetric forms over F = R
or C. The number of possibilities is surprisingly small.

2.1A. Definition. The automorphism group of a nondegenerate symmetric or anti-
symmetric form B:V xV —F is

(37)  Aut(B) = {T € GLp(V) : B(T(v),T(w)) = B(v,w) for allv,w €V},

where GLp(V) = {T : det(T) # 0} is the general linear group consisting of all
invertible F-linear operators T : V. — V.

Aut(B) is a group because it contains: the identity I = idy; the composition product
S oT of any two elements; and the inverse T~! of any element.

Given a basis X for V, each element T' € Aut(B) corresponds to an invertible matrix
[B]x = [B(es, e;)], and these matrices form a group

Gpx = {[T]x: T € Aut(B)}

under matrix multiplication (-). The group (Aut(B), o) and the matrix group (Gp,x,")
are isomorphic and are often identified.
Matrices in G x are characterized by their special algebraic properties,

(38) GB,% = {E € GL(?’L,F) : Et[B]_'{E = [B]x} s
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This identification follows because

& [2x[Blxllx = [T(2)]%

Given basis X, T' is an automorphism of the bilinear form B if and only if the matrix
[Tx satisfies the identity [B]x = [T]%[B]x[T]x, and this must be true for any basis X.
Matrices in Gp x are precisely the matrix realizations (with respect to basis X) of all the
automorphisms in Aut(B).

2.2. Exercise. If B is a non degenerate bilinear form, show that Gg = Aut(B) is a
subgroup in the general linear group GLy(V) — i.e. that (i) I € Gp, (ii) 11,12 € Gg =
T,,T> € Gp, and (iii)TEGBﬁT_leGB. [l

We can also assess the effect of change of basis X — 9): Gp g is a conjugate of Gp »
under the action of GL(n,TF).

2.3. Exercise. If X, Q) are bases in V, define Gp x and Gp,y as in (38) and prove that
GB)@ = S_lGB7_'{S where S = [ld]g.]”{

(or equivalently G 9 = SGp xS~ where S = [id]y x since [id]y x - [i[d]x.9 = I). O

Recall that S is the matrix such that f; = >, _, sjie; if X ={e;}, D = {f;}.

The general linear group GLg(V) in which all these automorphism groups live is de-
fined by the condition det(T") # 0, which makes no reference to a bilinear form. The
special linear group SLp(V) = {T € GLp(V) : det(T) = 1} is another “classical
group” that does not arise as the automorphism group of a bilinear form B. All the
other classical groups of physics and geometry are automorphism groups, or their inter-
sections with SLy(V)

Canonical Forms for Symmetric and Antisymmetric B. We classify the congru-
ence classes of nondegenerate bilinear forms according to whether B is symmetric or
antisymmetric, and whether the ground field is F = R or F = C, always assuming B is
nondegenerate. The analysis is the same for antisymmetric forms over F = R or C, so
there are really only three cases to deal with.

Canonical Forms. Case 1: B symmetric, F = R.
If B is a nondegenerate symmetric bilinear form on a vector space over R with dim(V') =
n, there are n 4+ 1 possible canonical forms.

2.4. Theorem (B symmetric; F = R). is an R-basis X C V such that the matriz
describing B has the form

Iw] 0
(39) [Blx = < - with p+ ¢ =n = dim(V) .
0

In this case, we say B has signature (p,q).

Proof: First observe that we have a polarization identity for symmetric B that deter-
mines B(v,w) from homogheneous expressions of the form B(u,u), just as with inner
products over R.

(40) POLARIZATION IDENTITY:  B(v,w) = 5 [ B(v +w,v +w) — B(v,v) — B(w,w)|

N[

for all v,w € V.
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2.5. Definition. The map Q(v) = B(v,v) from V to R is the quadratic form as-
sociated with a symmetric is bilinear form. Note that B(Av, \v) = A2B(v,v), and the
quadratic form Q : V. — R determines the full bilinear form B : V xV — F wvia the
polarization identity (40).

Therefore, since B £0 there is some v1 # 0, such that B(v1,v1) # 0, and after scaling
v1 by some a # 0 we can insure that B(vi,v1) = £1. But because F = R we can’t control
whether the outcome will be +1 or —1.

Let M7 =R-v; and

M2 ={veV:B(V,v)=0}.

We have My N M;"® = {0} because any w in the intersection must have the form
w = vy, ¢1 € R. But w € M~ too, so 0 = B(w,w) = 2B(vy,v1) = £c2, hence,
¢; = 0 and w = 0. Therefore My &M;-F = V because |[W|+|WLB| = |V| for any W C V
(Exercise 1.12). [For an alternative proof: recall the general result about the dimensions
of subspaces Wi, W in a vector space Vi |[Wy + Wa| = [Wi| + [Wa| — W1 N Wa|.]

If By is the restriction of B to Mi- we claim that B; : Mll’B X Mll’B — R is
nondegenerate on the lower-dimensional subspace MlL B, Otherwise, there would be

an r € MlJ"B such that B(w,Mf"B) = (0. But since z € Mf"B too, we also have
B(z, M7) = 0, and therefore by additivity of B in each entry,

B(z,V) =Bz, M{"? + M) =0.

Nondegenerancy of B on V' then forces z = 0.
We may therefore continue by induction on dim(V’). Choosing a suitable basis X' =

{vg, - ,v,} in Mf"B and X = {v1,v2,...,0,} in V we get
0
[Blx = 0 withp+qg=n—1.
0 —Iyxq

If the top left entry is —1, we may switch vectors e; <+ ep, which replaces [B]x with
[Bly = E*[B|xE, where E is the following permutation matrix (the zero on the diagonal
is at the position p)

0 O 1 0
0 +1 0
_ +1
E= 1 0
-1
0 O -1

(Note that E* = E for this particular permutation matrix). Then [Blg has the block-
diagonal form (39), completing the proof. [

Later on, we will describe an algorithmic procedure for putting B into canonical form
diag(+1,---,+1,—1,--- ,—1); these algorithms work the same way over F = R or C.
We will also see that an antisymmetric B cannot be diagonalized by any congruence, but
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they do have a different (and equally useful) canonical form.

The Real Orthogonal Groups O(p,q), p+q = n. The outcome in Theorem 2.4
breaks into n + 1 possibilities. If X is a basis such that [B]x has the standard form (39),
then A € G x if and only if

I 0 1 0
41 At ( pXp ) A= ( pXp )
(41) 0 —Igxq 0 —Igxq

This condition can be written concisely as A'JA = J where J = ( IpOXp IO )
T iaXg

The members of this family of classical matrix groups over R are denoted by O(p, q),
and each one contains as a subgroup the special orthogonal group of signature

(v, 9),
SO(p,q) = O(p,q) N SL(n,R) .

Several of the groups O(p, q) and SO(p, q), are of particular interest.

THE REAL ORTHOGONAL GRoOUPS O(n,0) = O(n) AND SO(n). With respect to the
standard basis in R we have Bx = I,xn, 80 J = I,x, in (41) and

O(n,0)=Gpx={A: A'"A=ATA=1T} .

Thus O(n,0) is the familar group of orthogonal transformations on R™, traditionally
denoted O(n). This group is a closed and bounded set in matrix space M(n,R) = R™".
O

THE LORENTZ GROUP O(n — 1,1). This is the group of space-time symmetries at the
center of Einstein’s theory of special relativity for n—1 space dimensions 1, ..., x,—1 and
one time dimension z,, which is generally labeled “t” by physicists. For a suitably chosen
basis X in R™ the matrix describing an arbitrary nondegenerate symmetric bilinear form
B of signature (n — 1, 1) becomes

(42) [Blx = ,

and the associated quadratic form is

B(z,z) = [a]%[Blx[t]lx =21 + ... + a7 4 — 2]

Note: The physicists’ version of this is a little different:
B(z,x) =23+ ...+ 22 | —2t?,

where c is the speed of light. But the numerical value of ¢ depends on the physical units
used to describe it — feet per second, etc — and one can always choose the units of (length)
and (time) to make the experimentally measured speed of light have numerical value
¢ = 1. For instance we could take t = (seconds) and measure lengths in (light seconds) =
the distance a light ray travels in one second; or, we could measure ¢ in (years) and
lengths in (light years). Either way, the numerical value of the speed of light is ¢ = 1.
O

From (41) it is clear that A is in O(n — 1,1) if and only if
t Infl 0 - Infl 0
(43) A < o -1 )47 7o [

63



O(n — 1,1) contains the subgroup SO(n — 1,1) = O(n — 1,1) N SL(n, R) of “proper”
Lorentz transformations, those having determinant +1. Within SO(n — 1,1) we find a
copy SA(/)(n — 1) of the standard orthogonal group SO(n — 1) C M(n — 1,R), embedded
in M(n,R) via the one-to-one homomorphism

AlO

AeSO(n—1)CM(mn—1,R) — ( 0T

) € SO(n —1,1) C M(n,R) .

The subgroup §()(n— 1) acts only on the “space coordinates” x1,- - ,z,_1 in R", leaving
the time coordinate t = z,, fixed.

The following family of matrices in O(n—1, 1) is of particular interest in understanding
the meaning of special relativity.

1/vV/1—=v2 0 0 —v/V1—0?
0 1 - 0

0 1 0
—v/vV/1—=22 0 -+ 0 1/vV/1—22

When we employ units that make the speed of light ¢ = 1, the parameter v must have
values |v| < 1 to prevent the corner entries in this array from having physically mean-
ingless imaginary values; as v — 1 these entries blow up, so SO(n — 1,1) is indeed an
unbounded set in matrix space M(n, R).

In special relativity, an event is described by a point (x,t) in space-time R"~! x R that
specifies the location x and the time ¢ at which the event occurred. Now suppose two
observers are moving through space at constant velocity with respect to one another (no
acceleration as time passes). Each will use his or her own frame of reference in observing
an event to assign space-time coordinates to it. The matrix A in (44) tells us how to
make the (relativistic) transition from the values (x,t) seen by Observer #1 to those

recorded by Observer #2:!
x’ x
(v)-+()

2.6. Exercise. Verify that the matrices in (44) all lie in SO(n — 1,1). Be sure to check
that det(4) = +1.

Note: Show that (41) = det(A)? = 1, so det(A) = %1, and then argue that det(I) = 1
and det(A) is a continuous function of the real-valued parameter —1 < v < +1. [O.

2.7. Exercise. Show that

cosh(y) 0 0 sinh(y)

0 1 0 0

B = 0 0 1 0
sinh(y) 0 0 cosh(y)

isin SO(3,1) forally e R. O

A Final Remark about (44). If we work with physical units that do not make ¢ =1,
as assumed in (44), we must replace “v/1 — v2” everywhere it appears with

ITo keep things simple, the transition matrix (44) describes what happens when Observer #2 is
moving with velocity v in the positive x1-direction, as seen by Observer #1, so that ] = 1 — vt,z}, =

T2, .., x;71 = Zn—1. The general formula is more complicated.
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in which the speed of light ¢ appears explicitly [.

Invariance of the Signature for A € O(p,q). One way to compute the signature
would be to find a basis that puts [B]x into the block-diagonal form (39), but how do we
know the signature does not depend on the basis used to compute it? That it does not
is the subject of the next theorem. Proving this amounts to showing that the signature
is a congruence invariant: you cannot transform

) - (B ) (% )

unless p’ = p and ¢’ = ¢. This fact is often referred to as “Sylvesters’s Law of Intertia.”

2.8. Theorem (Sylvester). If A is a nondegenerate real symmetric n x n matriz, then
there is some P € GL(n,R) such that P*AP = diag(1,---,1,—1,--- ,—1). The number

p of +1 entries and the canonical form (39) are uniquely determined.

Proof: The existence of a diagonalization has already been proved. If B(x,y) =
> riAijy; = x'Ay is a nondegenerate symmetric bilinear form on R", so [B] =
[A;;] with respect to the standard basis, then there is a basis X such that [Blx =
diag(1,---,1,—1,---,—1). Suppose p = #(entries = +1) for X, and that there is an-
other diagonalizing basis 2) such that p’ = #(entries = +1) is # p. We may assume
p < p. Writing X = {v1, -+ ,0p, Upt1, - ,Un} and P = {wr, -+ ,wp, Wprg1,- -+, Wn},
define L: V — RP-7'+" via

L(X) = (B(val)v"' 7B(X=Up)7B(wi;D’+l)7"' ,B(x,wn))

The rank rk(L) of this linear operator is at most dim(RP~#'+7) = p — p/ +n < n, hence
dim(ker(L)) = dim(V) —rk(L) > 0 and there is some vy # 0 in V such that L(vg) = 0.
That means

B(vg,v;) =0 for1<i<p and B(vo,w;) =0 forp +1<i<n.

Writing v in terms of the two bases we have vy = Z;’L:I ajv; =Y p_; bpwg.
For ¢ < p we get

OZB(U(),’Ui) = B(ZCLJ"UJ', ’Ui) = ZCLJ'B(’UJ',UZ')
j J

j
g a;jdij = a; = a; B(vi, v;) ,
J

since [B]x = diag(1,---,1,—1,---,—1). But B(v;,v;) > 0 for ¢ < p while B(vp,v;) = 0,
so we conclude that a; = 0 for 0 < ¢ < p. Similarly, b; =0 for p' +1 < j <n.
It follows that a; # 0 for some p’ < i < n, and hence

B(Zajvj ) Zaew) = ZaiB(Ujan)
j=1 =1

= Z a?B(vj,vj) <0.

B(’UQ, ’Uo)

Furthermore,

B(Uo,’Uo) = B(ijwj, Zbgu)[) = beB(wJ,wJ)
Jj=1 (=1

’

p

= Zb?B(wj,wj) >0.

Jj=1
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Thus B(vg,vg) < 0 and B(vg,vg) > 0, which is a contradiction. [

2.9. Corollary. Two non singular symmetric matrices in M(n,R) are congruent via
A — PYAP for some P € GL(n,R) if and only if they have the same signature (p,q).

Let A be a symmetric n X n matrix with entries from a field F not of characteristic
two. We know that there are matrices @, D € M(n,F) such that @ is invertible and
Q'AQ = D is diagonal. We now give a method for computing suitable Q and diagonal
form D via elementary row and column operations; a short additional step then yields
the signature (p,q) when F = R.

The Diagonalization Algorithm. Recall that the effect of an elementary row opera-
tion on A is obtained by right multiplication A — AFE by a suitable “elementary matrix”
E, as explained in Linear Algebra I Notes, Sections I-1 and IV-2. Furthermore, the same
elementary operation on columns is effected by a left multiplication A — E'A using the
same E. If we perform an elementary operation on rows followed by the same elementary
operation on columns, this is effected by

A~ E'AE

(The order of the operations can be reversed because matrix multiplication is associative.)
Now suppose that @ is an invertible matrix such that Q*AQ = D is diagonal. Any
invertible @ is a product of elementary matrices, say Q = E1 Fs - - - E), hence

D=Q'AQ=E'E! ,-...-E'AE\E,-...-Ey

Putting these observations together we get

2.10. Lemma. A sequence of paired elementary row and column operations can trans-
form any real symmetric matriz A into a diagonal matrix D. Furthermore, if E1,--- |, Ey
are the appropriate elementary matrices that yield the necessary row operations (indexed

in the order performed), then Q*AQ = D if we take Q = E1Fs--- E.
2.11. Example. Let A be the symmetric matriz in M(3,R)

1 -1 3
A= -1 2 1
3 1 1

We apply the procedure just described to find an invertible matriz Q such that Q*AQ = D
is diagonal.

Discussion: We begin by eliminating all of the nonzero entries in the first row and
first column except for the entry a;;. To this end we start by performing the column
operation Col(2) — Col(2) + Col(1); this yields a new matrix to which we apply the
same operation on rows, Row(2) — Row(2) + Row(1). These first steps yield

1 -1 3 1 0 3 103
A= -1 2 1| 5[ -1 1 1) =501 4]|=EARE
31 1 3 41 341

where

B =

o O =
O~ =
= o O
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The second round of moves is: Col(3) — Col(3) — 3 - Col(1) followed by Row(3) —
Row(3) — 3 - Row(1), which yields

1 0 3 1 0 O 1 0 O
0 1 4 — 0 1 4 — 0 1 4 :E;E{AElEQ
3 4 1 3 4 -8 0 4 -8
where
1 0 -3
By = 01 0
0 0 1

Finally we achieve a diagonal form by applying Col(3) — Col(3) — 4 - Col(2) and then
the corresponding operation on rows to get

10 0 10 0
ESESEYAE\EsEs = [ 0 1 0 where Ey=| 0 1 —4
00 —24 00 1

Since the outcome is a diagonal matrix, the process is complete. To summarize: taking

1 1 -7 10
Q=FEEE;=|( 0 1 —4 we get a diagonal form D = Q'AQ = 0 1
0 0 1 0 0

To obtain the canonical form (39) we need one more pair of operations

1 1
N - Row(3) and Col(3) — N -Col(3) ,

both of which correspond to the (diagonal) elementary matrix

Row(3) —

10 O

E,=1 01 O
1

00 —5

The canonical form is
diag(l,l,l,—l):QtAQ where Q=E, ...-B;, O

This example also shows that the diagonal form of a real symmetric matrix achieved
through congruence transformations A — Q'AQ is not unique; both diag(1,1,1,—24)
and diag(1,1,1,—1) are congruent to A. Only the signature (3,1) is a true congruence
invariant.

In Section IV-2 of the Linear Algebra I Notes we showed that the inverse A~! of an
invertible matrix can be obtained multiplying on the left by a sequence of elementary
matrices (or equivalently, by executing the corresponding sequence of elementary row
operations). We also developed the Gauss-Seidel Algorithm does this efficiently.

GAUSS-SEIDEL ALGORITHM. Starting with the n X 2n augmented matriz
[A : Ian], apply row operations to bring the left-hand block into reduced
echelon form, which must equal I,x, since A is invertible. Applying the
same moves to the entire n X 2n augmented matriz we arrive at a matrix
[Ian : A_l] whose right-hand block is the desired inverse.
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An algorithm similar to Gauss-Seidel yields a matrix @ such that Q*AQ = D is
diagnonal; the signature (r, s) can then be determined by inspection as in the last steps
of Example 2.11. The reader should justify the method, illustrated below, for computing
an appropriate (Q without recording each elementary matrix separately. Starting with
an augmented n X 2n matrix [A : Ian], we apply paired row and column operations to
drive the left-hand block into diagonal form; but we apply them to the entire augmented
matriz. When the left-hand block achieves diagonal form D the right-hand block in
[ D : Q'] is a matrix such that Q*AQ = D. The steps are worked out below; we leave
the reader to verify that Q*AQ = D.

DETAILS: Starting with Col(2) — Col(2)+ Col(1) and then the corresponding operation
on rows, we get

1 -13)/100 paired R/C opns. 103|100
A1) = | -1 2 1|01 0| ————— [0 1 4[1 10
3 1 1|0 0 1 3 4 110 0 1
paired R/C opns. Lo 0 1 00
— 01 4,1 10
0 4 -8|-3 0 1
paired R/C opns. Lo 0 1 0 0
- 01 0 1 1 0 — [D:Q"
0 0 —24|-7 —4 1
Therefore,
1 0 0 1 1 -7
Q=1 1 0 Q=01 -4
-7 -4 1 00 1
and a diagonalized form Q'AQ is
1 0 0
D = 01 0
0 0 —24

We now turn to the the next type of bilinear form to be analyzed.

Canonical Forms. Case 2: B symmetric, F = C.
In this case there is just one canonical form.

2.12. Theorem (B symmetric; F = C). If B is a nondegenerate, symmetric bilinear
form over F = C there is a basis X such that [Blx = Lyxn. In coordinates, for this basis
we have

B(z,y) = Z x5y (no conjugate, even though F = C) .
j=1

Proof: We know (by our discussion of F = R), we can put B in diagonal form [B]x =
diag(A1, -+, \n), with each A; # 0 since B is nondegenerate. Now take square roots in

C and let P = diag(1/v/A1,--+,1/vA,) to get P'[B]xP = I,x,. O

There is just one matrix automorphism group, modulo conjugations in GL(n,C). Taking
a basis such that [B]x = I, we get the complex orthogonal group in M(n, C),

O(n,C)=Gpx ={A€M(n,C) :det(A) #0 and A*A =TI}

(Note our use of the transpose A® here, not the adjoint A* = A*, even though F = C. As
a subgroup we have the special orthogonal group over C,

SO(n,C) = O(n,C) N SL(n,C)
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These are closed unbounded subsets in and M(n, C).

2.13. Exercise.

1. Show that SO(2,C) is abelian and isomorphic to the direct product group S* x R
where S = {z € C : |z| = 1} and the product operation is

(z,2) - (') = (22,2 + 2)

2. Show that A € SO(2,C) if and only if

with a,b € C and a? + b2 = 1.

3. Show that SO(2,C) is an unbounded subset in M(2,C), and hence that SO(n,C)
is unbounded in M(n, C) because we may embed SO(2,C) in SO(n,C) via

A €80(2,C)

ifn>2.

Hints: For (1.) you must produce an explicit bijection ® : S* x R — SO(2, C) such that
D(q1,q2) = ®(q1) - P(¢g2) (matrix product of elements in M(2,C)). In (2.), if we write
A = [a,b;c,d] the identities A'A = I = AA" plus det(A) = 1 yield 9 equations in the
complex unknowns a, b, ¢, d, which reduce to 7 when duplicates are deleted. There is a
lot of redundancy in the remaining system, and it can actually be solved by algebraic
elimination despite its nonlinearity . In (3.) use the sup-norm ||A| = max; ;{|A4:;|} to
discuss bounded sets in matrix space. [

Note: A similar problem was posed in the Linear Algebra I Notes regarding the group
of real matrices SO(3) C M(3,R) — see Notes, Section VI-5, especially Euler’s Theorem
VI-5.6. The analog for SO(3) of the problem posed above for SO(2,C) is crucial in un-
derstanding the geometric meaning of the corresponding linear operators L4 : R® — R3.
By Euler’s Theorem SO(3) gets identified as the group of all rotations Ry : R — R3,
by any angle # about any oriented axis ¢ through the origin. [

2.14. Exercise. Is SO(n,C) a closed subset in M(n,C) ~ C"*? Prove or disprove.
Which scalar matrices Al lie in SO(n,C) or O(n,C)?

Canonical Forms. Case 3: B Antisymmetric; F =R or C.

In the antisymmetric case, the same argument applies whether F = R or C. Note that
B(v,v) = 0 for all v, and if W C V the B-annihilator W5 = {v : B(v, W) = 0} need
not be complementary to W. We might even have W2 D W, although the identity
dim(W) + dim(W+-8) = dim(V) remains valid.

2.15. Theorem (B antisymmetric; F = R or C). If B is a nondegenerate antisym-
metric form over F =R or C, there is a basis X such that

_7_ 0 Lnxm

In particular dimgp(V') must be even if V' carries a nondegenerate skew-symmetric bilinear
form.
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Proof: Recall that dim(W) + dim (W+75) = dim(V) for any nondegenerate bilinear
form B on V. Fix v; # 0. Then M; = (Fv;)-P has dimension n — 1 if dim(V) = n,
but it includes Fv; C (Fvy)>B. Now take any vy ¢ M; (so vy # 0) and scale it
to get B(vi,v2) = —1 . Let My = (Fvy)>P; again we have dim(My) = n — 1 =
dim(M;). But My # M since vy € My and ve ¢ My, so dim(M; N M) = n — 2. The
space M = M; N M is B-orthogonal to F-span{vi,v2} by definition of these vectors.
Furthermore, B[ is antisymmetric and nondegenerate. [In fact, we already know that
B(w,w1) = B(w,v2) =0 and V = Fvy @ Fvy & M, so if B(w, M) = 0 for some w € M,
then B(w,V) = B(w,Rv; + Rvg + M) = 0 and w = 0 by nondegeneracy.] Furthermore,
if N = F-span{vy,va} we have V.= N & M. (Why?)

We can now argue by induction on n = dim(V'): dim(M) must be even and there is
a basis Xg = {vs, -+ ,vp} in M such that

0
0

w=(5)

Hence, X = {v1,v2} U Xy is a basis for V such that

[Blm]x, =

with

0

R 0
[Blx = < ) = .
0 [B|M]3eo R
:

A single permutation of basis vectors (corresponding to some permutation matrix E such
that E* = E~1) gives the standard form

E'[B]xE = [Bly = < 0 | ImOXm >

_Imxm |

where m = %dim(V). O

A skew-symmetric nondegenerate form B is called a symplectic structure on V. The
dimension dimp(V') must be even, and as we saw earlier there is just one such nondegen-
erate structure up to congruence of the representative matrix.

2.16. Definition. The automorphism group Aut(B) of a nondegenerate skew-symmetric
form on'V is called a symplectic group. If X is a basis that puts B into standard form,
we have

Ime

B(z,y) = [2]%[Blx[ylx = [¢]% T [ylx ~ where  J= ( _ ) Imoxm ) :

By (38), elements of Aut(B) are determined by the condition
Aisin G%,B & AYJA=J.
on V. ~R?™. The corresponding matriz group

Sp(n,F) =Gpx = {AeM(n,F): A'"JA=J}

is the classical symplectic group of degree m = %dim(V).
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The related matriz

0

J = with R:(_Ol (1)>
0

is a GL-conjugate of J, with J' = CJC™! for some C € GL(2m,R), and the algebraic
condition

AT A=T
determines a subgroup G' C GL(n,F) that is conjugate (hence isomorphic to) the matriz
group Gp x = Sp(n,F).
Both versions of the commutation relations determining matrix versions of Aut(B) are
used in the literature.

Note: det(A) # 0 automatically because det(J) = (—1)"™ # 0. In fact, A € Sp(n,F)
implies det(J) = det(A'JA) = (det(A))? = 1, so det(A) = +1 whether the underlying
field FisRor C. O

The only scalar matrices A\I in Sp(n,F) are those such that A\ = 1. The fact that
det(J) = (—1)™ follows because m row transpositions send J — Iopxam.-

IX-3. Sesquilinear Forms (F = C).

Finally we take up sesquilinear forms B : V xV — C (over complex vector spaces), which
are linear functions of the first entry in B(v,w), but conjugate-linear in the second, so
that B(x,\y) = AB(x,y), B(Az,y) = AB(x,y). There are only a limited number of
possibilities.

3.1. Lemma. A sesquilinear form on V cannot be symmetric or antisymmetric unless
1t 18 zero.

Proof: We know that AB(wz,y) = B(\z,y), and if B is (anti-)symmetric this would be
equal to £B(z, \y) = £AB(z,y) for all A € C, z,y € V. This is impossible if B(z,y) # 0.
]

Thus the only natural symmetry properties for sesquilinear forms over C are

1. HERMITIAN SYMMETRY: B(z,y) = B(y,x)

2. SKEW-HERMITIAN SYMMETRY: B(z,y) = —B(y, z).

However, if B is Hermitian then iB (where i = \/—1) is skew-Hermitian and vice-versa,
so once we analyze Hermitian sesquilinear forms there is nothing new to say about skew-
Hermitian forms.

The sesquilinear forms on V are a vector space over C. Every such form is uniquely
a sum B = By + Bg of a Hermitian and skew-Hermitian form

B(v,w) + B(w,v)  B(v,w) — B(w,v)

B(v,w) = 5 + 5 for all v,w € V

As usual, a sesquilinear form B is determined by its matrix representation relative to a
basis X = {e1,...,e,} in V, given by

[B]x = [BU] where Bij = B(ei,ej) .
Given any basis X, the form B is

1. Nondegenerate if and only if [B]x is nonsingular (nonzero determinant).
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2. Hermitian symmetric if and only if [B]x is self-adjoint (= [B]%).

3. The correspondence B — [B]x is a C-linear isomorphism between the vector space
of sesquilinear forms on V' and matrix space M(n, C).

The change of basis formula is a bit different from that for bilinear forms. If Q) = {f;}
is another basis, related to X = {e;} via

fi = Z S55i€j where S = [ld]x)gj .
j=1

we then have
(Bly)y; = B(fify) = B(Zsm‘ek, Zséjeé)
k ¢
= > su5g ([Bla)we
Je,l

= (S[B]xS)i; where S is the complex conjugate matrix: S;; = 5;;
Letting P = S, we may rewrite the result of this calculation as
(45) [Bly = P*[BlxP

where det(P) # 0, P* = (P)'. In terms of the transition matrix S between bases, we
have P = g = [ld]x@

Note that P* need not to be equal to P~', so P need not be a unitary matrix in
M(n,C). Formula (45) differs from that for orthogonal matrices in that P' has been

replaced by P*.

3.2. Exercise. If B is sesquilinear, X is a basis in V, and = ), je;, y = Zj yje; in
V', show that

Blx.y) = [Wk[Blxllz. sothat B(r.y) = Y wiBy7; . O

3.3. Definition. A non degenerate sesquilinear form is an inner product if

1. HERMITIAN: B(x,y) = B(y,x);
2. POSITIVE DEFINITE: B(z,z) >0, Vx
3. NONDEGENERATE:: B(z,V) = (0) < z =0.

Conditions 2. 4+ 3. amount to saying B(z,z) > 0 and B(z,z) =0 = x =0 — i.e. the
form strictly positive definite. This equivalence follows from the polarization identity for
Hermitian sesquilinear forms.

3.4. Lemma (Polartization Identity). If B is a Hermitian sesquilinear form then
3
B(v,w) = [ ZikB(v—i-ikw,v—l—ikw)], where i = v/ —1

k=0

N

Proof: Trivial expansion of the sum. [

If B is a nondegenerate Hermitian sesquilinear form and v # 0 there must be some
w € V such that B(v,w) # 0, but by the polarization identity nondegeneracy of B
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implies that there is some v # 0 such that B(v,v) # 0 (and if B is positive definite it
must be strictly positive definite). If v; is such a vector and M; = Ruv;, we obviously
have M; N Mj- = (0) because w € My N Mj- = w = cv; and also 0 = (w, v1) = c(v1,v1),
which implies ¢ = 0. The restricted form B| M is again Hermitian symmetric; it is also
nondegenerate because if B(w, Mj-) = 0 for some nonzero w € Mj-, then B(w,V) =
B(w, My + Mi") = (0) too, contrary to nondegeneracy of B on V. So, by an induction

argument there is a basis X = {e; = v1, €2, -+ ,e,} in V such that
M1 0
[Blx = .
0 Lon,

where i € C and py, # 0 (B being non degenerate).

Since B(e;, e;) = B(ej, e;) we get p = ik, so all entries are real and nonzero. Taking

P = diag(1//|pua], - ,1/3/l1tn] ), we see that

+1 0
P*[B]xP = .
0 +1
= [Bly for some new basis 2); recall the change of basis formula.) Finally apply a
permutation matrix (relabel basis vectors) to get

(46) Bly = E"P*[B]xPE = ( " o )

where P = Ipxp, Q = —I;xq, and p + ¢ = n = dim¢(V). We have proved
3.5. Proposition. Every nondegenerate Hermitian sesquilinear form B can be put into

the canonical form (46) by a suitable choice of basis in V. If x =Y, xie;, y = Ej Yje;
with respect to a basis such that [B]x has canonical form, we get

p n
B(z,y) ZZ%@— Z TiYi
i=1

i=p+1

In particular, if p = n and ¢ = 0 we obtain the standard inner product (z,y) = Z?Zl ;Y5
in C™ when we identify V with C" using the basis X such that [B]x has the form (46).

There are just m + 1 X-congruence classes of nondegenerate Hermitian sesquilinear
forms on a complex vector space of dimension n; they are distinguished by their signatures
(p, q). The possible automorphism groups

Aut(B) = {T € Hom¢(V,V) : det(T") # 0 and B(T'(v), T(w)) = B(v,w) for all v,w}

are best described as matrix groups Gp x with respect to a basis that puts B into
canonical form. This yields the unitary groups of type (p,q). Aut(B) is isomorphic
to the matrix group

(47)  U(p,q) = {A€eGL(n,C): A*JA=J} where J= ( 0 )

;

There is a slight twist in the correspondence between operators T € Aut(B) and
matrices A € U(p, ¢).
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3.6. Exercise. Let B be nondegenerate Hermitian sesquilinear and let X = {e;}
be a basis such that [B]x is in canonical form. If [T]x is the matrix associated with
T € Aut(B), verify that the complex conjugate A = ([T]x) satisfies the identity (47),

and conversely if A € U(p,q) then A = ([T]x) for some T € Aut(B). O

Thus the correspondence ® : T + A = ([T]x) (rather than T — A = [T]x) is a
bijection between Aut(B) and the matrix group U(p, ¢) C GL(n, C) such that ®(T1073) =
®(Ty) - (T3) (matrix product), and @ is a group isomorphism between Aut(B) and

U(p, q)-
When p = n, we get the classical group of unitary operators on an inner product

space, and when we identify V' ~ C™ via a basis such that [B]x = I, xn, we get the group
of unitary matrices in M(n, C),

U(n) =U(n,0) = {A € GL(n,C): A*A =1} (because A*JA = A"A)
As a closed subgroup of U(n) we have the special unitary group
SU(n) = U(n) N SL(n,C) C U(n) .
There are also special unitary group of type (p, ¢), the matrix groups
SU(p,q) = U(p,q) NSL(n,C) .
For A € U(p, q) the identity (46) implies

det(A*) - det ( IpOXp IO ) ~det(A) = (—1)¢
—lgxq

so |det(A4)]? = (—=1)¢ (remember: F = C so this could be negative). In particular,
|det(A)|*> = 1 if A € U(n), so det(A) always lies on the unit circle S = {z : |z| = 1} in
the complex plane.

We already know that unitary matrices are orthogonally diagonalizable since they
are normal operators (A*A = AA*, so A*A =1 AA* = I). Since ||Az|? = ||z|? for
all z, all eigenvalues A; have absolute value 1, so the spectrum spg(A) is a subset of the
unit circle S' = {z € C : |z| = 1} for unitary matrices (or operators). Furthermore,
U(n) contains a copy of the unit circle (which is a group under the usual multiplication
of complex number because |zw| = |z| - |w| and |z| = 1 = [1/2] = 1); in fact (S!,-)
{AMxn : |A| = 1}. In SU(n), however, the only scalar matrices are of the form Al where
X is an n'® root of unity, A = €27/ with 0 < k < n.

Notice the parallel between certain groups over F = R and F = C.

1. SO(p, q) and O(p, q) over R are the “real parts” of SU(p, ¢) and U(p, q). In fact we

have
O(p,q) = U(p,q) N (M(n,R) +10) .

when we identity M(n, C) = M(n,R) 4+ +/—1M(n,R) by splitting a complex matrix
A= [ZU] as [LL'U] + -1 [yij] if zij = x5 + v —1yij;.

2. We also recognize SO(n) and O(n) as the real parts of the complex natrix groups
SO(n,C) and O(n,C), as well as being the real parts of SU(n) and U(n).

3.7. Exercise. Prove that U(n) is a closed bounded subset when we identify M(n,C) ~

an; hence it is a compact matrix group. O

3.8. Exercise. If p # n, prove that U(p,q) and SU(p, q) are closed but unbounded
subsets in M(n,C) when ¢ #0. O
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Chapter X. Matrix Lie Groups.

X.1. Matrix Groups and Implicit Function Theorem.

The rank of a linear operator T': V' — W is dim(range(T")) = dim(V) — dim(ker(7)). If
X, 9 are bases in V,W the rank of T' can be determined from the matrix A = [T]y x
as follows. A k x k submatrix is obtained by designating k& rows and k£ columns and
extracting from A the k x k array where these meet. To describe the outcome we must
specify the row indices I = {i; < -+ < ix} and column indices J = {j1 < --- < ji}, and
then we might indicate how the submatrix was constructed by writing Ar;. Note that
A itself is not necessarily square; it is n x m if dim(V') = m, dim(W) = n.

1.1. Lemma. Given a nonzero n X m matriz A its rank rk(A) is equal to
kmar = max{k € N : A has a nonsingular k& x k submatrix Ay}

Proof: Obviously rk(A) > kjaq: if A7y is nonsingular its columns {Cg/‘p e ,Cj’-k} are
truncated versions of the corresponding columns {Cj,,---,C}, } of A, which forces the
latter to be linearly independent. Hence |J| < kpar < rk(A).

We also have tk(A) < Kk, for if rk(A) = k there is some set of column indices
with |J| = k such that {C; : i € J} are linearly independent. If B is the n x k matrix
[Cjy5- -+ ;Cj, ], it is well known that

row rank(B) = column rank(B) ,

so we can find a set I of row indices with |I| = |J| = k such that the rows {R;(B) : i € I'}
are linearly independent. The rows in the n x k matrix B = |C},;-- - ; C}, | are truncated
versions of the corresponding rows in A, and those with row indices in J are precisely

the rows of the k x k submatrix A;;. Obviously, this submatrix is nonsingular, so
kmax Z k= I‘k(A[J) = I‘k(A) O

Note that various choices I, J of row and column indices may yield nonsingular square
submatrices Ay of maximal size.

Smooth Mappings and their Differentials. Now consider a mapping y =
d(x) = (¢1(x),. .., 6n(x)) from F™ — F" (F = R or C, but mostly R in our discussion).
We say that ¢ is a C*° map (or smooth map) if the scalar components ¢ (x) have
continuous partial derivatives of all orders.

‘h ’}7_ e
T ]
a %, ’%’ _ I%i
iy
W— A

nxm dvray

Figure 10.1. A square k X k submatrix Ay is extracted from an n X m matrix by specifying
row indices I = {i1 < --- < i} and column indices J = {j1 < --- < jg}. The rank rk(A) is
equal to k if Ay is nonsingular and all nonsingular square submatrices have size r < k

(0]



The Jacobian matrix for ¢ at base point p is the n x m matrix
e e
rrd (OB el ()

(déf’)p =

o) - =)
whose entries are smooth scalar-valued functions of x € F™. We will be concerned with
the rank rk(d¢)x of the Jacobian matrix at and near various base point. We assign a
linear operator, the differential of ¢ at p,

(dg), : F™ — F™  such that (d¢),(v) = (d¢), - col(vi, ..., vm)

at each base point in F" where ¢ is smooth. The operator (d¢), is the unique linear
operator F™ — TF™ that “closely approximates” the behavior of the (nonlinear) map
¢ : F™ — F™ near p, in the sense that

A¢ = d(p + Ax) — ¢(p) = (do),, - (Ax) + E(Ax) ,

in which the “error term” E(Ax) becomes very small compared to Ax for small incre-
ments away from the base point p:

[E(Ax)]|

(48) ERROR ESTIMATE: ———
1Ax]

— 0inF" as |[|Ax|| — 0in F™.
As a function of the base point p € F™, the linear operator (matrix) (d¢), is a C*> map
from F™ into the matrix space M(n x m,F).

We define the rank of ¢ at p to be the rank r = rk(d¢), of its Jacobian matrix. As
above, we have rk(d¢), = r < dim(range(d¢),) < m — dim(ker(d¢),) = m — r < there
are r row indices I = {i; < -+ < i,} and column indices J = {j; < --- < j.}, such that

1. The submatrix (d¢p)rs is non singular, and

2. No larger square submatrix (with & > r) can be nonsingular, so xr is the maximum
size of any nonsingular square submatrix.

Note the following points:

1. Various choices of I, .J may yield nonsingular submatrices (d¢);; of maximal size
r x r. The valid choices of I, J may also vary with the base point p.

2. For fixed choices of indices I, J the entries in the r x r matrix (d¢y )y vary smoothly
with x, and so does the determinant det (d¢)x, so if the determinant is nonzero at
p it must also be nonzero for all x near p. Hence for fixed choice of I, J we have

rk(dgx)rs >r  for all x near p if rk(degy) s = 7.

Now let 7qq be the largest value rk(d¢x) achieves on F™. If rk(d¢)p = Tmas it
follows that rk(d¢)x = Tmas (constant rank) on some open neighborhood of p in F™.
Quite often, as when ¢ : F* — F™ has scalar components ¢ = (¢1(x),. .., dn(x))
that are polynomials in x = (21, ,Z,), this open set is dense in F™ and its
complement has Lebesgue measure zero — i.e. maximal (constant) rank is achieved
at “almost all” points in F™.
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Figure 10.2. The projection maps 7 ,,m; and direct sum decomposition F" = FJ’ o FJ

g

associated with a partition of column indices [1,m] = J' U J, J'NJ = 0. Near any base
point p € M this splits the variables in x = (z1,...,Zm) into two groups so x = ((EJ, ,{EJ) with
ry = (Tk,,-..,z.)and x , = (z¢,,...,T¢,), Wherer = |J|,s = [J'], and r+s = m = dim(F™).

In our narrative such partitions of variables arise in discussing the rank r = rk(d¢), of the the
n X m Jacobian matrix [0f;/0z;] of a differentiable map ¢ : " — F™ at points on a typical
level set L(¢ = q).

w

. For any choice of indices I, J with |I| = |J| = k < min{m, n} define J' = [1,m] ~ J
and let F/, F7 C F™ be the subspaces

F’/ = R-span{e; : i € J}, F’' = R-spanfe; :i € J'} ,
where {e;} is the standard basis in F. Then F™ splits as a direct sum F/ & F/,

and this decomposition determines projections

7, :F" - F7 and 7, :F" T/

g’ J

onto these subspaces.

Note: By composing ¢ with translations in F” and F"™ we can assume ¢ maps the
origin in F™ to the origin in F”. This will not change rk(d¢,), but greatly simplifies the
notation. The following exercise shows that this maneuver does not affect the Jacobian
matrices or their determinants. [

1.2. Exercise. If p € R™
(a) Consider a translation operator y = ¢(x) = (x14+p1, ..., Zm+pm) from R™ — R™.

Prove that (d¢), = Imxm at every base point.

(b) Given smooth maps R™ 2, R* ¥, R and base points p € R™, g = ¢(p) € R™,
explain why the differential of a composite map v o ¢ : R™ — R is the matrix
product of their differentials

d(zpo ¢)p = (d¢)¢(p) : (d¢)p U

Smooth Hypersurfaces and the Implicit Function Theorem. The
Implicit Function Theorem (IFT) concerns itself with level sets

L¢p=q)={z€F":¢(x) =q} CF™,

on which a smooth mapping ¢ : F™ — F™ has constant (vector) value ¢(x) = g € F*. In
essence, the IFT says that if p lies in a level set L(¢ = q), and if (d¢)x has constant rank
= r at and near p, then the locus L(¢ = ¢) can be described locally as a smooth surface
of dimension m — r in F". That is to say, near p the level set coincides with the graph

D={(xf(x):xeF" "} CF™" =F""" x "

(s
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Figure 10.3. Level sets for the map f : R? — R with f(z,y) = |22 — 1|2, identifying z = = + 1y
with (z,y) € R2. If ¢ < 0 the level set Lo = L(f = c) is empty; when ¢ = 0 it consists of three
isolated points z = —1,0,+1 ; and for ¢ > 0 the locus is usually a smooth curve (perhaps with
more than one connected component, as when 0 < ¢ < 1). But when ¢ = 1 the locus has a
singularity at the origin. It cannot be represented near the origin as the graph of any smooth
function y = h(z) or z = g(y). The origin is a “branch point” for the locus.

of a smooth map f : F™~" — F". The idea is illustrated in the following example (see
also Figure 10.2.) The map y = f(x) is the “implicit function” of the IFT.
1.3. Example. Define ¢(z) = |22 — 1|? ifor 2 € C and regard it as a map R*> — R by
identifying z = x+iy € C with x = (z,y) € R?. Then ¢ becomes a 4" degree polynomial
in x and vy,

d(z,y) = ot +22%9% +y* — 202 + 202 + 1.

The level sets L. = L(¢ = ¢) are empty if ¢ < 0; reduce to the isolated points {—1,0,+1}
if ¢ = 0; and for ¢ > 0 are smooth curves (sometimes with more than one connected
component if 0 < ¢ < 1). However there is one exception. When ¢ = 1 the locus
L(¢ = 1), shown in Figure 10.3, has a singularity at the origin. Near z = 0 + 0 it
cannot be described locally as the graph of a smooth function y = h(z) or x = g(y). The
1 x 2 Jacobian matrix Jé(z) = [0¢/0x(2), 0¢/0y(2)] = (d¢), has rk(dp). = 1 (constant)
throughout R? except at z = 0, z = —1 and z = +1 on the real axis (the “critical points”
where both partial derivatives of f are zero). O

1.4. Exercise. Let ¢ : R? — R be the function in Example 1.3

(a) Verify that the Jacobian matrix

- [52.3]

(de)x Ox’ Oy

has rank zero (both components = 0) if and only if x = (—1,0), (0,0), or (+1,0) in
R?, by solving the system of equations

9\ _ 99

(b) At which points x is one of the derivatives d¢/0x and d¢/dy zero, while the other
is nonzero? Draw pictures of the sets

S1 = {x:0¢/0x =0 and 9¢/0y # 0}
Sy = {x:0¢/0x #0 and 9¢/0y = 0}
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(c) Verify that rk(d¢)x = 1 at all points of S; and S identified in (b). How are these
points related to the pattern of level curves shown in Figure 10.37

Note: The point sets in (b) are infinite. O

In discussing the IFT we will discover that a level set L. = L(¢ = ¢) in Example 1.3
can be described as the graph of a smooth function y = f(x) near any point p on the
locus where 9¢/dx(p) # 0, and similarly we can write = g(y) if 9¢/dy(p) # 0. In
Example 1.3, at least one of these condition is satisfied at every base point, except the
origin x = (0,0), which lies on the locus L(¢ = 1), and the points x = (—1,0) and
(1,0) which make up the degenerate locus L(¢ = 0). Consequently, for ¢ # 0 or 1 the
non-empty level curves L. = L(¢ = ¢) can be described locally as smooth curves (the
graphs of smooth functions y = f(z) or x = g(y)). Furthermore, L. can be described
both ways (with y = f(z) or with = ¢g(y)) near most points p € L., but at a few points
only one such description is possible — these are the points on the curves in Figure 10.3
at which L. has either a horizontal or vertical tangent line.

We will apply the IFT to show that the “classical matrix groups” O(n), SO(n), U(n),
SO(n,C), etc. are actually smooth “hypersurfaces” in matrix space M(n,F) ~ F"*, and
hence have well-defined “dimensions,” “tangent spaces,” etc.

If ¢ : F™ — F™ is a C*° map and if rk(d¢)x = r (constant) on some open neighborhood
of p in F™, the IFT asserts that the level set S, = {x € F™ : ¢(x) = ¢(p)} passing
through p can be described near p as a smooth hypersurface of dimension m — r in F™.

For simplicity we state the result taking ' = R, though it remains true almost verbatim
for F = C.

1.5. Theorem (Implicit Function Theorem). Let ¢ : R™ — R"™ be a C* map
defined near p € R™ and let M = L(¢ = ¢(p)) be the level set containing p. Assume
rk(dg)x = r (constant) for x near p in R™. Given index sets I = {iy < --- <.} C[1,n],
J={j1 < <jr} C[1,m] such that the square submatriz [(do)y|rs is non singular,
let J'=[1,m] ~ J and let 7,7, be the projections of R™ onto RY R associated with
the decomposition R™ = R’ & R” | in which |J| = r,|J'| = m —r. Then there is an open
rectangular neighborhood By X By of p in R™ = R7 @R’ such that

1. On the relatively open neighborhood U, = (B1 X Ba) N M of p in M, the restriction
7, v, : Up — Bi of the linear projection 7, : R™ — R’ = R™" s a bicontinuous
bijection between the open set U, C M and the open set By C R™™". It assigns
unique Euclidean coordinates X = (1, ,Tm—r) to every point in U,.

2. The inverse map
-1
v=(r,ly,) :Bi—U, CR™

is a C*° map from the open set By C R7" into all of R™, and maps By onto the
relatively open neighborhood U, of p in the level set M.

Then the map f : R" — R™ obtained by following ¥ with the “horizontal” projection m,
shown in Figure 10.4
f=moV:B; — By CR"

is a C*° map. Furthermore U is the graph map for the smooth function f because
U(z) = (7, (¥(2)),7,(¥(2) = (2,7, 0 ¥(z)) = (z,f(x))  forzeBr.
In particular the open neighborhood U, in M is the graph of the C°° map f : R’ — RI,

Conclusion: Near p the locus M = L(¢ = ¢(p)) passing through p looks like part of a
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Figure 10.4. A diagram showing the players in the Implicit Function Theorem. Here S), is
the level set passing through p for a C*° map ¢ : R™ — R™. By splitting coordinates in R™
into two groups we get a decomposition R™ = RV’ @ RY and associated projections T Ty
from F™ to ]FJ/JE‘J such that (i) the restriction . |Up becomes a bijective bicontinuous map
to an open set Bj in R’ for a suitably chosen open neighborhood U of p in Sp, and (ii) the
-1

inverse ¥ = (WJ/\UP) : By — Up is a C*° map from the open set B1 C RY’ into the entire
Euclidean space R™ in which the level set S, lives.

smooth hypersurface in R of dimension £ = m —n. The situation described in the IFT
is shown in Figure 10.4.

A rough general principle is at work here. If ¢ : R™ — R is a scalar valued C*°
function we often find that the solution set L(¢ = ¢), ¢ € R, is a smooth hypersurface of

dimension m — 1. A level set of a vector valued map ¢ : R™ — R™ with ¢ = (¢1,...,dn)
is the intersection of the solution sets for a system of scalar constraint equations
¢1(X) =C, ... 7¢n(x) = Cn

The solution set tends to lose one degree of freedom for each imposed constraint, so
the outcome is usually a smooth hypersurface in R™ of dimension m — n, but that is
not always the case and the point of the IFT is to make clear when it is true. This
principle also suggests why it is often natural to restrict attention to the case m > n, in
which “maximal rank” means rk(d¢), = n. If the number of constraints n exceeds the
dimension m of the space R™ in which the level set lives, the locus may be degenerate
with solutions at all, or it may reduce to a set of isolated points in R™. [

The “Maximal Rank” Case: As a particular example, if ¢ maps F™ — F" and
m > n, the maximum possible value for the rank of (d¢,) is n. If this maximal rank is
achieved at some base point p € F™, ¢ will automatically have the same (maximal) rank
at all points x near p in . The maximal rank case is often encountered, but the IFT
is proved in the more general “constant rank” case, in which we do not assume m > n,
or that the “constant rank” is the maximum possible rank of (d¢), on all of F. O

1.6. Exercise. Consider the C* map ¢ : R* — R? given by

Yy = f(X) = ¢(£L’1,(E2,JI3,JI4) = (yl(x)7y2(x)) = (J‘% + (E%, J]?; - xézl + $1$4)

(a) Show that the locus M = L(¢ = ¢) can be described as a smooth two-dimensional
hypersurface in R* near p = (1,2, —1,3), at which ¢ = ¢(p) = (5, —5). Identify all
pairs of variables x;,z;, (1 <@ < j <4) that can be used to smoothly parametrize
this hypersurface near p
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(b) Is this locus smooth near all of its points?

Hint: In (b), start by showing x4 # 0 for every point x € M, so you can assume x4 # 0
in calculations involving points on this locus, even if you cannot draw a picture. In
answering (b) you will have to compute rk(A;;) for various square submatrices of the
2 x 4 Jacobian matrix [8yi / Bzvj], which has variable coefficients. Do this using symbolic
row operations. [

1.7. Exercise. Consider the C* scalar-valued function f : R? — R,
$a,y) = 2’y + 2e"
(a) Find all critical points, where both partial derivatives O¢/0x and d¢/dy are zero.

At a critical point p there is no way to represent the level set .S, = L(¢ = ¢(p)) passing
through p as the graph of a smooth function y = f(x) or = g(y).

(b) Locate all points p where one of the partial derivatives is zero but the other is not
(two cases to consider). Find the value of ¢ at each such base point to determine
which level sets L(¢ = ¢), ¢ € R, contain such points.

(¢) Thelocus M = L(¢ = 2) obviously contains the horizontal and vertical axes. Prove
that there are no other points on this locus. (Thus the origin is a singularity for
the locus M, and there are no others.)

Hint: In (¢): Quadrant-by-quadrant, what is the sign of 9¢/dy off of the z- and y-axes?
O

1.8. Exercise. Let y = ¢(x) = (y1(x), y2(x)) be a C> map from R? — R? such that

(1) #(p) =q=1(0,0) at base point p = (3,-1,2)

(14) At p the Jacobian matrix is [Jy;/0x;] = ( 1 _21 1 )

Answer the following questions without knowing anything more about ¢.

(a) Can the level set M = L(¢ = q) be described near p = (3,—1,2) as a smooth
hypersurface in R3? Of What dimension k?

(b) Which of the variables 1, z2, 23 can be legitimately be used to parametrize M near
p = (3,—1,2) as the graph of a smooth map f : R¥ — R3? List all valid choices of
the parametrizing variables z;,,...,z;, . U

1.9. Exercise. If f : F" — F? is a C*> map defined on open set B C F", its graph
I' = {(x, f(x)) € F" x F* : x € B} is the range of the graph map F(x) = (x, f(x))
from F” — F"+* Show that the graph map is C* for x € B C F” and that rk(df), = r
(constant) for all x € B. O

Smooth Submanifolds in F™. A space M is locally Euclidean of dimension
d if it can be covered by a family of charts {(z4,U,) : @ in some index set I}, where
2o : U, — V,, C R? is a bicontinuous map from an open subset U, C M to an open
set Vo = 74(Uq) in the Euclidean space R, The “chart maps” x,, assign locally defined
Euclidean coordinates aq (1) = (2% (u), . .. ,xgga) (u)) for u € U,. Thus M looks locally
like Euclidean coordinate space R<.

Where the domains of two charts (x4,U,), (zg,Ug) overlap we have the situation
shown in Figure 10.5. The intersection U, N Ug is an open set in M, the images N, =
74Uy NUg), Ng = x53(U, N Up) are open sets in coordinate space R¥, and we have
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Figure 10.5. The coordinate transition maps xq © mgl and zg o m;l between two charts

(za,Ua), (x3,Ug) and their (shaded) domains of definition in R” are shown. Both shaded
domains N, Ng in R" correspond to the intersection U, N Ug of the chart domains, which is
an open set in the locally Euclidean space M.

induced coordinate transition maps that tell us how the coordinates x = x4 (u) and
vy = x3(u) assigned to u € M by the chart maps are related. These transition maps

x = (zq0 IEI)(y) from Ng — N,

y = (zgoz;")(x) from N, — Ng
are bicontinuous bijections between the open sets N, and Ng in R*

1.10. Definition. A locally Euclidean space M is a smooth manifold of dimension
dim(M) = d if the charts (Ua,x4) that cover M map it into R? and are C*-related, so
the coordinate transition maps are C* between the open sets No, Ng C R? that correspond
to the (open) intersection U, NUg of chart domains in M.

This allows us to make sense of “smooth manifolds” without requiring that they be
embedded in some surrounding Euclidean space. IT is the starting point for modern
differential geometry.

Once we make M a C* manifold by introducing C*° related covering charts, we can
begin to do Calculus on M. The following concepts now make sense:

1. Given any chart (x,,U,) on M, a scalar function f : M — F on M becomes a
function of local chart coordinates if we write

y=F(x)=(fozs")(x),

which is defined on the open set V,, = x,(U,) in coordinate space F™. We say that
fis a C* function on M if y = F(x) has continuous partial derivatives of all
orders, for each of the covering charts that determine the manifold structure of M.

2. A map ¢: M — N is a C>* mapping between manifolds M and N of dimensions
m and n if it becomes a C*>° map from F™ — F™ when described in local coordinates
on M and N. Thus if (z4,U,) and (yg,Ug) are charts on M and N respectively,
the composite y = ®(x) = ygo poz; (x) is a C> map from F™ — F" wherever it
is well-defined.

3. A parametric curve in M is any continuous map y = (¢) from some interval
[a,b] C R into M. It is a C*-curve in M if it becomes a C* vector-valued map

x = (yi1(t),...,ym(t)) =20 0y(t) fort € [a,b]
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for every chart (z4,U,) on M.

1.11. Definition. Suppose M N L Rare ¢ maps between C*° manifolds. In
terms of the preceding definitions, explain why the composite foh : M — R is a C*
map wherever it is well-defined.

Hint: If M, N, R are Euclidean coordinate spaces F™,F™ F" this follows by the Chain
Rule of multivariate Calculus. O

Smooth Manifolds and the IFT. One consequence of the IFT is this: If ¢
is a C*° map R™ — R" and if rk(d¢)x = r (constant) near every point in a level set
M = L(¢ = q),q € R, we can use the IFT to create a family of C*°-related charts
(Za, Uy) that cover M. The resulting standard C* structure makes M into a smooth
r-dimensional manifold. The crucial fact that the charts are C*°-related follows directly
from the way the standard charts are constructed (see Proposition 1.13 below).

1.12. Constructing “Standard Charts” on a Level Set M. The IFT and the
“constant rank” condition allow us to construct a chart (z4,U,) about a typical base
point p € M.

1. Write ¢ as v = ¢(u) in terms of the standard coordinates u = (uq,...,u,) and
v = (v1,...,0,) in R™ and R™. By Lemma 1.1 and the “constant rank” condition
we can, for each u € M, choose row and column indices I C [1,n] and J C [1,m)]
with |I| = |J| = r = rk(d¢)y such that the square submatrices [8vi/8uj(u)]1(] are
nonsingular for u near p in R™. By Lemma 1.1 this cannot be done for any larger
square submatrix.

2. Using the column indices determined in Step 1, let J" = [1,m] ~ J, split R™ =
R’ ® R’ and let 7,,,7, be the projection maps from R™ to R’ or RY. By the
IFT there is a rectangular open neighborhood B; x Bg of p in F™ such that the
projection

T, Z(Bl XBQ)—>Bl

maps the relatively open neighborhood U, = (B; x B2) N M in M onto the open
set By C R ~R™-" To get a chart (24, Uy) that imposes Euclidean coordinates
on M near p we take U, = U, and bijective chart map z, = (TFJ, |Up) :Up — By
(an open set in R™~"). The charts (x4, U,) obviously cover M owing to constancy
of rk(d¢) near every point in M.

3. The inverse map ¥ = (7TJ,|UP)_1 B —= U, C M CR™is C*™ from B, C R7" into
all of R™, and its range is precisely the chart domain U,. O

We now show that charts created this way, perhaps about different base points, are
always C*°-related wherever the chart domains overlap.

1.13. Proposition. If ¢ : R™ — R"™ is a C* map and M = L(¢ = q) a level set
such that tk(d¢), =7 (constant) on an open neighborhood of every point in M, then all
standard charts on M obtained by the preceding construction are C* related where they
overlap. This determines the standard C*° structure on M. The dimension of the
resulting C* manifold is k =m —r.

Proof: Consider two standard charts (z4,U,) and (zg,Ug) about a typical point p
in Uy NUg. The chart (x4, U,) is determined by a partition of column indices [1,m] =
J'(a)UJ () and a choice of row indices I(«) C [1,n] with |J(a)| = r and |J'(a)] = m—r,
such that [(d¢)p]rs is nonsingular. In the notation of the IFT we then have

Uo=(BY x BY)NM  zq = (mylv.) and Vo=za(Us) =By CR™"
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The chart map is the restriction to U, of a linear projection map R™ — R (@) o R™=T
Ty = (ﬂ'J,(a)|UQ) Uy — By CR™T .
Its inverse ¥ = x! is the graph map
-1
U, = (ﬂ-J’(a)|Ua> Vo = Uy s

which is actually a C*° map from BY' into all of R™.

The chart (z3,Ug) corresponds to some other choice of column and row indices
[1,m] = J(8) UJ(B) and I(5) C [1,n], and a corresponding rectangular open neigh-
borhood Bf X Bg of p in R™. The chart map on Ug = (B{j X Bg) N M is just the
restriction to Ug of a linear projection 7/ (), and by the IFT its inverse is a C* map
from BY into all of R™. Therefore the coordinate transition map

_ —1
{EQO{Eal :WJ’(B)O(WJ/(Q”UQ) :WJ/(B)O\I/Q
is the composite of a linear map and a C* map

-1
To s

R™—T RJ’(Q) R™ RJ’(Q) o~ RMT

and is certainly C*°. Likewise for the transition map in the reverse direction. [

The preceding proof is burdened by the complicated notation needed to label all the
players. Here is a shorter proof that emphasizes the intuition behind the proof.

Alternative Proof of Proposition 1.13: Suppose p is any point in U, N Ug and
x0 = 2a(p),yo = z5(p) in R™~". To show y = x5 0 x,1(x) is C* near x¢ we observe
that

-1

e Near xq the chart map z,! coincides with the map (ﬂ' J,(a)|Ua) , which by the
IFT is a C* map from an open set in R™~" into all of R™ that sends x¢g — p, and
whose range is contained in M.

e Near p the chart map zg coincides with the globally defined linear projection map

Co - o
T s which is certainly C*°.

Therefore the transition map xg o x,' is the composite of a linear map and a C*> map
RM—T o RJ (@) %o Rm s R]’(ﬁ) o~ RMT

and is C*°. Likewise for the transition map in the reverse direction. [

1.14. Example. Let ¢ : R? — R! with ¢(x) = 23 — 27 — 23. At any p = (21,22, 23)
the 1 x 3 Jacobian matrix

(do), = [(%1 . axg ] = [=221, —22,, 223]

is just the classical “gradient” vector V¢ (p). The rank rk(d¢)x is constant = 1 unless
all three entries are zero, which happens only at the origin p = (0,0,0). The level set
My = L(¢ = 0) is the double cone shown in Figure 10.6(b). This two-dimensional
hypersurface has a singularity at the origin in R3, where it fails to be locally Euclidean.
Thus the locus L(¢ = 0) cannot be made into a smooth manifold by covering it with
suitably defined coordinate charts. All other level sets M. (¢ # 0) are smooth two-
dimensional manifolds; a few of these level surfaces are shown in Figure 10.6(a).
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Figure 10.6. In (a) we show some level sets L. = L(¢ = ¢) for the map ¢(z1,z2,23) =

22 — 22 — 22 from R® — R!. For ¢ = 0 the level set where 22 — 23 — 22 = 0, shown in (b), is

a double cone with a singularity at the origin, where it fails to be locally Euclidean. All other
level sets are smooth two-dimensional hypersurfaces in R3, but the geometry of L. changes as
we pass from ¢ < 0 to ¢ > 0. For ¢ < 0, we get a single connected surface; for ¢ > 0 there are
two isolated pieces, both smooth.

Consider the possible charts we might impose near the point p = (1,1,v/3) on the
particular level set M = L(¢ = 1). Entries in (d¢),

(do)p = [—221, —2x9,223] = (—2\/_, —2\/5,2\/5) at p,

are all nonzero near p, so we have constant rank rk(dg)x = 1 near p, Jand may apply
the IFT to define standard charts about p. Each nonzero entry in (d¢), corresponds to
a nonsingular 1 x 1 submatrix, so several legitimate groupings of variables are available
to parametrize M near p:

49)  I={1},J={23} or I={2},J={1,3} or I={3},J=1{1,3}

Thus L(¢ = 1) can be described as the graph in R? of various smooth functions zy =
fr(x;, z;) by solving
1:¢(X)=$§—x§—x%

for one variable in terms of the other two.
L. z1 = fi(z9,23) = +1/22 — 22 — 1 near (1,V/3) in the (z2, x3)-plane.
2. 3 = foxy,23) = ++/23 — 7 — 1 near (1,/3) in the (21, 23)-plane.
3. 3 = f3(x1,22) = +/1+ (22 + 23) near (1,1) in the (1, x2)-plane.

The coordinate transition map (z1,73) = yg o z; ' (22, z3) can be computed directly by
writing x1 = f1(z2, z3) to get (x1,x3) in terms of (x9, x3). The resulting transition map

(x1,23) = ®(z9,23) = ygoz, (x2,73)

= (xl ’ xg) |w1:f1(12>13)

(—l—\/xg—x%—l,xg)

is clearly a C* map from (z2,x3) to (z1,x3). So is its inverse. [

1.15. Exercise. In Example 1.14,
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(a) Compute the inverse (z2,z3) = @7 (z1,23).

(b) One of the valid splittings [1, 3] = J'UJ of column indices listed in (49) is J' = {1, 2}
J = {3}. Find an explicit formula for the corresponding projection map (1, z2) =
7, (z1,22,73) that assigns Euclidean coordinates to points x = (x1,z2,23) on M

near p = (1,1,v/3).

(c) Give an explicit formula for the inverse

(1, @2, 23) = (1, gr) " (21, 23)
of the projection map in (b). O
1.16. Exercise. Consider the points
(2) p=(1,0,v2) (b) p=1(0,0,-1)

on the two-dimensional hypersurface M = L(¢ = 1) of Example 1.14. In each case
determine all pairs of coordinates =, = (x;, ;) that give a legitimate parametrization
of M near the prescribed base point p. [

1.17. Exercise. Verify that the unit sphere 5% = L(¢ = 1) for ¢(x) = 2% + 23 + 23 is
a C* manifold in R? by showing that rk(d¢)x = 1 near every point x € S2. [

1.18. Exercise. Describe a set of standard charts covering the unit sphere $2 =
L(¢ = 1) where ¢(x) = 2% + 23 + 22, taking for your chart domains the relatively open
hemispheres (boundary circles excluded)

Ul ={xe 8%z >0} U, ={x€eS5%: 2, <0}

for k =1,2,3. All six hemispheres are required to fully cover S2.

The chart maps :vki : U,f — R? project points x € U,j[ onto the open unit disc
2% + 23 < 1 in the (x2,z3)-plane when k = 1; project UQi onto the open disc in the
(21, x3)-plane when k = 2; and project onto the disc in the (z1, z2)-plane when k& = 3.

(a) Give explicit formulas for the chart maps on the particular domains U;" and U .

(b) Compute the coordinate transition maps in both directions for these two charts,
noting that they have the form (z;,z;) = zo(x) = zo (21, T2, 23) for x € M.

Note: These are examples of standard charts on the level set L(¢ = 1). O

1.19. Exercise (Stereographic Projection). Let H* be the two-dimensional hyper-
plane in R? that is tangent to the unit sphere M = S? at its “north pole” N = (0,0, +1),
and consider the “punctured sphere” U, = S? ~ {S} obtained by deleting the south pole
S =(0,0,—1) from the sphere. Each point u € U, determines a unique straight line in
R? that passes through S and the point u; continuing along this line, we will meet the
hyperplane HT in a unique point with coordinates (:zr(u), y(u), —|—1). The resulting bijec-
tion ®1 : U, — H™ is an example of stereographic projection. Dropping the redundant
coordinate entry “1” we obtain the stereographic projection map z, : U, — R?,

zo(u) = (xl(u), xg(u)) € R?

which is is bicontinuous from the open subset U € S? onto all of coordinate space R?.

Similarly we may stereographically project the punctured sphere Uz = S? ~ {N}
onto the hyperplane H~ tangent to the sphere at the south pole S = (0,0, —1), to define
a second chart map z3(v) = (2/,y') € R? for v € Up.
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(a) Give an explicit formula for the stereographic projection map (z1,z2) = z4(u) =
To(u1,uz, us). Note carefully that @ maps triples u with u? +u3 +uj = 1 to pairs
(l‘l, 1'2) € R2.

(b) Compute the coordinate transition map v = zgox_ ! (u) and its inverse, and check
that it is C°° where defined. [

Stereographic projection allows us to cover the sphere S? with just two C*°-related charts,
the minimum number possible since it is well known that S? cannot be mapped bicon-
tinuously to the plane R2. But for many purposes the covering with hemispheres leads
to simpler computations.

Note: These charts are not of the standard form in Proposition 1.12 but they are C*°-
related to all standard charts (which by 1.13 are C*°-related to each other).

Hint: In (a) use similar triangles, and rotational symmetry of the problem. O

X.2. Matrix Lie Groups.!

The classical groups are the level sets of certain polynomial maps F™ — F™ except for
the general linear group GL = GL(n,F) = {A € M(n,F) : det(A) # 0}, which is an open
subset in matrix space M(n,F) ~ F"’. This is a smooth manifold and it is covered by
a single chart with chart domain U, = GL and chart map z, = the identity map of
GL(n,F) — F"*, which we shall write as

xa(A) = (Allv--'vAin;AQI;-'~7A2n;--';An1;-'~aAnn)

in what follows. Obviously dimg(GL) = n? since GL is an open set in M(n,F). All other
classical groups are closed lower-dimensional subsets in GL(n,F) and in M(n,F) & F.

2.1. Definition. A smooth manifold G is an abstract Lie group if

1. It is a group under some product operation P : G x G — G and under the inversion

map J : G — G that sends x — 1.

2. The product operation and inverse operation are both C°*° maps.

In particular if (Ua, za), (Ug,yg) are coordinate charts the product operation becomes a
C>™ map from F™ x F™ — F™ when expressed in these coordinates. Thus if x € U,,
y € Ug, and (U, zy) is a chart containing z = P(x,y) = x -y, the composite map

ZWOPO(xglxygl):meFmﬁF" is a C* map.
Similarly, if z € U, and 271 € Ug,
zgoJox L i F™ —F™ s aC> map

The dimension d = dimp(G) is the dimension of the charts that cover G. If F = C, we
regard F ~ R? and view G as a real manifold of dimension dimg(G) = 2 - dim¢(G), with
charts 3o : Uy — R24, O

The general theory of Lie groups has become a vast subject. To keep things simple we
restrict attention to matrix Lie groups, subsets G C M(n,F) such that G is:

(1) A group under matrix multiplication, as in Definition 2.1.

(#4) A C* manifold (smooth hypersurface) in matrix space, as in Definition 1.10.

1That’s pronounced “Lee” Groups. Sophus Lie was a Norwegian mathematician who pioneered the
study of these structures toward the end of the 1800s. Esoteric concepts then, they are ubiquitous in
modern physics and differential geometry.
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The simplest example of a Lie group is G = (R", +) with structure given by the single
identity chart (U, o) = (R™,id). Clearly, the (4) operation is a C>® map R" xR" — R",
as is the inverse map J(x) = —z on R™. But this in not a matrix Lie group because its
elements are not matrices.

The general linear group GL(n, F) is a (noncommutive) matrix Lie group of dimp(G) =
n?. The group operation, expressed in chart coordinates

2o(A) = (A11, ..., Arns o Aty Ann) €FY

is a polynomial map of F** — F** with
(AB)ij = AyBy; ,
k=1

and inversion is the rational map

a1 t
= mCof(A)

This involves the transpose of the cofactor matrix Cof(A), whose entries are polynomials
in the entries of A; det(A) is also a polynomial in the entries of A.

Other matrix Lie groups are level sets in matrix space for various C* (polynomial,
actually) maps ¢ : M(n,F) — F* with k < n? = dimg M(n,F). We will soon indicate
why they are all smooth manifolds. To see that they are also Lie groups we prove:

2.2. Theorem. Suppose M is the level set through p for some C* map ¢ : M(n,F) — F¥,
and that rk(d¢), = r (constant) on some open neighborhood of each p € M. If M is also a
subgroup of GL(n,F) under matrixz multiplication, then M is a Lie group in the standard

C> structure it inherits as a smooth submanifold in matriz space M(n,F) ~ F°.

Proof: If a,b € M, let (Ua,za), (Us, x3) be standard charts about a,b and let (U, 24)
be a chart about ¢ = ab = P(a,b). By the IFT x., is the restriction to U, of a linear
projection 7 (, from F™ to an open set in F¢ = F7' (") The product map P(a,b) =a-b
is defined and C* on all of matrix space M(n,F) x M(n,F) — M(n,F); and in fact it is
a polynomial map. To verify that it is a C* map on the manifold G we must show that

zyoPo (17;1 X yﬁ_l) (Fex F - Fe = (ﬂ'J/(w)|U7) oPo (3:7

«

1xyﬁ_1):Fdde—>Fd

is C>°, where d = dimp(G) = n? — r and r = rk(d¢), by breaking this composite into
steps

mflxufl 2~y =T 51
2 a ~Jp P YT ()
F4" =4 x F? Unp x Ug — Uy ——— ¢

The matrix product operation P : F** xF"° — U, is defined and C* on all of M(n, F). In
particular points near (a,b) map to points near a- b in U,; furthermore P(Ua X Uﬁ) CG
because G is a group. The map 2, : Uy — F? is the restriction to U, C G of a globally
defined linear projection map Ty Fr* — Foron = F?, so it is the restriction to U, of
a globally C*° map. Clearly then,
_ _ _ _ 2
zyoPo (! x yﬁl) =,.,°oPo (z;! x yﬁl) :F¥ — ¢

is C* too. Similarly, the inversion map J : G — G is C*° when expressed in standard
chart coordinates because J : GL(n,F) — GL(n,F) is a rational function of matrix co-
ordinates. [
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The first example where we really need the Implicit Function Theorem is

2.3. Example. The special linear group G = SL(n,F) has dimension n? — 1 if F = C.
But if we regard F = R? and SL(n,C) € M(n,C) = R?""| then dimg(G) = 2n2 — 2.
On the other hand, if F = R we have dimg SL(n,R) = n? — 1. (Geometrically, we have
SL(n,R) = SL(n, C)NM(n, R) +i0 when we identify M(n, C) = M(n,R)++/—=1M(n,R).)
We will restrict attention is the case F = R.

Discussion: SL(n,R) is the level set L(¢ = 1) where ¢ : R” = M(n,R) — R is
¢(A) = det(A). To see that SL is a smooth manifold in matrix space we must show
that the 1 x n? Jacobian matrix has rk(d¢)x = 1 near every X € SL(n,R). If we write

coordinates of A as (a11,...,01n;---;0nl, -, 0np) € R"2, then
¢ =det(A) = Z sgn(0) - @1 ,6(1) " -+ Uno(n) >
oeSy

and by the product formula for derivatives we get

% - > sgn(o) - | Zlal,cr(l) S S o(m ]
o J=

80,]@14 8ak,l
= Z SGN(0) - A1,g(1) - Akt oo Oy o (n)
o:0(k)=¢

(Here we use the standard math notation by - - - b: coby, = H#i b;.) Indeed, Oa; ,(;)/0ak,c =
0 unless (j,0(j)) = (k,¢) which happens if and only if j = k and o(k) = ¢, in which case
it is equal to 1. Therefore we have
¢
a
ke Dane

= Z SgN(0) - A1 g(1) " Akl - v+ Oy o(n)
o:o(k)=¢

But the 1 x n? matrix [0¢/0ay] has rank = 1 (maximal rank) unless all entries are
zero, in which case we get

det(A) = D)+ Y ()t Y ()

o(1)=1 o(1)=2 o(l)=n

= Y 5gn(0) - a1,0(1) " An o) =0
oeSy

That contradicts the hypothesis det(A4) = 1, and cannot occur. Thus (d¢)x has maximal
rank (= 1) at each point in SL(n,R), and in fact at every point in GL(n,R). O

2.4. Example. The (real) orthogonal groups O(n) and SO(n), for which F = R, both

have dimension %(n2 —n).

Discussion: Both are closed subgroups of M(n,R). On O(n), det(A) can only achieve
values £1 (and —1 is actually achieved); the value is +1 precisely on the subgroup SO(n).
The full orthogonal group O(n) consists of two disjoint closed cosets, the subgroup SO(n)
and the coset J - SO(n), where J is any orthogonal matrix with det(J) = —1 such as
J = diag(1,---,1,—1). The coset J-SO(n) is the set of orientation-reversing orthogonal
maps on R", which is not a subgroup in O(n), while SO(n) is the group of invertible
orientation-preserving maps in O(n).

To show O(n) is smooth manifold recall that A € O(n) & A'A = I < the rows R;
are an ON basis in R", so (R;, R;) = ¢;; (Kronecker delta) for 1 <4, j < n. Eliminating
redundant identities in this list of n? identities by requiring i < j, we define the map

¢ :R" = M(n,R) — RO+/2 = R
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given by
¢(A) = ((R1,R2),...,(R1,Rn); (R2, Ra), ..., (Ra, Ry)y -+ 5 (R, Ry)) -
Then O(n) is the level set L(¢ = x) where
x=(1,0,---,0;---51,0; 1)

We must show rk(d¢)a = d for all A € M(n,R) near an arbitrary point p € O(n). The
idea is clearly revealed by the case n = 3, where

3
2 . 2 . 2
¢(A) = ( E ay;, E 1G24 , E a17G3; ; E ay; , E 42703 ; E (lgi)
i=1 i i i i i
Writing x = (au, aiz, a13; a22, A23; agg) we have

20,11 2&12 2&13 0 0 0 0 0 0

as1  G22  G23 | a11 G122 (13 0 0 0
0pi 1 asy  azz  as3 0 0 0 ain a2 Q13
8aij - 0 0 0 2a91 2a90 2as3 0 0 0

0 0 0 as;  as2 azz | a1 Az G93

0 0 0 0 0 0 | 2a31 2a32 2a333 /5. 4

Recall that row rank and column rank of any matrix are equal. Symbolic row/column op-
erations show that the row rank rk(d¢)4 of this matrix is 6 = %( 2+ n), so dimg O(3) =

dimg SO(3) = 9 — 6 = 3 (see next exercise for hints on this calculation). [

2.5. Exercise. Verify that the row rank of the matrix above is 6, at every A € O(3).
Note: The row rank is equal to the number of linearly independent rows. But rk(d¢)a
is always less than or equal to 6, so the rank must in fact be = 6 (constant) in a neigh-
borhood of every A € O(3).

Hint: The original rows and columns of A are independent so we can transform A — I5x3
by column operations. If we scale the first row of (d¢)a by % the matrix A appears as
a 3 X 3 submatrix in the upper left corner, with zeros below it. What happens if you
apply the same column operations that worked for A to the full Jacobian matrix? Etc.
(In later steps you may have to use both row and column operations.) O

All the classical groups mentioned in the previous section can be shown to be smooth
closed manifolds over F = R; we will not do that here. However, if G C M(n,C) we
should identify C = R? and M(n, C) = R2"” in discussing G as a real submanifold. For
example SU(2) is C M(2,C) but dimg SU(2) = 3, so there is no way complex coordinate
charts x4 : U, — C™ can be introduced into SU(2) (or SU(n) for that matter). The
classical groups are generally viewed as smooth hypersurfaces in R™ or R%z, even if they
are defined as subsets of M(n, C). However, a few actuall