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Abstract. We consider the decision problem of whether a particular Gromov–Witten invariant
on a partial flag variety is zero. We prove that for the 3-pointed, genus zero invariants, this
problem is in the complexity class AM assuming the Generalized Riemann Hypothesis (GRH),
and therefore lies in the second level of polynomial hierarchy PH.

For the proof, we construct an explicit system of polynomial equations through a transla-
tion of the defining equations. We also need to prove an extension of the Parametric Hilbert’s
Nullstellensatz to obtain our central reduction.

1. Introduction

Gromov–Witten invariants are rational numbers which count particular curves on a manifold.
Genus zero (3-pointed) Gromov–Witten invariants can be packaged to define an associative ring
called the (small) quantum cohomology ring, which deforms the ordinary cohomology ring.

Their study began in work of Witten [Wit91], arising in the study of string theory on Calabi–Yau
manifolds. The mathematical foundations were developed by Gromov [Gro85], Kontsevich–
Manin [KM94], and Ruan–Tian [RT94]. Together, this created an active area of study with
connections to several other fields. See [CK99, H+03] and references within, for connections to
both mathematical and physical aspects of mirror symmetry, [Mik05] for connections to tropical
geometry, and [KKPY25] for applications in birational geometry.

On a partial flag variety Y , the genus zero 3-pointed Gromov–Witten (GW) invariants count
the number of degree d algebraic maps from P1 to Y such that a fixed triple of points in P1 lie
in general translates of a given triple of subvarieties Ωi, respectively. In this restricted setting,
GW invariants and (small) quantum cohomology are particularly well studied, see e.g. [Ful04] and
references therein.

While these Gromov–Witten invariants are non-negative integers, we do not, in general, have
(positive) combinatorial formulas to compute them. In some cases, such as when all Ωi are
Schubert varieties and one of the cohomology classes [Ωi] belongs to a set of generators of the
cohomology ring, we obtain such formulas; see, e.g. [Ber97, FGP97, C-F99b]. However, when no
[Ωi] belongs to this set of generators, finding combinatorial formulas for these invariants remains
a difficult open problem for general partial flag varieties. In this general setting, Coskun [Cos10]
provides two systems of inequality conditions regarding the existence of non-zero GW invariants
of degree d, with one necessary and another sufficient.

When d = 0, these invariants recover the Schubert structure constants in the cohomology ring of
Y . That is, degree zero Gromov–Witten invariants count the number of points in the intersection
of a triple of Schubert varieties in general position. There, finding a (positive) combinatorial
formula is already a long-standing open problem. Additionally, the vanishing problem is well-
studied, but a combinatorial criterion to determine their vanishing is not known in full generality.

In recent work of the first two authors [PR24a, PR25], they prove that the problem of deciding
the non-vanishing of Schubert structure constants lies in the class AM, assuming the GRH. See
[PR24b] for background, discussion, and references. Our main result is a direct generalization:
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Theorem 1.1 (Main Theorem). The problem of deciding if a given genus zero 3-pointed Gromov–
Witten invariant is nonzero in the partial flag variety is in AM assuming the GRH.

Here AM is the class of decision problems whose “yes” answers can be decided in polynomial
time using an Arthur–Merlin protocol with two messages, see [AB09, Gol08]. Heuristically, one
should think of AM as a certain probabilistic extension of the class NP. The Generalized Rie-
mann Hypothesis (GRH) states that all nontrivial zeros of L-functions L(s, χk) have real part 1

2 .
Following Koiran [Koi96], this assumption is needed to ensure that there are enough primes in
short arithmetic progressions.

The paper is structured as follows. In Section 2, we define Gromov–Witten invariants for partial
flag varieties and reduce them to those for complete flag varieties. We then give explicit conditions
that completely characterize the non-vanishing of GW invariants for complete flag varieties. In
Section 3, we discuss the relevant computational complexity background for the problem and give
a new extension of Koiran’s theorem (Theorem 3.3). In Section 4, we translate the conditions
for non-vanishing into a system of polynomial equations and prove our main theorem. Lastly, in
Section 5 we discuss extensions of our result and connections to existing literature.

2. Gromov–Witten invariants on partial flag variety

In this section, we introduce Gromov–Witten invariants for partial flag varieties. We provide
a characterization for the non-vanishing of Gromov–Witten invariants for complete flag varieties.
Lastly, we reduce the vanishing problem for partial flags to the case of complete flags via Wood-
ward’s comparison formula [Woo05].

2.1. The partial flag variety and GW invariants. Let a = (a1, . . . , ak) ∈ Zk, where we take
0 < a1 < . . . < ak < n. The partial flag variety, denoted F (a, n), consists of flags of subspaces V•:

{0} = V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ Vk ⊂ V = Cn, where dimVi = ai.

We say the flag V• above is a complete flag in Cn if k = n. Note that we can associate each vector
space Vi with an n× i matrix whose columns are the i vectors generating Vi.

Restricting to particular a produces several well-studied spaces. For example, the Grassman-
nian Gr(k, n) of k-dimensional planes in Cn is the partial flag variety F ((k), n). Additionally,
the complete flag variety F (n), which contains all complete flags in Cn, is the partial flag variety
F ((1, 2, . . . , n− 1), n).

For n ∈ Z, define [n] := {i ∈ Z : 1 ≤ i ≤ n}. Let Sn denote the symmetric group on [n]. We
consider the Young subgroup with respect to a:

Sa = Sa1 × Sa2−a1 × . . .× Sn−ak ⊆ Sn.

For a fixed complete flag E•, we define the Schubert variety Y[w](E•) corresponding to a coset
[w] ∈ Sn/Sa as

Y[w](E•) = {V• ∈ F (a, n) : rank(Vi → Cn/En−j) ≤ rw(ai, j) for i ∈ [k] and j ∈ [n]}.

Here w ∈ Sn is any representative of [w] and rw : [n]2 → [n] is the rank function such that

rw(i, j) = |{h ≤ i : w(h) ≤ j}|.

The cohomology class of Y[w], denoted [Y[w]] ∈ H∗(F (a, n)), is independent of the choice of the
reference flag E•.

Let d = (d1, . . . ,dk) ∈ Zk
≥0 and cosets [u], [v], [w] ∈ Sn/Sa. We define the Gromov–Witten

(GW) invariant ⟨[Y[u]], [Y[v]], [Y[w]]⟩d as the number of maps f : P1 → F (a, n) such that:

(i) f(0) ∈ Y[u](E•), f(1) ∈ Y[v](E
′
•), and f(∞) ∈ Y[w](E

′′
• ), for E•, E

′
•, E

′′
• complete flags in

general position, and
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(ii) there are exactly di pre-images under f of a general hyperplane pulled back along the
composition

F (a, n) → Gr(ai, n) → P(
n
ai
)−1

,

for each i ∈ [k].

If there are infinitely many such maps, then ⟨[Y[u]], [Y[v]], [Y[w]]⟩d is defined to be 0.
Define the decision problem

GWVanishing := {⟨[Y[u]], [Y[v]], [Y[w]]⟩d =? 0}.

2.2. Characterizing GW invariants on complete flag varieties. In Section 2.3, we will see
that computing GW invariants on partial flag varieties can be reduced to computing those on
complete flag varieties. Therefore, we now focus on the case of the complete flag variety F (n).
We use standard definitions and notation in algebraic geometry. We refer to [Vak25] for necessary
background. We follow the setup of [C-F99a].

Write VX = V ⊗OX for any scheme X. Then there is a universal sequence of quotient bundles
on F (n):

VF (n) ↠ Qn−1 ↠ · · · ↠ Q1.

Here rank Qi = i, and each Qi ↠ Qi−1 is a surjection.
Fix a flag E• ∈ F (n). In F (n), Schubert varieties are indexed by w ∈ Sn. We can equivalently

define them as follows:

Xw(E•) = {V• ∈ F (n) : rankV•(Ej ⊗OF (n) ↠ Qi) ≤ rw(i, j) for i, j ∈ [n]}.
The Schubert variety Xw(E•) is a codimension ℓ(w) subvariety in F (n), where ℓ(w) is the number
of inversions of w. The cohomology class of Xw, denoted by [Xw] is independent of the choice of
the flag E•.

Fix d = (d1, . . . ,dn−1) ∈ Zn−1
≥0 . The hyperquot scheme Hd(n) [C-F99a, Kim96] parametrizes

sequences of successive quotients of sheaves on P1:

V ∗
P1 ↠ Bn−1 ↠ · · · ↠ B1.

Here V ∗ denotes the vector space dual to V . Additionally, each Bi has rank i and degree dn−i.
The scheme Hd(n) is a smooth irreducible variety of dimension(

n

2

)
+ 2

n−1∑
i=1

di.

Further, Hd(n) contains Md(n), the set of degree d morphisms from P1 to F (n), as a dense open
subset.

Given u, v, w ∈ Sn, the associated GW invariant ⟨[Xu], [Xv], [Xw]⟩d is 0 unless the codimensions
of Xu, Xv, Xw sum up to the dimension of Md(n), i.e.,

ℓ(u) + ℓ(v) + ℓ(w) =

(
n

2

)
+ 2

n−1∑
i=1

di.(2.1)

See [C-F99a, §4] for further discussion.

Lemma 2.1. Consider u, v, w ∈ Sn and d = (d1, . . . ,dn−1). Then for generic U•, V•,W• ∈ F (n),
the GW invariant ⟨[Xu], [Xv], [Xw]⟩d ̸= 0 if and only if each of the following conditions is satisfied:

(i) (2.1) holds.
(ii) For each 1 ≤ i ≤ h ≤ n− 1, there exist non-negative integers dh,i such that

∑
i dh,i = dh.

(iii) Take dn,j = 0 for all j ∈ [n]. Then for each h ∈ [n − 1], there exist h × (h + 1) matrices
Mh(s, t) over C[s, t] whose (i, j)-th entry is either 0 or homogeneous of degree dh,i−dh+1,j

such that
(a) Mh(s, t) is full rank over C(s, t) for all h ∈ [n− 1], and
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(b) for i, j ∈ [n], each i× j product matrix below

Mi(0, 1) . . .Mn−1(0, 1)Uj , Mi(1, 1) . . .Mn−1(1, 1)Vj , Mi(1, 0) . . .Mn−1(1, 0)Wj ,

has rank at most ru(i, j), rv(i, j), rw(i, j), respectively.

Here, Uj Vj ,Wj are the matrices corresponding to the vector spaces Uj , Vj ,Wj, respectively.

Proof. As noted above, if (2.1) doesn’t hold, then ⟨[Xu], [Xv], [Xw]⟩d = 0 for dimension reasons.
Now assume (2.1) holds.

Let e0, e1, e∞ : Md(n) → F (n) be the maps given by evaluations at 0, 1,∞ ∈ P1. Fix a ∈ P1

and a flag V• ∈ F (n). Let X ′
w(V•, a) ⊆ Hd(n) be the degeneracy locus corresponding to the

sequences of quotients of sheaves

V ∗
P1 ↠ Bn−1 ↠ · · · ↠ B1(2.2)

such that
rank a(Vj ⊗OP1 → A∗

i ) ≤ rw(i, j), for i, j ∈ [n],

where Ai is the kernel of the map V ∗
P1 ↠ Bn−i. Recall that each Bi has rank i and degree dn−i.

Then by [C-F99a, §4], ⟨[Xu], [Xv], [Xw]⟩d counts the number of points in

X ′
u(U•, 0) ∩X ′

v(V•, 1) ∩X ′
w(W•,∞) = e−1

0 (Xu(U•)) ∩ e−1
1 (Xv(V•)) ∩ e−1

∞ (Xw(W•)) .(2.3)

Thus, ⟨[Xu], [Xv], [Xw]⟩d = 0 if and only if X ′
u(U•, 0) ∩ X ′

v(V•, 1) ∩ X ′
w(W•,∞) = ∅. When

U•, V•,W• are in general position, this intersection (2.3) consists of reduced points. Each such
point corresponds to a sequence of quotients in Hd(n) as in (2.2) such that

rank 0(Uj ⊗OP1 → A∗
i ) ≤ rw(i, j), for i, j ∈ [n],

rank 1(Vj ⊗OP1 → A∗
i ) ≤ rw(i, j), for i, j ∈ [n], and

rank∞(Wj ⊗OP1 → A∗
i ) ≤ rw(i, j), for i, j ∈ [n].

(2.4)

For each h ∈ [n− 1], the sheaf Ah is a subsheaf of the free sheaf V ∗
P1 , so each Ah is locally free.

Since Bh has rank h and degree dn−h, each Ah must have rank h and degree −dh. Therefore,
each Ah is isomorphic to ⊕h

i=1O(−dh,i) for some non-negative integers dh,i such that
∑

i dh,i = dh.
The existence of such integers is encoded in (ii). The data of (2.2) are equivalent to the data of
a sequence of inclusions of sheaves

A1 ↪→ . . . ↪→ An−1 ↪→ V ∗
P1 .

Note that a map O(a) → O(b) is determined by a section of O(b − a). In addition, sections of
O(b− a) can be identified with polynomials in C[s, t] that are homogeneous of degree b− a. Note
that when b < a this line bundle has no non-zero section. Set An = V ∗

P1
∼= O(0)⊕n. Combining

these facts, each map Ah → Ah+1 is determined by an h × (h + 1) matrix Mh(s, t) over C[s, t]
for h ∈ [n − 1] whose (i, j)-th entry is either 0 or homogeneous of degree dh,i − dh+1,j . Finally,
condition (iii)(a) encodes the injectivity of the maps Ah → Ah+1, and condition (iii)(b) imposes
(2.4). □

Note that, without loss of generality, we may assume di,1 ≤ . . . ≤ di,i for i ∈ [n− 1] above. We
also note that instead of checking all possible di,j ’s, it suffices to check a unique choice constructed
using the algorithm in [Cos10, Lemma 2.1]; see [Cos10, Proposition 2.3]. However, this would not
improve the complexity of our decision problem.

2.3. Reduction from partial flag varieties to complete flag varieties. First set a =
(a1, . . . , ak) ∈ Zk, where 1 ≤ a1 < . . . < ak ≤ n. Consider d = (d1, . . . ,dk) ∈ Zk

≥0 and cosets

[u], [v], [w] ∈ Sn/Sa.

By [Woo05, Lemma/Def. 1], there is a unique sequence of non-negative integers d̂ = (d̂1, . . . , d̂n−1)

such that d̂ai = di for i ∈ [k] and

(2.5) −d̂i−1 + d̂i + d̂j − d̂j+1 ∈ {0,−1}
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when ah < i ≤ j < ah+1 for some h ∈ [k]. Here we set a0 = 0, ak+1 = n, and d̂0 = d̂n = 0.
Moreover, as a special case of [Woo05, Thm 2], we have

(2.6) ⟨[Y[u]], [Y[v]], [Y[w]]⟩d = ⟨[Xû], [Xv̂], [Xŵw′ ]⟩
d̂
,

where û, v̂, ŵ are the minimal length representatives of the cosets [u], [v], [w], respectively. Here
w′ is the longest element in the subgroup of Sa generated by transpositions (i, j + 1) such that

−d̂i−1 + d̂i + d̂j − d̂j+1 = 0.

Remark 2.2. Alternatively, instead of going through this reduction to complete flag varieties,
one could instead generalize Lemma 2.1 to partial flag varieties and proceed directly.

3. Hilbert’s Nullstellensatz and variants

Take R = C[x1, . . . , xs] for some s > 0. Set x = (x1, . . . , xs). Hilbert’s weak Nullstellensatz
states that a polynomial system

(3.1) f1(x ) = . . . = fm(x ) = 0,

where fi ∈ R, is unsatisfiable over C if and only if there exist g1, . . . , gm ∈ R such that
m∑
i=1

fi(x ) gi(x ) = 1.

Now, impose that f1, . . . , fm ∈ Z[x1, . . . , xs]. The decision problem HN (Hilbert’s Nullstellen-
satz ) queries if the system of equations (3.1) is satisfiable over C.

For g ∈ Z[x1, . . . , xn], let deg(g) denote the degree of g, and let s(g) denote the sum of bit-
lengths of coefficients in g. We define the size of g to be

ϕ(g) := deg(g) + s(g).

Then the size of the system of polynomials f = (f1, . . . , fm) is defined as

ϕ(f) :=

m∑
i=1

deg(fi) +

m∑
i=1

s(fi).

For a matrix M with polynomial entries, the size ϕ(M) is the sum of the sizes of its entries.
Work of Mayr and Meyer [MM82] implies that HN is decidable. In particular, they show HN

is in EXPSPACE, and that HN is NP-hard. Later work of Brownawell [Bro87] and Kollár [Kol88]
for the effective Nullstellensatz proves the existence of gi with single exponential size. These
improved bounds place HN in PSPACE. Then in a landmark paper, Koiran proved that HN is
in the polynomial hierarchy:

Theorem 3.1 ([Koi96, Thm 2]). HN is in AM assuming GRH.

Above, GRH refers to the Generalized Riemann Hypothesis. Koiran uses this GRH assumption
to ensure the existence of primes in certain intervals with particular modular constraints.

For our purposes, we need the following strengthening of Theorem 3.1. Let

f1, . . . , fm ∈ Q(y1, . . . , yk)[x1, . . . , xs].

The decision problem HNP (Parametric Hilbert’s Nullstellensatz ) asks if the polynomial system

(3.1) has a solution over C(y1, . . . , yk). In recent work, Ait El Manssour, Balaji, Nosan, Shirmo-
hammadi and Worrell extended Theorem 3.1 to HNP :

Theorem 3.2 ([A+25, Thm 1]). HNP is in AM assuming GRH.

See [A+25] for extensive background of HNP and other related work.
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3.1. A further generalization. Our construction needs an additional refinement of HN and
HNP, which we call HNPE (Parametric Hilbert’s Nullstellensatz with Exponents).

We consider expressions fi of the form:

(3.2) fi =
∑

α=(α1,...,αs)

pαx
α,

where pα ∈ Q(y1, . . . , yk)[x1, . . . , xs] and αj ∈ {0}∪{z1, . . . , zℓ} for j ∈ [s]. That is, variables may
appear in the exponents in fi. Let z = (z1, . . . , zℓ) be a vector of those exponent variables. Let
fi(

−→z ) denote the resulting fi after evaluating z at some −→z ∈ Zℓ.
Fix a system {fi = 0}i∈[m] with fi as in (3.2), some M ∈ Z>0, row vectors ai ∈ Zℓ, and

constants bi ∈ Z for indices i ∈ I ⊂ Z≥0. Suppose |I|= O(nc) for some c ≥ 0. The decision
problem HNPE asks if there exists an integer evaluation −→z of z such that

(i) ai · −→z ≤ bi,
(ii) 0 ≤ −→zj ≤ M for each j ∈ [ℓ], and

(iii) {fi(−→z ) = 0}i∈[m] has a solution over C(y1, . . . , yk).

Theorem 3.3. HNPE is in AM assuming GRH.

Proof. Consider the system S defined by {fi = 0}i∈[m], where fi are of the form (3.2). Our inputs
are S, {ai}i∈I , {bi}i∈I , and M . Note that we assume AM protocols satisfy perfect completeness.
Restated, if a decision problem is in AM and the answer of an instance of the decision problem is
“yes”, the AM protocol will output “yes” with probability 1 in that instance.

First, query to determine a non-negative integer evaluation −→z of z such that the evaluated
system, denoted S(−→z ), is satisfiable over C(y1, . . . , yk) while satisfying the added constraints (i)
and (ii) for −→z . By (ii), −→z has polynomial size.

Now we appeal to the AM protocol of [A+25] since the satisfiability of S(−→z ) is an instance of
HNP. If the desired −→z exists, our query will return −→z ∈ Zℓ such that (i), (ii), and (iii) hold.
We can check (i) and (ii) for each i ∈ I in polynomial time since M bounds the sizes of zj and
|I|= O(nc). Then to check (iii), we use the AM protocol for HNP on S(−→z ) to output “satisfiable”
with probability 1.

If no satisfiable −→z exists, our query may return some −→z ̸∈ Zℓ or some −→z ∈ Zℓ such that (i)
or (ii) fails. We can detect errors of this form in polynomial time to output “unsatisfiable” with
probability 1. Alternatively our query may return some −→z ∈ Zℓ where (i) holds, (ii) holds, but
S(−→z ) is unsatisfiable. In this case, the AM protocol for HNP on S(−→z ) will output “satisfiable”
with probability at most 1

2 .
Thus HNPE is in AM[4], the class of decision problems whose “yes” answers can be decided

in polynomial time using an Arthur–Merlin protocol with four messages. Since AM = AM[4], see
[Bab85, Thm 2.1], the result follows. □

3.2. Reduction to HNPE. We prove our Main Theorem 1.1 by showing that GW vanishing is
an instance of HNPE.

Lemma 3.4 (Main Lemma). ¬GWVanishing reduces to HNPE.

The proof of Main Lemma 3.4 is given in §4.3.

4. Main construction and proof

In this section we translate the conditions given in Lemma 2.1 (ii) and (iii) into an explicit
system of polynomial equations.
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4.1. The construction. Let a = (a1, . . . , ak) ∈ Zk, where 1 ≤ a1 < . . . < ak ≤ n. Suppose that
d = (d1, . . . ,dk) ∈ Zk

≥0 for some k ∈ [n]. Set D =
∑

i∈[k] di.

First, we describe a system for the constraints to determine integers that satisfy Lemma 2.1

(ii). Let d denote a set of variables di,j for 1 ≤ j ≤ i ≤ n− 1 and variables d̂i for i ∈ [n− 1]. Take

a0 = 0, ak+1 = n, and d̂0 = d̂n = 0. Define T (d) as the system formed by the constraints:

d̂ah = dh for h ∈ [k].

− 1 ≤ −d̂i−1 + d̂i + d̂j − d̂j+1 ≤ 0 for ah < i ≤ j < ah+1, h ∈ [k].( i∑
j=1

di,j

)
− d̂i = 0 for i ∈ [n− 1].

d̂i ≥ 0 for i ∈ [n− 1].

di,j ≥ 0, for 1 ≤ j ≤ i ≤ n− 1.

di,j − di,j+1 ≤ 0 for 1 ≤ j ≤ i ≤ n− 1, and j < n− 1.

First, note that through a straightforward induction, the first, second, and fourth equations

enforce 0 ≤ d̂i ≤ D for each i ∈ [n− 1]. Combining this with the third and fifth equations implies
0 ≤ di,j ≤ D for each 1 ≤ j ≤ i ≤ n− 1. Coefficients in T (d) are all in {0,±1} and constants in
T (d) are in {0,±1} ∪ {d1, . . . ,dk}. Since k ≤ n, T (d) requires I = O(n2) equations.

Let
−→
d be some integer evaluation of variables d . Define

−→
dn,j := 0 for all j ∈ [n − 1]. Take

s and t to be variables. Now we build matrices Mh(s, t) to address Lemma 2.1 (iii). For each
h ∈ [n− 1], define the h× (h+ 1) matrix of polynomials Mh(s, t) with i, j-th entry:

p
(h)
ij (s, t) =

L∑
m=0

a
(h)
ijmsmtL−m, for L =

−→
dh,i −

−−−→
dh+1,j .

Here a
(h)
ijm are also treated as variables. Let a denote the set of variables a

(h)
ijm where h ∈ [n − 1]

and 0 ≤ m ≤
−→
dh,i −

−−−→
dh+1,j . Then |a |= O(n · n2 ·D) = O(D · n3). For succinctness, we may write

Mh = Mh(s, t). Note that entries p
(h)
ij (s, t) in Mh have size O(D).

We now construct additional matrices for Lemma 2.1 (iii)(a). For each h ∈ [n − 1] define

Bh = (b
(h)
ij ) to be an h×h matrix of variables. Similarly define Ch = (c

(h)
ij ) to be an (h+1)×(h+1)

matrix of variables. Define the sets of variables b = {b(h)ij } where 1 ≤ i, j ≤ h ≤ n and c = {c(h)ij }
where 1 ≤ i, j ≤ h+ 1 ≤ n+ 1. Then |b|= O(n3) and |c|= O(n3).

Take U = (αij),V = (βij),W = (γij) to be n × n matrices of parameters. Let α,β,γ denote
the sets of parameters therein, respectively. Let Uh denote the submatrix of U formed by its first
h columns. Define Vh and Wh analogously.

Now we build matrices to force the constraints in Lemma 2.1 (iii)(b). For each i, j ∈ [n] and
σ ∈ {u, v, w} construct the i × rσ(i, j) matrix of variables Xσ

ij = (Xσ
i,j,p,q). Similarly, form the

rσ(i, j)× j matrix of variables Y σ
ij = (yσi,j,p,q). Let x and y denote the sets of variables appearing

in these matrices, respectively. Then |x |= |y |= O(n4) since rσ(i, j) ≤ n. For ease of notation,
denote the i× j matrix

Rij(σ) := Xσ
ij · Y σ

ij , for i, j ∈ [n] and σ ∈ {u, v, w}.

Note entries in Rij(σ) have size O(n2).
Let Idh∪0 denote the h× (h+1) matrix whose leftmost h×h submatrix is Idh and last column

is the 0 vector.



8 IGOR PAK, COLLEEN ROBICHAUX, AND WEIHONG XU

Let S(u, v, w,
−→
d ) be the system formed by the constraints:

Bh ·Mh(s, t) · Ch = Idh ∪ 0 for h ∈ [n− 1].

Rn,j(u) = Uj for j ∈ [n].

Rn,j(v) = Vj for j ∈ [n].

Rn,j(w) = Wj for j ∈ [n].

Ri−1,j(u) = Mi−1(0, 1) ·Rij(u) for i, j ∈ [n].

Ri−1,j(v) = Mi−1(1, 1) ·Rij(v) for i, j ∈ [n].

Ri−1,j(w) = Mi−1(1, 0) ·Rij(w) for i, j ∈ [n].

Here S(u, v, w,
−→
d ) uses variables a ∪ b ∪ c ∪ x ∪ y ∪ z ∪ {s, t} and parameters α ∪ β ∪ γ. We

see the first constraint has size O(n · n2 · D · n2) = O(D · n5) since entries in Mh have size
O(D). The next three equations have size O(n ·n2) = O(n3). The final three constraints have size

O(n2 ·n2 ·n2) = O(n6) since entries in Mh are linear for evaluated s, t ∈ {0, 1}. Thus S(u, v, w,
−→
d )

has size O(n5(n+D)).

Proposition 4.1. Consider u, v, w ∈ Sn and d ∈ Zk
≥0 such that (2.1) holds. Then we have

⟨[Y[u]], [Y[v]], [Y[w]]⟩d ̸= 0 if and only if for a solution
−→
d to T (d) and a generic choice of evaluations

−→α ,
−→
β ,−→γ of α,β,γ, the system S(û, v̂, ŵw′,

−→
d ) has a solution over C, where (û, v̂, ŵw′) are as

in (2.6).

Proof. We examine the conditions comprising T (d) and S(û, v̂, ŵw′,
−→
d ) and show these translate

those in Lemma 2.1. First, T (d) directly gives (ii) using (2.5). Using (2.6), the problem of
determining ⟨[Y[u]], [Y[v]], [Y[w]]⟩d ̸= 0 reduces to ⟨[Xû], [Xv̂], [Xŵw′ ]⟩

d̂
̸= 0.

We now consider S(û, v̂, ŵw′,
−→
d ). Note thatMh is rank h if and only if Bh ·Mh(s, t)·Ch = Idh∪0

for matrices Bh, Ch. Further note Mh(s, t) is rank h for general s, t if and only if Mh(s, t) is rank
h for some choice of s, t. Thus the satisfiability of this condition characterizes Lemma 2.1 (iii)(a).

Together, the remaining equations ensure the following:

⋄ Rij(û) = Mi(0, 1) . . .Mn−1(0, 1)Uj ,
⋄ Rij(v̂) = Mi(1, 1) . . .Mn−1(1, 1)Vj , and
⋄ Rij(ŵw

′) = Mi(1, 0) . . .Mn−1(1, 0)Wj

The definition of Rij(σ) as a product of an i × rσ(i, j) and an rσ(i, j) × j matrix ensures the
rank of Rij(σ) is at most rσ(i, j), where σ ∈ Sn. Thus these last six conditions force Lemma 2.1
(iii)(b). □

4.2. Equivalence of satisfiability. We outline the following argument for completeness.

Lemma 4.2. Consider u, v, w ∈ Sn and
−→
d ∈ Z(n−1)2. Then the following are equivalent:

(i) S(u, v, w,
−→
d ) has a solution over C(α,β,γ).

(ii) S(u, v, w,
−→
d ) has a solution over C for a generic choice of evaluations −→α ,

−→
β ,−→γ of α,β,γ.

Proof. The system S(u, v, w,
−→
d ) defines a finite-type affine variety Z over W := SpecC[α,β,γ].

Statement (i) is equivalent to the statement that the geometric generic fiber

Z ×W SpecC(α,β,γ)

is non-empty, which is also equivalent to the statement that the generic fiber

Z ×W SpecC(α,β,γ)

is non-empty, as the former is a basechange of the latter. Using textbook facts, see [Sta25,
Lemmas 37.24.1 and 37.24.2], the last statement is equivalent to the statement that the general
fiber of Z → W is non-empty. This is equivalent to (ii). □
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4.3. Proof of Lemma 3.4. We have shown S(û, v̂, ŵw′,
−→
d ) has size O(n5(n + D)). We see

T (d) has O(n2) equations, with its solutions bounded between 0 and D. Thus, deciding if

S(û, v̂, ŵw′,
−→
d ) is satisfiable over C(α,β,γ) for some solution

−→
d to T (d) is an instance of HNPE.

We assume (2.1) holds. By Proposition 4.1, S(û, v̂, ŵw′,
−→
d ) is satisfiable for a generic choice

of evaluations −→α ,
−→
β ,−→γ for some solution

−→
d to T (d) if and only if ⟨[Y[u]], [Y[v]], [Y[w]]⟩d ̸= 0.

Combining this with Lemma 4.2, S(û, v̂, ŵw′,
−→
d ) is satisfiable over C(α,β,γ) for some for some

solution
−→
d to T (d) if and only if ⟨[Y[u]], [Y[v]], [Y[w]]⟩d ̸= 0. Thus ¬GWVanishing reduces to

HNPE. □

5. Final Remarks

5.1. m-pointed fixed-domain GW invariants. Using a similar argument as in [PR25] for m-
fold intersections of Schubert varieties, it is straightforward to apply our method to genus zero,
m-pointed fixed-domain GW invariants. These invariants appear as coefficients when one expands
a product of m − 1 Schubert classes into a linear combination of Schubert classes in the small
quantum cohomology ring of F (a, n), see [C-F99b, §4].

5.2. Extending to other Lie types. One may be able to replace partial flag varieties with
generalized (partial) flag varieties of classical Lie types, by considering the corresponding analogs
of hyperquot schemes, see [CCH21, CCH22, Sin24].

5.3. Grassmannian case. Specializing to the Grassmannian, by [AW98] and [Bel01], the non-
vanishing of Gromov–Witten invariants controls the multiplicative Horn problem for SU(n), i.e.
how the equation A ·B = C constrains the singular values of A,B,C ∈ SU(n). In this setting, GW
invariants can be computed via classical Schubert calculus on a two-step flag variety [BKT03].
The puzzle rule of [BKPT16] ensures that deciding the non-vanishing of GW invariants is in NP.
As noted in [ARY19, Question 2], it is an open problem to prove the vanishing is in P. We note
that in this case, GW invariants have the saturation property, as proven by [Bel08], but it is
unknown if this fact may be leveraged in analogy with [DM06, MNS12] to prove the vanishing
problem is in P.

5.4. Complexity implications. It is worth noting that the Main Theorem 1.1 shows that the
vanishing of GW invariants is rather low in the polynomial hierarchy. In particular, the result
of Boppana, H̊astad and Zachos [BHZ87, Thm 2.3] implies that GWVanishing is not NP-hard,

assuming the GRH and the polynomial hierarchy does not collapse to the second level: Σ
p
2 ̸=

PH. Additionally, we have that GWVanishing ∈ coNP assuming the GRH and the strong
derandomization assumption of Impagliazzo and Wigderson [IW97].

Finally, we note that in [PR25] the first two authors proved a stronger inclusion for the d = 0
case, that the vanishing of Schubert structure constants is in AM ∩ coAM assuming the GRH.
Unfortunately the tools in that paper do not extend to Gromov–Witten invariants.
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